File size: 2,547 Bytes
1b3ad0c
 
 
 
 
 
 
 
 
 
bf729ad
 
1b3ad0c
bf729ad
 
 
1b3ad0c
 
5a0d7f7
bf729ad
5a0d7f7
bf729ad
 
 
 
 
 
 
 
5a0d7f7
bf729ad
5a0d7f7
bf729ad
5a0d7f7
bf729ad
5a0d7f7
bf729ad
5a0d7f7
bf729ad
5a0d7f7
bf729ad
 
 
 
 
 
5a0d7f7
bf729ad
5a0d7f7
bf729ad
5a0d7f7
bf729ad
5a0d7f7
bf729ad
b2c0cb3
 
5a0d7f7
bf729ad
 
 
 
 
 
 
5a0d7f7
bf729ad
 
 
5a0d7f7
bf729ad
 
 
 
5a0d7f7
bf729ad
 
 
 
5a0d7f7
bf729ad
 
5a0d7f7
bf729ad
5a0d7f7
bf729ad
5a0d7f7
bf729ad
 
 
 
5a0d7f7
bf729ad
5a0d7f7
bf729ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
language:
- en
metrics:
- accuracy
base_model:
- distilbert/distilbert-base-uncased
pipeline_tag: text-classification
tags:
- Bug Detection
- Review Classification
- NLP
- Deep Learning
- App Reviews
- Game Reviews
- BlaikHole
---

# πŸš€ DistilBert Reviews Bug Classifier by BlaikHole

<p align="center">
  <a href="https://huggingface.co/blaikhole/distilbert-review-bug-classifier" target="_blank" rel="noopener noreferrer">
    <img src="https://img.shields.io/badge/HuggingFace-Model-yellow?logo=huggingface" height="35">
  </a>
  <a href="https://huggingface.co/spaces/blaikhole/review-bug-classifier" target="_blank" rel="noopener noreferrer">
    <img src="https://img.shields.io/badge/Demo-Space-blue?style=flat-square" height="35">
  </a>
</p>

## πŸ“Œ Overview

This repository provides a **fine-tuned** model trained on our **private Playstore reviews data** using **quick still efficient DistilBert architecture**. It can be used for **Reviews classification with 3 classes (with 4th class - No bug)**.

---

## 🎨 Model Outputs & Labels

The model identifies the following labels:

| Label Name | Description |
|------------|-------------|
| πŸŸ₯ **LABEL_0 > Graphics Issue** | Screen touch controls issue, graphics flickering, rendering issues. |
| 🟩 **LABEL_1 > Network Issue** | Login/signup, account issues, wi-fi/data or ping problems etc. |
| 🟦 **LABEL_2 > No Bug** | No bug discussion found. |
| 🟨 **LABEL_3 > Performance Issue** | Overheating mobile, lag, crash, stuck game and so on. |

---

## πŸš€ Quick Usage

You can easily load and use this model with `transformers`:

### πŸ”Ή Named Entity Recognition (NER)
```python
from transformers import pipeline

# Label Mapping
LABEL_MAP = {
    "LABEL_0": "Graphics issue", 
    "LABEL_1": "Network issue", 
    "LABEL_2": "No Bug", 
    "LABEL_3": "Performance issue"
}

# Load Text Classification Model
MODEL_NAME = "blaikhole/distilbert-review-bug-classifier"
classifier = pipeline("text-classification", model=MODEL_NAME, tokenizer=MODEL_NAME)

def classify_text(text):
    result = classifier(text)[0]
    label = LABEL_MAP.get(result["label"], "Unknown")
    return f"Predicted Label: {label} (Confidence: {result['score']:.2f})"

# Example Usage
if __name__ == "__main__":
    sample_text = "The game keeps lagging and frame rates drop frequently."
    print(classify_text(sample_text))

```
---

## πŸ“¦ Installation

To use this model, install the required dependencies:

```bash
pip install transformers torch
```
---

## πŸ“œ License

MIT