boadisamson commited on
Commit
408fd99
·
verified ·
1 Parent(s): 220a798

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -16
README.md CHANGED
@@ -1,22 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
3
- tags:
4
- - text-generation-inference
5
- - transformers
6
- - unsloth
7
- - llama
8
- - gguf
9
- license: apache-2.0
10
- language:
11
- - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
- # Uploaded model
 
 
 
 
 
15
 
16
- - **Developed by:** boadisamson
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
19
 
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
1
+ # Model Card: Llama-3.2-3B-Qgis-update1-q4_k_m-Instruct
2
+
3
+ ## Overview
4
+
5
+ **Model Name**: `Llama-3.2-3B-Qgis-update1-q4_k_m-Instruct`
6
+ **Developer**: `boadisamson`
7
+ **Base Model**: `unsloth/llama-3.2-3b-instruct-bnb-4bit`
8
+ **License**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
9
+ **Primary Use Case**: QGIS-related tasks, conversational applications, and instruction-following in English.
10
+
11
+ This model is fine-tuned for QGIS workflows, geospatial data handling, and instructional conversational capabilities. Optimized using the Hugging Face TRL library and accelerated by Unsloth, it achieves efficient inference while maintaining high-quality responses.
12
+
13
+ ---
14
+
15
+ ## Key Features
16
+
17
+ - **Domain-Specific Expertise**: Trained on QGIS-specific tasks, making it ideal for geospatial workflows.
18
+ - **Instruction Following**: Excels in providing clear, step-by-step guidance for GIS-related queries.
19
+ - **Optimized Performance**: Fine-tuned with 4-bit quantization (`bnb-4bit`) for faster performance and reduced memory requirements.
20
+ - **Conversational Abilities**: Suitable for interactive, conversational applications related to GIS.
21
+
22
+ ---
23
+
24
+ ## Technical Specifications
25
+
26
+ - **Model Architecture**: LLaMA-based (3 billion parameters).
27
+ - **Frameworks Used**: Transformers, GGUF, and Hugging Face TRL library.
28
+ - **Quantization**: Q4_K_M (4-bit quantization for efficient memory usage).
29
+ - **Language**: English.
30
+
31
+ ---
32
+
33
+ ## Training Details
34
+
35
+ This model was trained using:
36
+
37
+ - **Fine-Tuning**: Utilized the Hugging Face TRL library for efficient instruction-based adaptation.
38
+ - **Acceleration**: Achieved 2x faster training through Unsloth optimizations.
39
+ - **Dataset**: Tailored datasets for QGIS-related queries, workflows, and instructional scenarios.
40
+
41
+ ---
42
+
43
+ ## Use Cases
44
+
45
+ - **Geospatial Analysis**: Answering GIS-related questions and offering guidance on geospatial workflows.
46
+ - **QGIS Tutorials**: Providing step-by-step instructions for beginners and advanced users.
47
+ - **Conversational Applications**: Supporting natural dialogue for instructional and technical purposes.
48
+
49
  ---
50
+
51
+ ## Inference
52
+
53
+ This model is compatible with:
54
+
55
+ - **Hugging Face Inference Endpoints**: For seamless deployment and scalable use.
56
+ - **Text-Generation-Inference**: Efficient handling of input queries.
57
+ - **GGUF Format**: Optimized for low-latency, high-performance inference.
58
+
59
+ ---
60
+
61
+ ## How to Use
62
+
63
+ Load the model using Hugging Face’s `transformers` library:
64
+
65
+ ```python
66
+ from transformers import AutoModelForCausalLM, AutoTokenizer
67
+
68
+ tokenizer = AutoTokenizer.from_pretrained("boadisamson/Llama-3.2-3B-Qgis-update1-q4_k_m-Instruct")
69
+ model = AutoModelForCausalLM.from_pretrained("boadisamson/Llama-3.2-3B-Qgis-update1-q4_k_m-Instruct", device_map="auto")
70
+ ```
71
+
72
+ Generate text:
73
+
74
+ ```python
75
+ input_text = "How do I add a layer in QGIS?"
76
+ inputs = tokenizer(input_text, return_tensors="pt")
77
+ outputs = model.generate(**inputs, max_new_tokens=100)
78
+ print(tokenizer.decode(outputs[0]))
79
+ ```
80
+
81
  ---
82
 
83
+ ## Limitations
84
+
85
+ - **Domain-Specific Focus**: While optimized for QGIS tasks, performance may degrade on unrelated topics.
86
+ - **Resource Constraints**: Despite 4-bit quantization, larger contexts or prolonged sessions may require more resources.
87
+
88
+ ---
89
 
90
+ ## Acknowledgments
 
 
91
 
92
+ - Base model: `unsloth/llama-3.2-3b-instruct-bnb-4bit`.
93
+ - Training accelerations provided by Unsloth and Hugging Face TRL library.
94
 
95
+ For questions or suggestions, contact `boadisamson` on Hugging Face.