patrickvonplaten
commited on
Commit
·
6074ff3
1
Parent(s):
cc61500
Update README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
-
value: 48.
|
25 |
---
|
26 |
|
27 |
# Wav2Vec2-Large-XLSR-53-Luganda
|
@@ -49,15 +49,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
49 |
# Preprocessing the datasets.
|
50 |
# We need to read the aduio files as arrays
|
51 |
def speech_file_to_array_fn(batch):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
-
|
61 |
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
|
@@ -85,30 +85,30 @@ processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-luganda")
|
|
85 |
model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-luganda")
|
86 |
model.to("cuda")
|
87 |
|
88 |
-
chars_to_ignore_regex = '[
|
89 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
90 |
|
91 |
# Preprocessing the datasets.
|
92 |
# We need to read the aduio files as arrays
|
93 |
def speech_file_to_array_fn(batch):
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
100 |
|
101 |
# Preprocessing the datasets.
|
102 |
# We need to read the aduio files as arrays
|
103 |
def evaluate(batch):
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
|
108 |
pred_ids = torch.argmax(logits, dim=-1)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
|
113 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
114 |
|
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
+
value: 48.31
|
25 |
---
|
26 |
|
27 |
# Wav2Vec2-Large-XLSR-53-Luganda
|
|
|
49 |
# Preprocessing the datasets.
|
50 |
# We need to read the aduio files as arrays
|
51 |
def speech_file_to_array_fn(batch):
|
52 |
+
\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
\\\\\\\\\\\\\\\\treturn batch
|
55 |
|
56 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
+
\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
61 |
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
|
|
|
85 |
model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-luganda")
|
86 |
model.to("cuda")
|
87 |
|
88 |
+
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]'
|
89 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
90 |
|
91 |
# Preprocessing the datasets.
|
92 |
# We need to read the aduio files as arrays
|
93 |
def speech_file_to_array_fn(batch):
|
94 |
+
\\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
95 |
+
\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
96 |
+
\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
97 |
+
\\\\\\\\\\\\\\\\treturn batch
|
98 |
|
99 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
100 |
|
101 |
# Preprocessing the datasets.
|
102 |
# We need to read the aduio files as arrays
|
103 |
def evaluate(batch):
|
104 |
+
\\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
105 |
|
106 |
+
\\\\\\\\\\\\\\\\twith torch.no_grad():
|
107 |
+
\\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
108 |
pred_ids = torch.argmax(logits, dim=-1)
|
109 |
|
110 |
+
\\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
111 |
+
\\\\\\\\\\\\\\\\treturn batch
|
112 |
|
113 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
114 |
|