TestingViscosity / functions.py
biplab2008's picture
single file added
dc7407d
raw
history blame
15.1 kB
import os
import numpy as np
from PIL import Image
from torch.utils import data
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
from tqdm import tqdm
## ------------------- label conversion tools ------------------ ##
def labels2cat(label_encoder, list):
return label_encoder.transform(list)
def labels2onehot(OneHotEncoder, label_encoder, list):
return OneHotEncoder.transform(label_encoder.transform(list).reshape(-1, 1)).toarray()
def onehot2labels(label_encoder, y_onehot):
return label_encoder.inverse_transform(np.where(y_onehot == 1)[1]).tolist()
def cat2labels(label_encoder, y_cat):
return label_encoder.inverse_transform(y_cat).tolist()
## ---------------------- Dataloaders ---------------------- ##
# for 3DCNN
class Dataset_3DCNN(data.Dataset):
"Characterizes a dataset for PyTorch"
def __init__(self, data_path, folders, labels, frames, transform=None):
"Initialization"
self.data_path = data_path
self.labels = labels
self.folders = folders
self.transform = transform
self.frames = frames
def __len__(self):
"Denotes the total number of samples"
return len(self.folders)
def read_images(self, path, selected_folder, use_transform):
X = []
for i in self.frames:
image = Image.open(os.path.join(path, selected_folder, 'frame_{:01d}.jpg'.format(i))).convert('L')
if use_transform is not None:
image = use_transform(image)
X.append(image.squeeze_(0))
X = torch.stack(X, dim=0)
return X
def __getitem__(self, index):
"Generates one sample of data"
# Select sample
folder = self.folders[index]
# Load data
X = self.read_images(self.data_path, folder, self.transform).unsqueeze_(0) # (input) spatial images
y = torch.LongTensor([self.labels[index]]) # (labels) LongTensor are for int64 instead of FloatTensor
# print(X.shape)
return X, y
# for CRNN
class Dataset_CRNN(data.Dataset):
"Characterizes a dataset for PyTorch"
def __init__(self, data_path, folders, labels, frames, transform=None):
"Initialization"
self.data_path = data_path
self.labels = labels
self.folders = folders
self.transform = transform
self.frames = frames
def __len__(self):
"Denotes the total number of samples"
return len(self.folders)
def read_images(self, path, selected_folder, use_transform):
X = []
for i in self.frames:
image = Image.open(os.path.join(path, selected_folder, 'frame{:01d}.jpg'.format(i)))
if use_transform is not None:
image = use_transform(image)
X.append(image)
X = torch.stack(X, dim=0)
return X
def __getitem__(self, index):
"Generates one sample of data"
# Select sample
folder = self.folders[index]
# Load data
X = self.read_images(self.data_path, folder, self.transform) # (input) spatial images
y = torch.LongTensor([self.labels[index]]) # (labels) LongTensor are for int64 instead of FloatTensor
# print(X.shape)
return X, y
## ---------------------- end of Dataloaders ---------------------- ##
## -------------------- (reload) model prediction ---------------------- ##
def Conv3d_final_prediction(model, device, loader):
model.eval()
all_y_pred = []
with torch.no_grad():
for batch_idx, (X, y) in enumerate(tqdm(loader)):
# distribute data to device
X = X.to(device)
output = model(X)
y_pred = output.max(1, keepdim=True)[1] # location of max log-probability as prediction
all_y_pred.append(y_pred.data.squeeze().numpy().tolist())
return all_y_pred
def CRNN_final_prediction(model, device, loader):
cnn_encoder, rnn_decoder = model
cnn_encoder.eval()
rnn_decoder.eval()
all_y_pred = []
with torch.no_grad():
for batch_idx, (X, y) in enumerate(tqdm(loader)):
# distribute data to device
X = X.to(device)
output = rnn_decoder(cnn_encoder(X))
y_pred = output.max(1, keepdim=True)[1] # location of max log-probability as prediction
all_y_pred.extend(y_pred.cpu().data.squeeze().numpy().tolist())
return all_y_pred
## -------------------- end of model prediction ---------------------- ##
## ------------------------ 3D CNN module ---------------------- ##
def conv3D_output_size(img_size, padding, kernel_size, stride):
# compute output shape of conv3D
outshape = (np.floor((img_size[0] + 2 * padding[0] - (kernel_size[0] - 1) - 1) / stride[0] + 1).astype(int),
np.floor((img_size[1] + 2 * padding[1] - (kernel_size[1] - 1) - 1) / stride[1] + 1).astype(int),
np.floor((img_size[2] + 2 * padding[2] - (kernel_size[2] - 1) - 1) / stride[2] + 1).astype(int))
return outshape
class CNN3D(nn.Module):
def __init__(self, t_dim=120, img_x=90, img_y=120, drop_p=0.2, fc_hidden1=256, fc_hidden2=128, num_classes=50):
super(CNN3D, self).__init__()
# set video dimension
self.t_dim = t_dim
self.img_x = img_x
self.img_y = img_y
# fully connected layer hidden nodes
self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
self.drop_p = drop_p
self.num_classes = num_classes
self.ch1, self.ch2 = 32, 48
self.k1, self.k2 = (5, 5, 5), (3, 3, 3) # 3d kernel size
self.s1, self.s2 = (2, 2, 2), (2, 2, 2) # 3d strides
self.pd1, self.pd2 = (0, 0, 0), (0, 0, 0) # 3d padding
# compute conv1 & conv2 output shape
self.conv1_outshape = conv3D_output_size((self.t_dim, self.img_x, self.img_y), self.pd1, self.k1, self.s1)
self.conv2_outshape = conv3D_output_size(self.conv1_outshape, self.pd2, self.k2, self.s2)
self.conv1 = nn.Conv3d(in_channels=1, out_channels=self.ch1, kernel_size=self.k1, stride=self.s1,
padding=self.pd1)
self.bn1 = nn.BatchNorm3d(self.ch1)
self.conv2 = nn.Conv3d(in_channels=self.ch1, out_channels=self.ch2, kernel_size=self.k2, stride=self.s2,
padding=self.pd2)
self.bn2 = nn.BatchNorm3d(self.ch2)
self.relu = nn.ReLU(inplace=True)
self.drop = nn.Dropout3d(self.drop_p)
self.pool = nn.MaxPool3d(2)
self.fc1 = nn.Linear(self.ch2 * self.conv2_outshape[0] * self.conv2_outshape[1] * self.conv2_outshape[2],
self.fc_hidden1) # fully connected hidden layer
self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2)
self.fc3 = nn.Linear(self.fc_hidden2, self.num_classes) # fully connected layer, output = multi-classes
def forward(self, x_3d):
# Conv 1
x = self.conv1(x_3d)
x = self.bn1(x)
x = self.relu(x)
x = self.drop(x)
# Conv 2
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.drop(x)
# FC 1 and 2
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc3(x)
return x
## --------------------- end of 3D CNN module ---------------- ##
## ------------------------ CRNN module ---------------------- ##
def conv2D_output_size(img_size, padding, kernel_size, stride):
# compute output shape of conv2D
outshape = (np.floor((img_size[0] + 2 * padding[0] - (kernel_size[0] - 1) - 1) / stride[0] + 1).astype(int),
np.floor((img_size[1] + 2 * padding[1] - (kernel_size[1] - 1) - 1) / stride[1] + 1).astype(int))
return outshape
# 2D CNN encoder train from scratch (no transfer learning)
class EncoderCNN(nn.Module):
def __init__(self, img_x=90, img_y=120, fc_hidden1=512, fc_hidden2=512, drop_p=0.3, CNN_embed_dim=300):
super(EncoderCNN, self).__init__()
self.img_x = img_x
self.img_y = img_y
self.CNN_embed_dim = CNN_embed_dim
# CNN architechtures
self.ch1, self.ch2, self.ch3, self.ch4 = 32, 64, 128, 256
self.k1, self.k2, self.k3, self.k4 = (5, 5), (3, 3), (3, 3), (3, 3) # 2d kernal size
self.s1, self.s2, self.s3, self.s4 = (2, 2), (2, 2), (2, 2), (2, 2) # 2d strides
self.pd1, self.pd2, self.pd3, self.pd4 = (0, 0), (0, 0), (0, 0), (0, 0) # 2d padding
# conv2D output shapes
self.conv1_outshape = conv2D_output_size((self.img_x, self.img_y), self.pd1, self.k1, self.s1) # Conv1 output shape
self.conv2_outshape = conv2D_output_size(self.conv1_outshape, self.pd2, self.k2, self.s2)
self.conv3_outshape = conv2D_output_size(self.conv2_outshape, self.pd3, self.k3, self.s3)
self.conv4_outshape = conv2D_output_size(self.conv3_outshape, self.pd4, self.k4, self.s4)
# fully connected layer hidden nodes
self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
self.drop_p = drop_p
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=self.ch1, kernel_size=self.k1, stride=self.s1, padding=self.pd1),
nn.BatchNorm2d(self.ch1, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=self.ch1, out_channels=self.ch2, kernel_size=self.k2, stride=self.s2, padding=self.pd2),
nn.BatchNorm2d(self.ch2, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv3 = nn.Sequential(
nn.Conv2d(in_channels=self.ch2, out_channels=self.ch3, kernel_size=self.k3, stride=self.s3, padding=self.pd3),
nn.BatchNorm2d(self.ch3, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv4 = nn.Sequential(
nn.Conv2d(in_channels=self.ch3, out_channels=self.ch4, kernel_size=self.k4, stride=self.s4, padding=self.pd4),
nn.BatchNorm2d(self.ch4, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.drop = nn.Dropout2d(self.drop_p)
self.pool = nn.MaxPool2d(2)
self.fc1 = nn.Linear(self.ch4 * self.conv4_outshape[0] * self.conv4_outshape[1], self.fc_hidden1) # fully connected layer, output k classes
self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2)
self.fc3 = nn.Linear(self.fc_hidden2, self.CNN_embed_dim) # output = CNN embedding latent variables
def forward(self, x_3d):
cnn_embed_seq = []
for t in range(x_3d.size(1)):
# CNNs
x = self.conv1(x_3d[:, t, :, :, :])
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.view(x.size(0), -1) # flatten the output of conv
# FC layers
x = F.relu(self.fc1(x))
# x = F.dropout(x, p=self.drop_p, training=self.training)
x = F.relu(self.fc2(x))
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc3(x)
cnn_embed_seq.append(x)
# swap time and sample dim such that (sample dim, time dim, CNN latent dim)
cnn_embed_seq = torch.stack(cnn_embed_seq, dim=0).transpose_(0, 1)
# cnn_embed_seq: shape=(batch, time_step, input_size)
return cnn_embed_seq
# 2D CNN encoder using ResNet-152 pretrained
class ResCNNEncoder(nn.Module):
def __init__(self, fc_hidden1=512, fc_hidden2=512, drop_p=0.3, CNN_embed_dim=300):
"""Load the pretrained ResNet-152 and replace top fc layer."""
super(ResCNNEncoder, self).__init__()
self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
self.drop_p = drop_p
resnet = models.resnet152(pretrained=True)
modules = list(resnet.children())[:-1] # delete the last fc layer.
self.resnet = nn.Sequential(*modules)
self.fc1 = nn.Linear(resnet.fc.in_features, fc_hidden1)
self.bn1 = nn.BatchNorm1d(fc_hidden1, momentum=0.01)
self.fc2 = nn.Linear(fc_hidden1, fc_hidden2)
self.bn2 = nn.BatchNorm1d(fc_hidden2, momentum=0.01)
self.fc3 = nn.Linear(fc_hidden2, CNN_embed_dim)
def forward(self, x_3d):
cnn_embed_seq = []
for t in range(x_3d.size(1)):
# ResNet CNNFcnn
with torch.no_grad():
x = self.resnet(x_3d[:, t, :, :, :]) # ResNet
x = x.view(x.size(0), -1) # flatten output of conv
# FC layers
x = self.bn1(self.fc1(x))
x = F.relu(x)
x = self.bn2(self.fc2(x))
x = F.relu(x)
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc3(x)
cnn_embed_seq.append(x)
# swap time and sample dim such that (sample dim, time dim, CNN latent dim)
cnn_embed_seq = torch.stack(cnn_embed_seq, dim=0).transpose_(0, 1)
# cnn_embed_seq: shape=(batch, time_step, input_size)
return cnn_embed_seq
class DecoderRNN(nn.Module):
def __init__(self, CNN_embed_dim=300, h_RNN_layers=3, h_RNN=256, h_FC_dim=128, drop_p=0.3, num_classes=50):
super(DecoderRNN, self).__init__()
self.RNN_input_size = CNN_embed_dim
self.h_RNN_layers = h_RNN_layers # RNN hidden layers
self.h_RNN = h_RNN # RNN hidden nodes
self.h_FC_dim = h_FC_dim
self.drop_p = drop_p
self.num_classes = num_classes
self.LSTM = nn.LSTM(
input_size=self.RNN_input_size,
hidden_size=self.h_RNN,
num_layers=h_RNN_layers,
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.fc1 = nn.Linear(self.h_RNN, self.h_FC_dim)
self.fc2 = nn.Linear(self.h_FC_dim, self.num_classes)
def forward(self, x_RNN):
self.LSTM.flatten_parameters()
RNN_out, (h_n, h_c) = self.LSTM(x_RNN, None)
""" h_n shape (n_layers, batch, hidden_size), h_c shape (n_layers, batch, hidden_size) """
""" None represents zero initial hidden state. RNN_out has shape=(batch, time_step, output_size) """
# FC layers
x = self.fc1(RNN_out[:, -1, :]) # choose RNN_out at the last time step
x = F.relu(x)
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc2(x)
return x
## ---------------------- end of CRNN module ---------------------- ##