--- license: cc-by-nc-4.0 base_model: NYTK/PULI-BERT-Large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: kmdb_ner_model results: [] --- # kmdb_ner_model This model is a fine-tuned version of [NYTK/PULI-BERT-Large](https://huggingface.co/NYTK/PULI-BERT-Large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0405 - Precision: 0.8023 - Recall: 0.8261 - F1: 0.8140 - Accuracy: 0.9842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0613 | 0.11 | 1000 | 0.0575 | 0.7102 | 0.7359 | 0.7228 | 0.9776 | | 0.0559 | 0.23 | 2000 | 0.0525 | 0.7108 | 0.7611 | 0.7351 | 0.9788 | | 0.0569 | 0.34 | 3000 | 0.0512 | 0.7375 | 0.7856 | 0.7608 | 0.9798 | | 0.0481 | 0.45 | 4000 | 0.0496 | 0.7402 | 0.7975 | 0.7678 | 0.9803 | | 0.041 | 0.57 | 5000 | 0.0474 | 0.7567 | 0.7981 | 0.7769 | 0.9809 | | 0.0434 | 0.68 | 6000 | 0.0463 | 0.7588 | 0.7853 | 0.7718 | 0.9813 | | 0.0577 | 0.8 | 7000 | 0.0462 | 0.7592 | 0.7896 | 0.7741 | 0.9812 | | 0.0422 | 0.91 | 8000 | 0.0428 | 0.7820 | 0.8057 | 0.7937 | 0.9828 | | 0.0346 | 1.02 | 9000 | 0.0443 | 0.7758 | 0.8153 | 0.7951 | 0.9825 | | 0.0301 | 1.14 | 10000 | 0.0431 | 0.7831 | 0.8124 | 0.7974 | 0.9830 | | 0.0305 | 1.25 | 11000 | 0.0427 | 0.7955 | 0.8162 | 0.8057 | 0.9834 | | 0.0347 | 1.36 | 12000 | 0.0420 | 0.7923 | 0.8171 | 0.8045 | 0.9834 | | 0.0397 | 1.48 | 13000 | 0.0422 | 0.7923 | 0.8220 | 0.8069 | 0.9835 | | 0.0267 | 1.59 | 14000 | 0.0411 | 0.7970 | 0.8209 | 0.8087 | 0.9838 | | 0.03 | 1.71 | 15000 | 0.0415 | 0.7946 | 0.8230 | 0.8085 | 0.9838 | | 0.0311 | 1.82 | 16000 | 0.0407 | 0.8023 | 0.8253 | 0.8136 | 0.9842 | | 0.0283 | 1.93 | 17000 | 0.0405 | 0.8023 | 0.8261 | 0.8140 | 0.9842 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0