--- license: mit base_model: EleutherAI/gpt-neo-125M tags: - trl - dpo - generated_from_trainer model-index: - name: model results: [] --- # model This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6955 - Rewards/chosen: -0.0079 - Rewards/rejected: -0.0080 - Rewards/accuracies: 0.4813 - Rewards/margins: 0.0001 - Logps/rejected: -478.8612 - Logps/chosen: -494.2958 - Logits/rejected: -18.3633 - Logits/chosen: -18.4819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6955 | 0.2992 | 100 | 0.6958 | -0.0017 | -0.0008 | 0.4701 | -0.0008 | -478.7900 | -494.2336 | -18.3637 | -18.4824 | | 0.6906 | 0.5984 | 200 | 0.6962 | -0.0028 | -0.0016 | 0.4744 | -0.0013 | -478.7974 | -494.2453 | -18.3625 | -18.4806 | | 0.6985 | 0.8975 | 300 | 0.6959 | -0.0222 | -0.0214 | 0.4738 | -0.0008 | -478.9952 | -494.4388 | -18.3624 | -18.4809 | | 0.6946 | 1.1967 | 400 | 0.6955 | 0.0015 | 0.0015 | 0.4753 | 0.0000 | -478.7664 | -494.2018 | -18.3628 | -18.4811 | | 0.6946 | 1.4959 | 500 | 0.6960 | -0.0046 | -0.0040 | 0.4791 | -0.0006 | -478.8223 | -494.2634 | -18.3631 | -18.4816 | | 0.6952 | 1.7951 | 600 | 0.6951 | -0.0047 | -0.0057 | 0.4882 | 0.0011 | -478.8391 | -494.2639 | -18.3636 | -18.4821 | | 0.6947 | 2.0942 | 700 | 0.6955 | -0.0053 | -0.0056 | 0.4822 | 0.0003 | -478.8379 | -494.2701 | -18.3634 | -18.4820 | | 0.6995 | 2.3934 | 800 | 0.6948 | -0.0060 | -0.0076 | 0.4918 | 0.0015 | -478.8574 | -494.2774 | -18.3632 | -18.4818 | | 0.6932 | 2.6926 | 900 | 0.6952 | -0.0080 | -0.0087 | 0.4837 | 0.0008 | -478.8692 | -494.2970 | -18.3633 | -18.4817 | | 0.6964 | 2.9918 | 1000 | 0.6955 | -0.0079 | -0.0080 | 0.4813 | 0.0001 | -478.8612 | -494.2958 | -18.3633 | -18.4819 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1