Upload PPO LunarLander-v2 trained agent
Browse files- LunarLander_mdl_1.zip +3 -0
- LunarLander_mdl_1/_stable_baselines3_version +1 -0
- LunarLander_mdl_1/data +95 -0
- LunarLander_mdl_1/policy.optimizer.pth +3 -0
- LunarLander_mdl_1/policy.pth +3 -0
- LunarLander_mdl_1/pytorch_variables.pth +3 -0
- LunarLander_mdl_1/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander_mdl_1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:008e0c88c89d4f8775acc03002d226f3e09766acdfeca9e79009d1ed318cce46
|
3 |
+
size 147424
|
LunarLander_mdl_1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
LunarLander_mdl_1/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc4845b670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc4845b700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc4845b790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc4845b820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcc4845b8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcc4845b940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc4845b9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc4845ba60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcc4845baf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc4845bb80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc4845bc10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc4845bca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fcc48455870>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673448128421116066,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPInL01+Ho+T8q8PaEyfb4E/i49DmfRvAAAAAAAAAAAzbn/PXHJVz41k0++VESGvuUJnbyqCiW8AAAAAAAAAAAAxqw89oVMPWlrur1UxXq+N6mhvaoskzwAAAAAAAAAAOYXCz3DITK6ovZNM7bdHzAs9426tUHCswAAgD8AAIA/Y6hcvgxhAT/nPrY9edR/vgfX17x7H089AAAAAAAAAAANkoc9oWvzPequML7NEA++HnmPvKPDEr0AAAAAAAAAAIAjCT3v4D09w9uRuyKuLr7xGjQ9phatOwAAAAAAAAAAbfKLvmDzKD+UrIM+b5eLvt5/Ab0u2M09AAAAAAAAAAAau9i9C5avPuAmmLyeZz6+WUshu303Zz0AAAAAAAAAAGau0TvoRY4/5TBtPQeRyL5rvAa9euaRPAAAAAAAAAAAZl5rPCmYEz4Wzga9hd0hvnPOsjwbTu48AAAAAAAAAACavMC8PfkpPyF8kLw5F2i+OOUFPcKFCjwAAAAAAAAAAIB5AT3iXNk+R7auvRavo75dGme99ZgavAAAAAAAAAAAgEqRPT0RQLvL8lS8LkeTPJ+2gDwd/ny9AACAPwAAAACg4hK+9dWTPtRmHD5NsJG+pfKvOyVGdzwAAAAAAAAAABqwkD1/bvM+uqoIvdcSjb5yvC69/5YgPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYf91blqKcUCUhpRSlIwBbJRNVQGMAXSUR0CY1zfWcz68dX2UKGgGaAloD0MI6rKY2PygcUCUhpRSlGgVTTYBaBZHQJjZUgzP8ht1fZQoaAZoCWgPQwhxyXGndPBvQJSGlFKUaBVNbwFoFkdAmNq0a6z3RHV9lChoBmgJaA9DCAWMLm/OkHBAlIaUUpRoFU1wAWgWR0CY2szdUKiPdX2UKGgGaAloD0MIpABRMOM8bkCUhpRSlGgVTVcBaBZHQJjbCiO/+Kl1fZQoaAZoCWgPQwg+6NmserFxQJSGlFKUaBVNEQJoFkdAmNtp3X7LuHV9lChoBmgJaA9DCKw3aoXpLHJAlIaUUpRoFU1XAWgWR0CY3NWsijcmdX2UKGgGaAloD0MIwZFAg00BbkCUhpRSlGgVTVgBaBZHQJjc+eg+Qlt1fZQoaAZoCWgPQwjhlSTPdZpuQJSGlFKUaBVNOgFoFkdAmN0dUS7GvXV9lChoBmgJaA9DCLIubqOBAHBAlIaUUpRoFU09AWgWR0CY3pqQA+6idX2UKGgGaAloD0MIwXRat0F5XkCUhpRSlGgVTegDaBZHQJjyTiwSrYJ1fZQoaAZoCWgPQwgyyjMvx9BwQJSGlFKUaBVNbAFoFkdAmPQlmjCYTnV9lChoBmgJaA9DCDOID+w4bnJAlIaUUpRoFU0YAWgWR0CY9F2V3Ux3dX2UKGgGaAloD0MIwsJJmn/LcUCUhpRSlGgVTR8CaBZHQJj2Zk9U0el1fZQoaAZoCWgPQwhXBtUGZ0txQJSGlFKUaBVNbwFoFkdAmPeEhq0ty3V9lChoBmgJaA9DCA+22O0zZXFAlIaUUpRoFU1/AWgWR0CY+FifxtpFdX2UKGgGaAloD0MIZmzoZv/RbUCUhpRSlGgVTSkBaBZHQJj4g2pAD7t1fZQoaAZoCWgPQwiJsUy/RKBsQJSGlFKUaBVNVAFoFkdAmPjGzOX3QHV9lChoBmgJaA9DCLt9Vpmp7G9AlIaUUpRoFU1DAWgWR0CY+Tuk1uR+dX2UKGgGaAloD0MItOOG301NbUCUhpRSlGgVTTUBaBZHQJj6i0w8GLV1fZQoaAZoCWgPQwgAb4EERR1wQJSGlFKUaBVNjAFoFkdAmPvOjM3ZPHV9lChoBmgJaA9DCAgAjj17n2xAlIaUUpRoFU2BAWgWR0CY++h9LHuJdX2UKGgGaAloD0MIrADfbR5acUCUhpRSlGgVTWkBaBZHQJj8dFYuCf91fZQoaAZoCWgPQwgn3gGedCpyQJSGlFKUaBVNRQFoFkdAmPzW2CuloHV9lChoBmgJaA9DCJRL4xde/3BAlIaUUpRoFU19AWgWR0CY/S33Hq/udX2UKGgGaAloD0MIC12JQPWkb0CUhpRSlGgVTRsBaBZHQJj+LyiEg4h1fZQoaAZoCWgPQwirCaLuw9NxQJSGlFKUaBVNUgFoFkdAmP4/YraufXV9lChoBmgJaA9DCDOHpBbKUHFAlIaUUpRoFU00AWgWR0CY/wTG5tm+dX2UKGgGaAloD0MISriQR3DGUUCUhpRSlGgVTegDaBZHQJkBnmW+oLp1fZQoaAZoCWgPQwj11yssOAhxQJSGlFKUaBVNOwFoFkdAmQLTye7L+3V9lChoBmgJaA9DCCFWf4Rha3BAlIaUUpRoFU1sAWgWR0CZAt/5+H8CdX2UKGgGaAloD0MIisqGNZWXbECUhpRSlGgVTV0BaBZHQJkEhNCZ4Od1fZQoaAZoCWgPQwgcDHVYYcBvQJSGlFKUaBVNhwFoFkdAmQUApz90inV9lChoBmgJaA9DCB1znrEvNG1AlIaUUpRoFU14AWgWR0CZBV6CUX54dX2UKGgGaAloD0MIijve5LcTckCUhpRSlGgVTT4BaBZHQJkFX0rbxmV1fZQoaAZoCWgPQwh4mPbN/WZvQJSGlFKUaBVNGAFoFkdAmQVlZxJd0XV9lChoBmgJaA9DCBf1Se4w021AlIaUUpRoFU1RAWgWR0CZByZ75VOsdX2UKGgGaAloD0MIA3l2+RYMcECUhpRSlGgVTVIBaBZHQJkH2qlxffJ1fZQoaAZoCWgPQwg4g79fzOlwQJSGlFKUaBVNXQFoFkdAmQihzijtX3V9lChoBmgJaA9DCITU7eyrcXFAlIaUUpRoFU1jAWgWR0CZCTDDjzZpdX2UKGgGaAloD0MIzVfJx247bUCUhpRSlGgVTUUBaBZHQJkJTkq+ajN1fZQoaAZoCWgPQwikUBa+vuFvQJSGlFKUaBVNRgFoFkdAmQlkDyOJcnV9lChoBmgJaA9DCDs42JuYFnBAlIaUUpRoFU1hAWgWR0CZCuKm8/UwdX2UKGgGaAloD0MIVpkprb9vckCUhpRSlGgVTXYBaBZHQJkOclXzUZx1fZQoaAZoCWgPQwg0EwznGkFtQJSGlFKUaBVNWQFoFkdAmQ6G6K+BYnV9lChoBmgJaA9DCLGJzFxgCXBAlIaUUpRoFU13AWgWR0CZD8pvxYq5dX2UKGgGaAloD0MIOiNKe4MbcUCUhpRSlGgVTTwBaBZHQJkP/yH2ys11fZQoaAZoCWgPQwjPhCaJJe9rQJSGlFKUaBVNSQFoFkdAmRCPZM+NcXV9lChoBmgJaA9DCD6uDRXj921AlIaUUpRoFU1xAWgWR0CZEb08eS0TdX2UKGgGaAloD0MIiSgmb4AtcUCUhpRSlGgVTWoBaBZHQJkR0WdmQKd1fZQoaAZoCWgPQwhl4lZBjGttQJSGlFKUaBVNgAFoFkdAmRHZkkKNQ3V9lChoBmgJaA9DCK5i8ZvCTHFAlIaUUpRoFU03AWgWR0CZEfDEFW4mdX2UKGgGaAloD0MID9WUZJ2zb0CUhpRSlGgVTSEBaBZHQJkSnKT0QK91fZQoaAZoCWgPQwj2C3bDdmRyQJSGlFKUaBVNJQFoFkdAmRN83AEdNnV9lChoBmgJaA9DCJXyWgldGm5AlIaUUpRoFU0vAWgWR0CZE6/eLvTgdX2UKGgGaAloD0MItTaN7bX0bkCUhpRSlGgVTWwBaBZHQJkUKVY6nzh1fZQoaAZoCWgPQwh7a2CrBFVwQJSGlFKUaBVNcQFoFkdAmSfyTUy57XV9lChoBmgJaA9DCI//AkEACHJAlIaUUpRoFU1iAWgWR0CZKVuWrwOOdX2UKGgGaAloD0MI16axvVZ1cUCUhpRSlGgVTTwBaBZHQJkrdXp4bCJ1fZQoaAZoCWgPQwhPeXQjLBRyQJSGlFKUaBVNMgFoFkdAmSxURnOB2HV9lChoBmgJaA9DCKlMMQfBqXFAlIaUUpRoFU0wAWgWR0CZLPQQ+UyIdX2UKGgGaAloD0MIhUNv8XAJYECUhpRSlGgVTegDaBZHQJktUtqYZ2p1fZQoaAZoCWgPQwhVEtkH2QtyQJSGlFKUaBVNFwFoFkdAmS1jsIE8rHV9lChoBmgJaA9DCKGgFK1cdG1AlIaUUpRoFU0fAWgWR0CZLYiblRxcdX2UKGgGaAloD0MI+HE0R1ZMQECUhpRSlGgVS+NoFkdAmS4hBNVR13V9lChoBmgJaA9DCP1oOGVuN3BAlIaUUpRoFU03AWgWR0CZL04zrNW3dX2UKGgGaAloD0MIcmvSbQnCbUCUhpRSlGgVTVUBaBZHQJkvWmCROlB1fZQoaAZoCWgPQwiIEcKjDfxoQJSGlFKUaBVNzgFoFkdAmTCyU9pyqHV9lChoBmgJaA9DCKZEEr0McXFAlIaUUpRoFU1JAWgWR0CZMNcMVk+YdX2UKGgGaAloD0MI+l+uRYsIbECUhpRSlGgVTUYBaBZHQJkw9IVdonN1fZQoaAZoCWgPQwjJOhxd5btxQJSGlFKUaBVNawFoFkdAmTPzAFgUlHV9lChoBmgJaA9DCNR/1vz4Km9AlIaUUpRoFU1GAWgWR0CZNEm0E5hjdX2UKGgGaAloD0MIyHvVygQhcECUhpRSlGgVTS0BaBZHQJk1g71ZkkN1fZQoaAZoCWgPQwgguMoTCNhuQJSGlFKUaBVNSgFoFkdAmTd5z1bqyHV9lChoBmgJaA9DCPTfg9euOXBAlIaUUpRoFU03AWgWR0CZN8slb/wRdX2UKGgGaAloD0MIXHSy1HqxcUCUhpRSlGgVTTwBaBZHQJk4FNEgGKR1fZQoaAZoCWgPQwj0/j9OGHduQJSGlFKUaBVNOQFoFkdAmTghEjPfK3V9lChoBmgJaA9DCGqg+Zy7iW9AlIaUUpRoFU1bAWgWR0CZOMG9YfW+dX2UKGgGaAloD0MIUAEwngHwcECUhpRSlGgVTVEBaBZHQJk5jTNMXad1fZQoaAZoCWgPQwizzY3pCc86QJSGlFKUaBVNBwFoFkdAmTmULc9GJHV9lChoBmgJaA9DCNsZpraUC3BAlIaUUpRoFU01AWgWR0CZOcGCI1tPdX2UKGgGaAloD0MI4Q1pVOD4bkCUhpRSlGgVTSUBaBZHQJk6w12q1gJ1fZQoaAZoCWgPQwid8X1xqfBvQJSGlFKUaBVNbQFoFkdAmTt24RVZLnV9lChoBmgJaA9DCOTZ5Vsf33FAlIaUUpRoFU1lAWgWR0CZPKmnO0LMdX2UKGgGaAloD0MIpvJ2hFNza0CUhpRSlGgVTVQBaBZHQJk/sv+OwPl1fZQoaAZoCWgPQwgQecvVjw9zQJSGlFKUaBVLxGgWR0CZQCt7rs0IdX2UKGgGaAloD0MI7BhXXFyccECUhpRSlGgVTTEBaBZHQJlAK5OJtSB1fZQoaAZoCWgPQwj4VblQOVlyQJSGlFKUaBVNCQFoFkdAmUDjPWxyGXV9lChoBmgJaA9DCI7KTdTS+mtAlIaUUpRoFU0oAWgWR0CZQcqp97WvdX2UKGgGaAloD0MI7SjOUcdkbkCUhpRSlGgVTYwBaBZHQJlCPxI8QqZ1fZQoaAZoCWgPQwhd+pekMmhxQJSGlFKUaBVNSwFoFkdAmUOv336AOXV9lChoBmgJaA9DCIro19ZPrl9AlIaUUpRoFU3oA2gWR0CZRIvHLidbdX2UKGgGaAloD0MImDWxwNd9a0CUhpRSlGgVTWkBaBZHQJlEwPSUkfN1fZQoaAZoCWgPQwg82c2MfohxQJSGlFKUaBVNGwFoFkdAmUTgFC9h7XV9lChoBmgJaA9DCDeMguBxVnBAlIaUUpRoFU0FAWgWR0CZROAdXDFZdX2UKGgGaAloD0MIvLGgMKijakCUhpRSlGgVTUYBaBZHQJlFAyTINmV1fZQoaAZoCWgPQwhau+1C8w5xQJSGlFKUaBVNVQFoFkdAmUWQNb1RL3V9lChoBmgJaA9DCEm6ZvLNVmBAlIaUUpRoFU3oA2gWR0CZReGY8dPtdX2UKGgGaAloD0MI5SX/k/+acUCUhpRSlGgVTYUBaBZHQJlGCuuA7Pp1fZQoaAZoCWgPQwiGqS110PRwQJSGlFKUaBVNSwFoFkdAmUeeLR8c/HVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
LunarLander_mdl_1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8da6227c8192aaf561f79c4d9b3589530a29f0e6d30b10b72cc021794fa1a33d
|
3 |
+
size 87929
|
LunarLander_mdl_1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c95cd92d3a87a4b92e47bdf1e1bc09ffa2fd10d467217a2bacee4e8dc479915
|
3 |
+
size 43393
|
LunarLander_mdl_1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander_mdl_1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 234.06 +/- 25.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc4845b670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc4845b700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc4845b790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc4845b820>", "_build": "<function ActorCriticPolicy._build at 0x7fcc4845b8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcc4845b940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc4845b9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc4845ba60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcc4845baf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc4845bb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc4845bc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc4845bca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcc48455870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673448128421116066, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPInL01+Ho+T8q8PaEyfb4E/i49DmfRvAAAAAAAAAAAzbn/PXHJVz41k0++VESGvuUJnbyqCiW8AAAAAAAAAAAAxqw89oVMPWlrur1UxXq+N6mhvaoskzwAAAAAAAAAAOYXCz3DITK6ovZNM7bdHzAs9426tUHCswAAgD8AAIA/Y6hcvgxhAT/nPrY9edR/vgfX17x7H089AAAAAAAAAAANkoc9oWvzPequML7NEA++HnmPvKPDEr0AAAAAAAAAAIAjCT3v4D09w9uRuyKuLr7xGjQ9phatOwAAAAAAAAAAbfKLvmDzKD+UrIM+b5eLvt5/Ab0u2M09AAAAAAAAAAAau9i9C5avPuAmmLyeZz6+WUshu303Zz0AAAAAAAAAAGau0TvoRY4/5TBtPQeRyL5rvAa9euaRPAAAAAAAAAAAZl5rPCmYEz4Wzga9hd0hvnPOsjwbTu48AAAAAAAAAACavMC8PfkpPyF8kLw5F2i+OOUFPcKFCjwAAAAAAAAAAIB5AT3iXNk+R7auvRavo75dGme99ZgavAAAAAAAAAAAgEqRPT0RQLvL8lS8LkeTPJ+2gDwd/ny9AACAPwAAAACg4hK+9dWTPtRmHD5NsJG+pfKvOyVGdzwAAAAAAAAAABqwkD1/bvM+uqoIvdcSjb5yvC69/5YgPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYf91blqKcUCUhpRSlIwBbJRNVQGMAXSUR0CY1zfWcz68dX2UKGgGaAloD0MI6rKY2PygcUCUhpRSlGgVTTYBaBZHQJjZUgzP8ht1fZQoaAZoCWgPQwhxyXGndPBvQJSGlFKUaBVNbwFoFkdAmNq0a6z3RHV9lChoBmgJaA9DCAWMLm/OkHBAlIaUUpRoFU1wAWgWR0CY2szdUKiPdX2UKGgGaAloD0MIpABRMOM8bkCUhpRSlGgVTVcBaBZHQJjbCiO/+Kl1fZQoaAZoCWgPQwg+6NmserFxQJSGlFKUaBVNEQJoFkdAmNtp3X7LuHV9lChoBmgJaA9DCKw3aoXpLHJAlIaUUpRoFU1XAWgWR0CY3NWsijcmdX2UKGgGaAloD0MIwZFAg00BbkCUhpRSlGgVTVgBaBZHQJjc+eg+Qlt1fZQoaAZoCWgPQwjhlSTPdZpuQJSGlFKUaBVNOgFoFkdAmN0dUS7GvXV9lChoBmgJaA9DCLIubqOBAHBAlIaUUpRoFU09AWgWR0CY3pqQA+6idX2UKGgGaAloD0MIwXRat0F5XkCUhpRSlGgVTegDaBZHQJjyTiwSrYJ1fZQoaAZoCWgPQwgyyjMvx9BwQJSGlFKUaBVNbAFoFkdAmPQlmjCYTnV9lChoBmgJaA9DCDOID+w4bnJAlIaUUpRoFU0YAWgWR0CY9F2V3Ux3dX2UKGgGaAloD0MIwsJJmn/LcUCUhpRSlGgVTR8CaBZHQJj2Zk9U0el1fZQoaAZoCWgPQwhXBtUGZ0txQJSGlFKUaBVNbwFoFkdAmPeEhq0ty3V9lChoBmgJaA9DCA+22O0zZXFAlIaUUpRoFU1/AWgWR0CY+FifxtpFdX2UKGgGaAloD0MIZmzoZv/RbUCUhpRSlGgVTSkBaBZHQJj4g2pAD7t1fZQoaAZoCWgPQwiJsUy/RKBsQJSGlFKUaBVNVAFoFkdAmPjGzOX3QHV9lChoBmgJaA9DCLt9Vpmp7G9AlIaUUpRoFU1DAWgWR0CY+Tuk1uR+dX2UKGgGaAloD0MItOOG301NbUCUhpRSlGgVTTUBaBZHQJj6i0w8GLV1fZQoaAZoCWgPQwgAb4EERR1wQJSGlFKUaBVNjAFoFkdAmPvOjM3ZPHV9lChoBmgJaA9DCAgAjj17n2xAlIaUUpRoFU2BAWgWR0CY++h9LHuJdX2UKGgGaAloD0MIrADfbR5acUCUhpRSlGgVTWkBaBZHQJj8dFYuCf91fZQoaAZoCWgPQwgn3gGedCpyQJSGlFKUaBVNRQFoFkdAmPzW2CuloHV9lChoBmgJaA9DCJRL4xde/3BAlIaUUpRoFU19AWgWR0CY/S33Hq/udX2UKGgGaAloD0MIC12JQPWkb0CUhpRSlGgVTRsBaBZHQJj+LyiEg4h1fZQoaAZoCWgPQwirCaLuw9NxQJSGlFKUaBVNUgFoFkdAmP4/YraufXV9lChoBmgJaA9DCDOHpBbKUHFAlIaUUpRoFU00AWgWR0CY/wTG5tm+dX2UKGgGaAloD0MISriQR3DGUUCUhpRSlGgVTegDaBZHQJkBnmW+oLp1fZQoaAZoCWgPQwj11yssOAhxQJSGlFKUaBVNOwFoFkdAmQLTye7L+3V9lChoBmgJaA9DCCFWf4Rha3BAlIaUUpRoFU1sAWgWR0CZAt/5+H8CdX2UKGgGaAloD0MIisqGNZWXbECUhpRSlGgVTV0BaBZHQJkEhNCZ4Od1fZQoaAZoCWgPQwgcDHVYYcBvQJSGlFKUaBVNhwFoFkdAmQUApz90inV9lChoBmgJaA9DCB1znrEvNG1AlIaUUpRoFU14AWgWR0CZBV6CUX54dX2UKGgGaAloD0MIijve5LcTckCUhpRSlGgVTT4BaBZHQJkFX0rbxmV1fZQoaAZoCWgPQwh4mPbN/WZvQJSGlFKUaBVNGAFoFkdAmQVlZxJd0XV9lChoBmgJaA9DCBf1Se4w021AlIaUUpRoFU1RAWgWR0CZByZ75VOsdX2UKGgGaAloD0MIA3l2+RYMcECUhpRSlGgVTVIBaBZHQJkH2qlxffJ1fZQoaAZoCWgPQwg4g79fzOlwQJSGlFKUaBVNXQFoFkdAmQihzijtX3V9lChoBmgJaA9DCITU7eyrcXFAlIaUUpRoFU1jAWgWR0CZCTDDjzZpdX2UKGgGaAloD0MIzVfJx247bUCUhpRSlGgVTUUBaBZHQJkJTkq+ajN1fZQoaAZoCWgPQwikUBa+vuFvQJSGlFKUaBVNRgFoFkdAmQlkDyOJcnV9lChoBmgJaA9DCDs42JuYFnBAlIaUUpRoFU1hAWgWR0CZCuKm8/UwdX2UKGgGaAloD0MIVpkprb9vckCUhpRSlGgVTXYBaBZHQJkOclXzUZx1fZQoaAZoCWgPQwg0EwznGkFtQJSGlFKUaBVNWQFoFkdAmQ6G6K+BYnV9lChoBmgJaA9DCLGJzFxgCXBAlIaUUpRoFU13AWgWR0CZD8pvxYq5dX2UKGgGaAloD0MIOiNKe4MbcUCUhpRSlGgVTTwBaBZHQJkP/yH2ys11fZQoaAZoCWgPQwjPhCaJJe9rQJSGlFKUaBVNSQFoFkdAmRCPZM+NcXV9lChoBmgJaA9DCD6uDRXj921AlIaUUpRoFU1xAWgWR0CZEb08eS0TdX2UKGgGaAloD0MIiSgmb4AtcUCUhpRSlGgVTWoBaBZHQJkR0WdmQKd1fZQoaAZoCWgPQwhl4lZBjGttQJSGlFKUaBVNgAFoFkdAmRHZkkKNQ3V9lChoBmgJaA9DCK5i8ZvCTHFAlIaUUpRoFU03AWgWR0CZEfDEFW4mdX2UKGgGaAloD0MID9WUZJ2zb0CUhpRSlGgVTSEBaBZHQJkSnKT0QK91fZQoaAZoCWgPQwj2C3bDdmRyQJSGlFKUaBVNJQFoFkdAmRN83AEdNnV9lChoBmgJaA9DCJXyWgldGm5AlIaUUpRoFU0vAWgWR0CZE6/eLvTgdX2UKGgGaAloD0MItTaN7bX0bkCUhpRSlGgVTWwBaBZHQJkUKVY6nzh1fZQoaAZoCWgPQwh7a2CrBFVwQJSGlFKUaBVNcQFoFkdAmSfyTUy57XV9lChoBmgJaA9DCI//AkEACHJAlIaUUpRoFU1iAWgWR0CZKVuWrwOOdX2UKGgGaAloD0MI16axvVZ1cUCUhpRSlGgVTTwBaBZHQJkrdXp4bCJ1fZQoaAZoCWgPQwhPeXQjLBRyQJSGlFKUaBVNMgFoFkdAmSxURnOB2HV9lChoBmgJaA9DCKlMMQfBqXFAlIaUUpRoFU0wAWgWR0CZLPQQ+UyIdX2UKGgGaAloD0MIhUNv8XAJYECUhpRSlGgVTegDaBZHQJktUtqYZ2p1fZQoaAZoCWgPQwhVEtkH2QtyQJSGlFKUaBVNFwFoFkdAmS1jsIE8rHV9lChoBmgJaA9DCKGgFK1cdG1AlIaUUpRoFU0fAWgWR0CZLYiblRxcdX2UKGgGaAloD0MI+HE0R1ZMQECUhpRSlGgVS+NoFkdAmS4hBNVR13V9lChoBmgJaA9DCP1oOGVuN3BAlIaUUpRoFU03AWgWR0CZL04zrNW3dX2UKGgGaAloD0MIcmvSbQnCbUCUhpRSlGgVTVUBaBZHQJkvWmCROlB1fZQoaAZoCWgPQwiIEcKjDfxoQJSGlFKUaBVNzgFoFkdAmTCyU9pyqHV9lChoBmgJaA9DCKZEEr0McXFAlIaUUpRoFU1JAWgWR0CZMNcMVk+YdX2UKGgGaAloD0MI+l+uRYsIbECUhpRSlGgVTUYBaBZHQJkw9IVdonN1fZQoaAZoCWgPQwjJOhxd5btxQJSGlFKUaBVNawFoFkdAmTPzAFgUlHV9lChoBmgJaA9DCNR/1vz4Km9AlIaUUpRoFU1GAWgWR0CZNEm0E5hjdX2UKGgGaAloD0MIyHvVygQhcECUhpRSlGgVTS0BaBZHQJk1g71ZkkN1fZQoaAZoCWgPQwgguMoTCNhuQJSGlFKUaBVNSgFoFkdAmTd5z1bqyHV9lChoBmgJaA9DCPTfg9euOXBAlIaUUpRoFU03AWgWR0CZN8slb/wRdX2UKGgGaAloD0MIXHSy1HqxcUCUhpRSlGgVTTwBaBZHQJk4FNEgGKR1fZQoaAZoCWgPQwj0/j9OGHduQJSGlFKUaBVNOQFoFkdAmTghEjPfK3V9lChoBmgJaA9DCGqg+Zy7iW9AlIaUUpRoFU1bAWgWR0CZOMG9YfW+dX2UKGgGaAloD0MIUAEwngHwcECUhpRSlGgVTVEBaBZHQJk5jTNMXad1fZQoaAZoCWgPQwizzY3pCc86QJSGlFKUaBVNBwFoFkdAmTmULc9GJHV9lChoBmgJaA9DCNsZpraUC3BAlIaUUpRoFU01AWgWR0CZOcGCI1tPdX2UKGgGaAloD0MI4Q1pVOD4bkCUhpRSlGgVTSUBaBZHQJk6w12q1gJ1fZQoaAZoCWgPQwid8X1xqfBvQJSGlFKUaBVNbQFoFkdAmTt24RVZLnV9lChoBmgJaA9DCOTZ5Vsf33FAlIaUUpRoFU1lAWgWR0CZPKmnO0LMdX2UKGgGaAloD0MIpvJ2hFNza0CUhpRSlGgVTVQBaBZHQJk/sv+OwPl1fZQoaAZoCWgPQwgQecvVjw9zQJSGlFKUaBVLxGgWR0CZQCt7rs0IdX2UKGgGaAloD0MI7BhXXFyccECUhpRSlGgVTTEBaBZHQJlAK5OJtSB1fZQoaAZoCWgPQwj4VblQOVlyQJSGlFKUaBVNCQFoFkdAmUDjPWxyGXV9lChoBmgJaA9DCI7KTdTS+mtAlIaUUpRoFU0oAWgWR0CZQcqp97WvdX2UKGgGaAloD0MI7SjOUcdkbkCUhpRSlGgVTYwBaBZHQJlCPxI8QqZ1fZQoaAZoCWgPQwhd+pekMmhxQJSGlFKUaBVNSwFoFkdAmUOv336AOXV9lChoBmgJaA9DCIro19ZPrl9AlIaUUpRoFU3oA2gWR0CZRIvHLidbdX2UKGgGaAloD0MImDWxwNd9a0CUhpRSlGgVTWkBaBZHQJlEwPSUkfN1fZQoaAZoCWgPQwg82c2MfohxQJSGlFKUaBVNGwFoFkdAmUTgFC9h7XV9lChoBmgJaA9DCDeMguBxVnBAlIaUUpRoFU0FAWgWR0CZROAdXDFZdX2UKGgGaAloD0MIvLGgMKijakCUhpRSlGgVTUYBaBZHQJlFAyTINmV1fZQoaAZoCWgPQwhau+1C8w5xQJSGlFKUaBVNVQFoFkdAmUWQNb1RL3V9lChoBmgJaA9DCEm6ZvLNVmBAlIaUUpRoFU3oA2gWR0CZReGY8dPtdX2UKGgGaAloD0MI5SX/k/+acUCUhpRSlGgVTYUBaBZHQJlGCuuA7Pp1fZQoaAZoCWgPQwiGqS110PRwQJSGlFKUaBVNSwFoFkdAmUeeLR8c/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (201 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 234.0638427212278, "std_reward": 25.69519215476011, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T15:22:37.946135"}
|