bitcloud2 commited on
Commit
542a5ce
·
1 Parent(s): a1d6224

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 1058.52 +/- 208.53
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d93393c91d6b27e00ed4784e14eb8958ed5e3702a831016af6cba97e58a3845
3
+ size 129273
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f8ca280d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f8ca28160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f8ca281f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f8ca28280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6f8ca28310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6f8ca283a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f8ca28430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f8ca284c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6f8ca28550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f8ca285e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f8ca28670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f8ca28700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6f8ca1fbd0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674365892464317199,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRi9kYXRhc2NpL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEYvZGF0YXNjaS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOFP5j0M7qO+w5gMPy+Zkj8DVaM9uN8SP3kZhL5b5Qe/pCRzP4KdrL7Y9ZA9SY69Phenw7+zEDbAYcM6PzE3kjxpwVQ/a5V4v+IxsL3c3bw+mh2Kv8kGPD8NH4S+F2g3wNmiHj87VyTAZxbIPo9T1r92L4c+WE3oP/O3Hr/vIZE/5f8DvzFlNT9SP+a+JmgSwKHpC74sMoBAd8rIP8xYqT7qA92/pNmbPhX0/T7/Fp2/DL8OP/nVYj/n49Y+WrkrPwvmzD4SQClAxuvjvhPKj8DZoh4//WPHPmcWyD6PU9a/jo9Dv1b45z6lryA/qbpHP81wjr+Sa+S9Dc3NPuHbrT3b8Wo/I17BvijHDb6TH5a9Owqpvy/eUMDEM8U9UgULv4bFXLwJi4q/wtAuPyk9QrxLQpS/awpUPOn4Jr+Yff692aIeP/1jxz5nFsg+aOMYP2dIUD8dHSI87GYjP4yTXUBCxZY/AOZIP4tGTD9w6iDApb6nPSOB1T7LDqC+bfYIQEWOFb4zJVw+92I/P0nNH77d/6M/xw8HvwA9AT/7Xok/Fe2Jv0MlsD9lrJ8+5WwWwI6Pzr87VyTAscQjwI9T1r+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMG+U0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlT/iPAAAAADwaeG/AAAAABP/tzsAAAAA6gsBQAAAAADM+Qg+AAAAAHTA5j8AAAAAxeSwPQAAAADpvfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6jMONgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJQDB70AAAAAad/pvwAAAACbHwA+AAAAAGnf3D8AAAAA1TALvgAAAAClxv0/AAAAAOFBk70AAAAApGv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKOqbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXg/A8AAAAALVn6r8AAAAAcvIvOwAAAADqtOg/AAAAALI6Cb4AAAAALQnmPwAAAABU8PC9AAAAALcV978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLH+q0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuqg3PQAAAAA6+/K/AAAAADC9SD0AAAAAhxrjPwAAAAAKeQ09AAAAAPA12z8AAAAAhPllPQAAAADD+eS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIUHCMPz4DeMAWyUTegDjAF0lEdAorQSngpBonV9lChoBkdAg3+CobXHzmgHTegDaAhHQKK2H+OwPiF1fZQoaAZHQI838DuBtk5oB03oA2gIR0CitiKMm4RVdX2UKGgGR0CHhWwfyPMjaAdN6ANoCEdAoraKPdVNpXV9lChoBkdAhrmv6TGHYmgHTegDaAhHQKK+FuPV/c51fZQoaAZHQIsJ+5nUUfxoB03oA2gIR0CiwCimEXchdX2UKGgGR0CEvC/9pAUtaAdN6ANoCEdAosArYoRZlnV9lChoBkdAjMyz8P4EfWgHTegDaAhHQKLAkqqfe1t1fZQoaAZHQIJ0W4Vh1DBoB03oA2gIR0CiyCohpxm1dX2UKGgGR0B7W3wZwXImaAdN6ANoCEdAoso2IInjQ3V9lChoBkdAhTju5BkZrGgHTegDaAhHQKLKOMqBmPJ1fZQoaAZHQIDFmaUiY9hoB03oA2gIR0Ciyp+zdDYzdX2UKGgGR0CIKsiliz9kaAdN6ANoCEdAotIczuWrwXV9lChoBkdAitJ88kleGGgHTegDaAhHQKLUII7/4qR1fZQoaAZHQIPeHqcEvCdoB03oA2gIR0Ci1CMxGlQ/dX2UKGgGR0CLH9vS+g14aAdN6ANoCEdAotSIlyBClnV9lChoBkdAlcmwMMI/q2gHTegDaAhHQKLcI20iQkp1fZQoaAZHQJCYaBmPHT9oB03oA2gIR0Ci3iKQaJhwdX2UKGgGR0CNilkEs8PnaAdN6ANoCEdAot4lSKm8/XV9lChoBkdAkIsqX4TK1WgHTegDaAhHQKLeiy5Zr591fZQoaAZHQIxzrWbwz+FoB03oA2gIR0Ci5hE0SAYpdX2UKGgGR0CM4Pd6cAinaAdN6ANoCEdAougSs2eg+XV9lChoBkdAgGkxe9i+c2gHTegDaAhHQKLoFVnVXmx1fZQoaAZHQI2ATKq4pc5oB03oA2gIR0Ci6Hp6QeV+dX2UKGgGR0CAHtl6JIlMaAdN6ANoCEdAou/5rnDBM3V9lChoBkdAgdv7FbVz62gHTegDaAhHQKLyBqubI911fZQoaAZHQIAxPiaRZEFoB03oA2gIR0Ci8glWXC0odX2UKGgGR0CIM821D0DmaAdN6ANoCEdAovJvta6jFnV9lChoBkdAgmtHjIaLoGgHTegDaAhHQKL59EVnEl51fZQoaAZHQIrsfzWf9P1oB03oA2gIR0Ci+/ONxVABdX2UKGgGR0B5aiI/JNj9aAdN6ANoCEdAovv2M2m52HV9lChoBkdAiC0Ezwc5sGgHTegDaAhHQKL8XNdqtYB1fZQoaAZHQJE4mtbLU1BoB03oA2gIR0CjA+jKPn0TdX2UKGgGR0CCajKxLTQWaAdN6ANoCEdAowXrdvbXYnV9lChoBkdAipNNxdY4hmgHTegDaAhHQKMF7hPTG5t1fZQoaAZHQI2NwvHtF8ZoB03oA2gIR0CjBlW/ag27dX2UKGgGR0CMR7oi9qUNaAdN6ANoCEdAow3ZwMpgC3V9lChoBkdAeB14ACGN72gHTegDaAhHQKMP1+/gzgx1fZQoaAZHQHeHfYODrZ9oB03oA2gIR0CjD9qRuCPIdX2UKGgGR0CMeHoyKvV3aAdN6ANoCEdAoxA//JeVs3V9lChoBkdAfT2txMnJDGgHTegDaAhHQKMX5c6/7BR1fZQoaAZHQIvGQHeJpFloB03oA2gIR0CjGenVwxWUdX2UKGgGR0CNflKISDh+aAdN6ANoCEdAoxnsewLVnXV9lChoBkdAjlEht1p0wWgHTegDaAhHQKMaU6EJ0GN1fZQoaAZHQHW3dh3JPqNoB03oA2gIR0CjIc5QxesxdX2UKGgGR0CAgdY4ACGOaAdN6ANoCEdAoyPQywfQr3V9lChoBkdAfL3fbblA/2gHTegDaAhHQKMj024uscR1fZQoaAZHQIyoDfgrH2hoB03oA2gIR0CjJDnRkVesdX2UKGgGR0CN3csqaw2VaAdN6ANoCEdAoyu4NRWLgnV9lChoBkdAkS5MUdq+J2gHTegDaAhHQKMtuqU/wAl1fZQoaAZHQI2aRSm65G1oB03oA2gIR0CjLb1FH8TBdX2UKGgGR0CQF7ovBacJaAdN6ANoCEdAoy4ksUZeiXV9lChoBkdAkjgxbbDdg2gHTegDaAhHQKM1vGb1AZ91fZQoaAZHQHSsLYXfqHJoB03oA2gIR0CjN9ca4tpVdX2UKGgGR0CRSn1FYuCgaAdN6ANoCEdAozfaGrS3LHV9lChoBkdAdiQwnH/952gHTegDaAhHQKM4QLy+YdB1fZQoaAZHQJDSo+xGDthoB03oA2gIR0CjP8c32mHhdX2UKGgGR0CRjnBQemvXaAdN6ANoCEdAo0HKdjG1hXV9lChoBkdAka+4hpxm02gHTegDaAhHQKNBzRv3rUt1fZQoaAZHQIzx/HYHxBpoB03oA2gIR0CjQjKwhW5pdX2UKGgGR0CQppOSW7e3aAdN6ANoCEdAo0mprLyMDXV9lChoBkdAh+wQgLZzxWgHTegDaAhHQKNLrD0lJH11fZQoaAZHQI4x9TisGPhoB03oA2gIR0CjS677bcoIdX2UKGgGR0CQtUJVbRnfaAdN6ANoCEdAo0wVCLMs6XV9lChoBkdAkBGsH0K7ZmgHTegDaAhHQKNTpzz3AVR1fZQoaAZHQHYhpNO/L1VoB03oA2gIR0CjVaVsDW9UdX2UKGgGR0CSViqyWzF/aAdN6ANoCEdAo1WoCjk+5nV9lChoBkdAlxL/MbFS9GgHTegDaAhHQKNWDz3AVO91fZQoaAZHQJOEbGxUvPFoB03oA2gIR0CjXYtpdrwfdX2UKGgGR0CIDmvX9R77aAdN6ANoCEdAo1+C9oN/fHV9lChoBkdAknYab4Ju22gHTegDaAhHQKNfhY/3WWh1fZQoaAZHQIpXxvWH1vloB03oA2gIR0CjX+w3xWkrdX2UKGgGR0CTBYsdDIBBaAdN6ANoCEdAo2ddum78N3V9lChoBkdAicvNYSxqwmgHTegDaAhHQKNpXx3FDOV1fZQoaAZHQISNpHiFTNtoB03oA2gIR0CjaWHCwbEQdX2UKGgGR0CBe7KYiPhiaAdN6ANoCEdAo2nHvphWo3V9lChoBkdAk+Y6gqVhTmgHTegDaAhHQKNxNiCJ40N1fZQoaAZHQJCnFuvUz9FoB03oA2gIR0CjczJoCdSVdX2UKGgGR0CVJwix3V0+aAdN6ANoCEdAo3M1D6WPcXV9lChoBkdAfj5pFTefqWgHTegDaAhHQKNznLg4wRJ1fZQoaAZHQIycW7+T/yZoB03oA2gIR0Cjew26ClJpdX2UKGgGR0CUjiOx0MgEaAdN6ANoCEdAo30JZyMkyHV9lChoBkdAkcNf1+RYBGgHTegDaAhHQKN9DBE8aGZ1fZQoaAZHQIkda+36Q/5oB03oA2gIR0CjfXGBvrGBdX2UKGgGR0B+K5PpIMBqaAdN6ANoCEdAo4UHJiiItXV9lChoBkdAlXuq/Zdv9GgHTegDaAhHQKOG/ujynUF1fZQoaAZHQJOCMhStNi9oB03oA2gIR0CjhwGO+7DmdX2UKGgGR0CWESb5uZTiaAdN6ANoCEdAo4dnrSmZVnV9lChoBkdAkbEk+xGDtmgHTegDaAhHQKOO/UbT+eh1fZQoaAZHQIv7Q1vVEuxoB03oA2gIR0CjkPaaTfSAdX2UKGgGR0CWSI7PppvhaAdN6ANoCEdAo5D5XyRSxnV9lChoBkdAlxvHv6TGHmgHTegDaAhHQKORXylvZRN1fZQoaAZHQJIsbsTnJT5oB03oA2gIR0CjmM8rZrYXdX2UKGgGR0CTCxSf16E8aAdN6ANoCEdAo5rNonKGL3V9lChoBkdAjaXw7T2FnWgHTegDaAhHQKOa0ElE7XB1fZQoaAZHQI3ygflp48loB03oA2gIR0CjmzYrSVnmdX2UKGgGR0B3QzWtlqagaAdN6ANoCEdAo6LDZ39rGnV9lChoBkdAhAOUHpr1umgHTegDaAhHQKOk1rvb48F1fZQoaAZHQHd6Illbu+hoB03oA2gIR0CjpNlo11nvdX2UKGgGR0B36EFyJbdKaAdN6ANoCEdAo6VAXj2i+XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea27abebb89716e96c81486f2688f883a38c20e4447565bfad567607333e8466
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:175946455cd5012888948e702f7c983ec7fd9129f9159d56437ce8806d90eef0
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-1086-aws-x86_64-with-glibc2.29 # 93~18.04.1-Ubuntu SMP Fri Sep 23 17:19:00 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f8ca280d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f8ca28160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f8ca281f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f8ca28280>", "_build": "<function ActorCriticPolicy._build at 0x7f6f8ca28310>", "forward": "<function ActorCriticPolicy.forward at 0x7f6f8ca283a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f8ca28430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f8ca284c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6f8ca28550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f8ca285e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f8ca28670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f8ca28700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6f8ca1fbd0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674365892464317199, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRi9kYXRhc2NpL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEYvZGF0YXNjaS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOFP5j0M7qO+w5gMPy+Zkj8DVaM9uN8SP3kZhL5b5Qe/pCRzP4KdrL7Y9ZA9SY69Phenw7+zEDbAYcM6PzE3kjxpwVQ/a5V4v+IxsL3c3bw+mh2Kv8kGPD8NH4S+F2g3wNmiHj87VyTAZxbIPo9T1r92L4c+WE3oP/O3Hr/vIZE/5f8DvzFlNT9SP+a+JmgSwKHpC74sMoBAd8rIP8xYqT7qA92/pNmbPhX0/T7/Fp2/DL8OP/nVYj/n49Y+WrkrPwvmzD4SQClAxuvjvhPKj8DZoh4//WPHPmcWyD6PU9a/jo9Dv1b45z6lryA/qbpHP81wjr+Sa+S9Dc3NPuHbrT3b8Wo/I17BvijHDb6TH5a9Owqpvy/eUMDEM8U9UgULv4bFXLwJi4q/wtAuPyk9QrxLQpS/awpUPOn4Jr+Yff692aIeP/1jxz5nFsg+aOMYP2dIUD8dHSI87GYjP4yTXUBCxZY/AOZIP4tGTD9w6iDApb6nPSOB1T7LDqC+bfYIQEWOFb4zJVw+92I/P0nNH77d/6M/xw8HvwA9AT/7Xok/Fe2Jv0MlsD9lrJ8+5WwWwI6Pzr87VyTAscQjwI9T1r+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMG+U0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlT/iPAAAAADwaeG/AAAAABP/tzsAAAAA6gsBQAAAAADM+Qg+AAAAAHTA5j8AAAAAxeSwPQAAAADpvfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6jMONgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJQDB70AAAAAad/pvwAAAACbHwA+AAAAAGnf3D8AAAAA1TALvgAAAAClxv0/AAAAAOFBk70AAAAApGv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKOqbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXg/A8AAAAALVn6r8AAAAAcvIvOwAAAADqtOg/AAAAALI6Cb4AAAAALQnmPwAAAABU8PC9AAAAALcV978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLH+q0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuqg3PQAAAAA6+/K/AAAAADC9SD0AAAAAhxrjPwAAAAAKeQ09AAAAAPA12z8AAAAAhPllPQAAAADD+eS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIUHCMPz4DeMAWyUTegDjAF0lEdAorQSngpBonV9lChoBkdAg3+CobXHzmgHTegDaAhHQKK2H+OwPiF1fZQoaAZHQI838DuBtk5oB03oA2gIR0CitiKMm4RVdX2UKGgGR0CHhWwfyPMjaAdN6ANoCEdAoraKPdVNpXV9lChoBkdAhrmv6TGHYmgHTegDaAhHQKK+FuPV/c51fZQoaAZHQIsJ+5nUUfxoB03oA2gIR0CiwCimEXchdX2UKGgGR0CEvC/9pAUtaAdN6ANoCEdAosArYoRZlnV9lChoBkdAjMyz8P4EfWgHTegDaAhHQKLAkqqfe1t1fZQoaAZHQIJ0W4Vh1DBoB03oA2gIR0CiyCohpxm1dX2UKGgGR0B7W3wZwXImaAdN6ANoCEdAoso2IInjQ3V9lChoBkdAhTju5BkZrGgHTegDaAhHQKLKOMqBmPJ1fZQoaAZHQIDFmaUiY9hoB03oA2gIR0Ciyp+zdDYzdX2UKGgGR0CIKsiliz9kaAdN6ANoCEdAotIczuWrwXV9lChoBkdAitJ88kleGGgHTegDaAhHQKLUII7/4qR1fZQoaAZHQIPeHqcEvCdoB03oA2gIR0Ci1CMxGlQ/dX2UKGgGR0CLH9vS+g14aAdN6ANoCEdAotSIlyBClnV9lChoBkdAlcmwMMI/q2gHTegDaAhHQKLcI20iQkp1fZQoaAZHQJCYaBmPHT9oB03oA2gIR0Ci3iKQaJhwdX2UKGgGR0CNilkEs8PnaAdN6ANoCEdAot4lSKm8/XV9lChoBkdAkIsqX4TK1WgHTegDaAhHQKLeiy5Zr591fZQoaAZHQIxzrWbwz+FoB03oA2gIR0Ci5hE0SAYpdX2UKGgGR0CM4Pd6cAinaAdN6ANoCEdAougSs2eg+XV9lChoBkdAgGkxe9i+c2gHTegDaAhHQKLoFVnVXmx1fZQoaAZHQI2ATKq4pc5oB03oA2gIR0Ci6Hp6QeV+dX2UKGgGR0CAHtl6JIlMaAdN6ANoCEdAou/5rnDBM3V9lChoBkdAgdv7FbVz62gHTegDaAhHQKLyBqubI911fZQoaAZHQIAxPiaRZEFoB03oA2gIR0Ci8glWXC0odX2UKGgGR0CIM821D0DmaAdN6ANoCEdAovJvta6jFnV9lChoBkdAgmtHjIaLoGgHTegDaAhHQKL59EVnEl51fZQoaAZHQIrsfzWf9P1oB03oA2gIR0Ci+/ONxVABdX2UKGgGR0B5aiI/JNj9aAdN6ANoCEdAovv2M2m52HV9lChoBkdAiC0Ezwc5sGgHTegDaAhHQKL8XNdqtYB1fZQoaAZHQJE4mtbLU1BoB03oA2gIR0CjA+jKPn0TdX2UKGgGR0CCajKxLTQWaAdN6ANoCEdAowXrdvbXYnV9lChoBkdAipNNxdY4hmgHTegDaAhHQKMF7hPTG5t1fZQoaAZHQI2NwvHtF8ZoB03oA2gIR0CjBlW/ag27dX2UKGgGR0CMR7oi9qUNaAdN6ANoCEdAow3ZwMpgC3V9lChoBkdAeB14ACGN72gHTegDaAhHQKMP1+/gzgx1fZQoaAZHQHeHfYODrZ9oB03oA2gIR0CjD9qRuCPIdX2UKGgGR0CMeHoyKvV3aAdN6ANoCEdAoxA//JeVs3V9lChoBkdAfT2txMnJDGgHTegDaAhHQKMX5c6/7BR1fZQoaAZHQIvGQHeJpFloB03oA2gIR0CjGenVwxWUdX2UKGgGR0CNflKISDh+aAdN6ANoCEdAoxnsewLVnXV9lChoBkdAjlEht1p0wWgHTegDaAhHQKMaU6EJ0GN1fZQoaAZHQHW3dh3JPqNoB03oA2gIR0CjIc5QxesxdX2UKGgGR0CAgdY4ACGOaAdN6ANoCEdAoyPQywfQr3V9lChoBkdAfL3fbblA/2gHTegDaAhHQKMj024uscR1fZQoaAZHQIyoDfgrH2hoB03oA2gIR0CjJDnRkVesdX2UKGgGR0CN3csqaw2VaAdN6ANoCEdAoyu4NRWLgnV9lChoBkdAkS5MUdq+J2gHTegDaAhHQKMtuqU/wAl1fZQoaAZHQI2aRSm65G1oB03oA2gIR0CjLb1FH8TBdX2UKGgGR0CQF7ovBacJaAdN6ANoCEdAoy4ksUZeiXV9lChoBkdAkjgxbbDdg2gHTegDaAhHQKM1vGb1AZ91fZQoaAZHQHSsLYXfqHJoB03oA2gIR0CjN9ca4tpVdX2UKGgGR0CRSn1FYuCgaAdN6ANoCEdAozfaGrS3LHV9lChoBkdAdiQwnH/952gHTegDaAhHQKM4QLy+YdB1fZQoaAZHQJDSo+xGDthoB03oA2gIR0CjP8c32mHhdX2UKGgGR0CRjnBQemvXaAdN6ANoCEdAo0HKdjG1hXV9lChoBkdAka+4hpxm02gHTegDaAhHQKNBzRv3rUt1fZQoaAZHQIzx/HYHxBpoB03oA2gIR0CjQjKwhW5pdX2UKGgGR0CQppOSW7e3aAdN6ANoCEdAo0mprLyMDXV9lChoBkdAh+wQgLZzxWgHTegDaAhHQKNLrD0lJH11fZQoaAZHQI4x9TisGPhoB03oA2gIR0CjS677bcoIdX2UKGgGR0CQtUJVbRnfaAdN6ANoCEdAo0wVCLMs6XV9lChoBkdAkBGsH0K7ZmgHTegDaAhHQKNTpzz3AVR1fZQoaAZHQHYhpNO/L1VoB03oA2gIR0CjVaVsDW9UdX2UKGgGR0CSViqyWzF/aAdN6ANoCEdAo1WoCjk+5nV9lChoBkdAlxL/MbFS9GgHTegDaAhHQKNWDz3AVO91fZQoaAZHQJOEbGxUvPFoB03oA2gIR0CjXYtpdrwfdX2UKGgGR0CIDmvX9R77aAdN6ANoCEdAo1+C9oN/fHV9lChoBkdAknYab4Ju22gHTegDaAhHQKNfhY/3WWh1fZQoaAZHQIpXxvWH1vloB03oA2gIR0CjX+w3xWkrdX2UKGgGR0CTBYsdDIBBaAdN6ANoCEdAo2ddum78N3V9lChoBkdAicvNYSxqwmgHTegDaAhHQKNpXx3FDOV1fZQoaAZHQISNpHiFTNtoB03oA2gIR0CjaWHCwbEQdX2UKGgGR0CBe7KYiPhiaAdN6ANoCEdAo2nHvphWo3V9lChoBkdAk+Y6gqVhTmgHTegDaAhHQKNxNiCJ40N1fZQoaAZHQJCnFuvUz9FoB03oA2gIR0CjczJoCdSVdX2UKGgGR0CVJwix3V0+aAdN6ANoCEdAo3M1D6WPcXV9lChoBkdAfj5pFTefqWgHTegDaAhHQKNznLg4wRJ1fZQoaAZHQIycW7+T/yZoB03oA2gIR0Cjew26ClJpdX2UKGgGR0CUjiOx0MgEaAdN6ANoCEdAo30JZyMkyHV9lChoBkdAkcNf1+RYBGgHTegDaAhHQKN9DBE8aGZ1fZQoaAZHQIkda+36Q/5oB03oA2gIR0CjfXGBvrGBdX2UKGgGR0B+K5PpIMBqaAdN6ANoCEdAo4UHJiiItXV9lChoBkdAlXuq/Zdv9GgHTegDaAhHQKOG/ujynUF1fZQoaAZHQJOCMhStNi9oB03oA2gIR0CjhwGO+7DmdX2UKGgGR0CWESb5uZTiaAdN6ANoCEdAo4dnrSmZVnV9lChoBkdAkbEk+xGDtmgHTegDaAhHQKOO/UbT+eh1fZQoaAZHQIv7Q1vVEuxoB03oA2gIR0CjkPaaTfSAdX2UKGgGR0CWSI7PppvhaAdN6ANoCEdAo5D5XyRSxnV9lChoBkdAlxvHv6TGHmgHTegDaAhHQKORXylvZRN1fZQoaAZHQJIsbsTnJT5oB03oA2gIR0CjmM8rZrYXdX2UKGgGR0CTCxSf16E8aAdN6ANoCEdAo5rNonKGL3V9lChoBkdAjaXw7T2FnWgHTegDaAhHQKOa0ElE7XB1fZQoaAZHQI3ygflp48loB03oA2gIR0CjmzYrSVnmdX2UKGgGR0B3QzWtlqagaAdN6ANoCEdAo6LDZ39rGnV9lChoBkdAhAOUHpr1umgHTegDaAhHQKOk1rvb48F1fZQoaAZHQHd6Illbu+hoB03oA2gIR0CjpNlo11nvdX2UKGgGR0B36EFyJbdKaAdN6ANoCEdAo6VAXj2i+XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-1086-aws-x86_64-with-glibc2.29 # 93~18.04.1-Ubuntu SMP Fri Sep 23 17:19:00 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (755 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1058.516321564975, "std_reward": 208.5277426577361, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T06:20:31.908697"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd1d61be66f614fa440a456ebc58980cc6bf9e060a4cd794304bf09823fbb268
3
+ size 2136