Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
-
|
|
|
1 |
+
# Model Card: Llama-3.2-3B-Qgis-update1-q4_k_m-Instruct
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
|
5 |
+
**Model Name**: `Llama-3.2-3B-Qgis-update1-q4_k_m-Instruct`
|
6 |
+
**Developer**: `boadisamson`
|
7 |
+
**Base Model**: `unsloth/llama-3.2-3b-instruct-bnb-4bit`
|
8 |
+
**License**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
9 |
+
**Primary Use Case**: QGIS-related tasks, conversational applications, and instruction-following in English.
|
10 |
+
|
11 |
+
This model is fine-tuned for QGIS workflows, geospatial data handling, and instructional conversational capabilities. Optimized using the Hugging Face TRL library and accelerated by Unsloth, it achieves efficient inference while maintaining high-quality responses.
|
12 |
+
|
13 |
+
---
|
14 |
+
|
15 |
+
## Key Features
|
16 |
+
|
17 |
+
- **Domain-Specific Expertise**: Trained on QGIS-specific tasks, making it ideal for geospatial workflows.
|
18 |
+
- **Instruction Following**: Excels in providing clear, step-by-step guidance for GIS-related queries.
|
19 |
+
- **Optimized Performance**: Fine-tuned with 4-bit quantization (`bnb-4bit`) for faster performance and reduced memory requirements.
|
20 |
+
- **Conversational Abilities**: Suitable for interactive, conversational applications related to GIS.
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
## Technical Specifications
|
25 |
+
|
26 |
+
- **Model Architecture**: LLaMA-based (3 billion parameters).
|
27 |
+
- **Frameworks Used**: Transformers, GGUF, and Hugging Face TRL library.
|
28 |
+
- **Quantization**: Q4_K_M (4-bit quantization for efficient memory usage).
|
29 |
+
- **Language**: English.
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## Training Details
|
34 |
+
|
35 |
+
This model was trained using:
|
36 |
+
|
37 |
+
- **Fine-Tuning**: Utilized the Hugging Face TRL library for efficient instruction-based adaptation.
|
38 |
+
- **Acceleration**: Achieved 2x faster training through Unsloth optimizations.
|
39 |
+
- **Dataset**: Tailored datasets for QGIS-related queries, workflows, and instructional scenarios.
|
40 |
+
|
41 |
+
---
|
42 |
+
|
43 |
+
## Use Cases
|
44 |
+
|
45 |
+
- **Geospatial Analysis**: Answering GIS-related questions and offering guidance on geospatial workflows.
|
46 |
+
- **QGIS Tutorials**: Providing step-by-step instructions for beginners and advanced users.
|
47 |
+
- **Conversational Applications**: Supporting natural dialogue for instructional and technical purposes.
|
48 |
+
|
49 |
---
|
50 |
+
|
51 |
+
## Inference
|
52 |
+
|
53 |
+
This model is compatible with:
|
54 |
+
|
55 |
+
- **Hugging Face Inference Endpoints**: For seamless deployment and scalable use.
|
56 |
+
- **Text-Generation-Inference**: Efficient handling of input queries.
|
57 |
+
- **GGUF Format**: Optimized for low-latency, high-performance inference.
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## How to Use
|
62 |
+
|
63 |
+
Load the model using Hugging Face’s `transformers` library:
|
64 |
+
|
65 |
+
```python
|
66 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained("boadisamson/Llama-3.2-3B-Qgis-update1-q4_k_m-Instruct")
|
69 |
+
model = AutoModelForCausalLM.from_pretrained("boadisamson/Llama-3.2-3B-Qgis-update1-q4_k_m-Instruct", device_map="auto")
|
70 |
+
```
|
71 |
+
|
72 |
+
Generate text:
|
73 |
+
|
74 |
+
```python
|
75 |
+
input_text = "How do I add a layer in QGIS?"
|
76 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
77 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
78 |
+
print(tokenizer.decode(outputs[0]))
|
79 |
+
```
|
80 |
+
|
81 |
---
|
82 |
|
83 |
+
## Limitations
|
84 |
+
|
85 |
+
- **Domain-Specific Focus**: While optimized for QGIS tasks, performance may degrade on unrelated topics.
|
86 |
+
- **Resource Constraints**: Despite 4-bit quantization, larger contexts or prolonged sessions may require more resources.
|
87 |
+
|
88 |
+
---
|
89 |
|
90 |
+
## Acknowledgments
|
|
|
|
|
91 |
|
92 |
+
- Base model: `unsloth/llama-3.2-3b-instruct-bnb-4bit`.
|
93 |
+
- Training accelerations provided by Unsloth and Hugging Face TRL library.
|
94 |
|
95 |
+
For questions or suggestions, contact `boadisamson` on Hugging Face.
|