File size: 3,385 Bytes
b30f434
5776c3c
 
 
 
 
 
 
 
 
b30f434
 
5776c3c
 
b30f434
5776c3c
b30f434
5776c3c
 
 
 
 
 
 
 
b30f434
5776c3c
b30f434
5776c3c
b30f434
5776c3c
b30f434
5776c3c
b30f434
5776c3c
b30f434
5776c3c
b30f434
5776c3c
b30f434
5776c3c
b30f434
5776c3c
 
 
 
 
 
 
 
b30f434
5776c3c
b30f434
5776c3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30f434
 
5776c3c
b30f434
5776c3c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: agemagician/mlong-t5-tglobal-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mlong-t5-tglobal-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mlong-t5-tglobal-base

This model is a fine-tuned version of [agemagician/mlong-t5-tglobal-base](https://huggingface.co/agemagician/mlong-t5-tglobal-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1553	
- Rouge1: 32.0603
- Rouge2: 13.4985
- Rougel: 24.0775
- Rougelsum: 25.9692  
- Gen Len: 72.828 

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Gen Len | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| No log        | 1.0   | 500   | 18.987  | 2.2709          | 20.5043 | 8.1518  | 16.9526 | 17.5001   |
| 2.8714        | 2.0   | 1000  | 18.982  | 2.2022          | 21.4051 | 8.7445  | 17.7534 | 18.3191   |
| 2.8714        | 3.0   | 1500  | 18.99   | 2.1608          | 21.6609 | 9.1753  | 18.0374 | 18.6176   |
| 2.5137        | 4.0   | 2000  | 18.993  | 2.1555          | 21.6818 | 9.1814  | 18.0382 | 18.6198   |
| 2.5137        | 5.0   | 2500  | 18.994  | 2.1462          | 21.9708 | 9.2033  | 18.3919 | 18.9535   |
| 2.3717        | 6.0   | 3000  | 18.996  | 2.1258          | 22.0583 | 9.2987  | 18.4379 | 19.0322   |
| 2.3717        | 7.0   | 3500  | 18.989  | 2.1278          | 21.8245 | 9.0474  | 18.1979 | 18.8038   |
| 2.2633        | 8.0   | 4000  | 18.996  | 2.1207          | 21.6273 | 8.8847  | 18.024  | 18.6049   |
| 2.2633        | 9.0   | 4500  | 18.994  | 2.1180          | 22.2004 | 9.6253  | 18.6373 | 19.1721   |
| 2.1886        | 10.0  | 5000  | 18.988  | 2.1220          | 22.1619 | 9.6206  | 18.5069 | 19.0856   |
| 2.1886        | 11.0  | 5500  | 18.987  | 2.1161          | 22.1518 | 9.4522  | 18.4695 | 19.0552   |
| 2.1144        | 12.0  | 6000  | 18.995  | 2.1103          | 22.0395 | 9.4185  | 18.4314 | 19.0305   |
| 2.1144        | 13.0  | 6500  | 18.992  | 2.1150          | 22.2404 | 9.4722  | 18.5482 | 19.1747   |
| 2.054         | 14.0  | 7000  | 19.0    | 2.1091          | 22.1466 | 9.3434  | 18.3443 | 18.9233   |
| 2.0526        | 1.0   | 8000  | 62.488  | 2.1580          | 30.4149 | 12.0774 | 22.9493 | 24.4478   | 
| 2.1236        | 2.0   | 16000 | 64.797  | 2.1621          | 31.3101 | 13.3237 | 23.8249 | 25.526    |
| 2.0776        | 3.0   | 24000 | 57.059  | 2.1607          | 30.9902 | 12.3753 | 23.0243 | 24.8308   | 
| 1.9843        | 4.0   | 32000 | 72.828  | 2.1553          | 32.0603 | 13.4985 | 24.0775 | 25.9692   | 


### Framework versions

- Transformers 4.38.2
- Pytorch 1.13.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2