File size: 1,908 Bytes
e3b7b2e aae7c6c e3b7b2e aae7c6c e3b7b2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: cybersecurity-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cybersecurity-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1996
- Precision: 0.7901
- Recall: 0.7708
- F1: 0.7803
- Accuracy: 0.9487
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 167 | 0.2305 | 0.6823 | 0.7752 | 0.7257 | 0.9334 |
| No log | 2.0 | 334 | 0.1971 | 0.7673 | 0.7601 | 0.7637 | 0.9456 |
| 0.2227 | 3.0 | 501 | 0.1912 | 0.7839 | 0.7563 | 0.7698 | 0.9477 |
| 0.2227 | 4.0 | 668 | 0.1902 | 0.7877 | 0.7934 | 0.7905 | 0.9511 |
| 0.2227 | 5.0 | 835 | 0.1996 | 0.7901 | 0.7708 | 0.7803 | 0.9487 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|