File size: 2,060 Bytes
037ae1d
 
5eac576
 
 
 
 
 
 
037ae1d
5eac576
 
 
 
 
59123b6
 
5eac576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
datasets:
- boapps/alpaca-hu
- mlabonne/alpagasus
language:
- hu
library_name: transformers
pipeline_tag: text-generation
---

# szürkemarha-mistral v1

Ez az első (teszt) verziója egy magyar nyelvű instrukciókövető modellnek.

<img src="szurkemarha_logo.png" width="400">

## Használat

Ebben a repoban van egy `app.py` script, ami egy gradio felületet csinál a kényelmesebb használathoz.

Vagy kódból valahogy így:

```python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig

tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")

BASE_MODEL = "mistralai/Mistral-7B-v0.1"
LORA_WEIGHTS = "boapps/szurkemarha-mistral"

device = "cuda"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

nf4_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, quantization_config=nf4_config)

model = PeftModel.from_pretrained(
    model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
)

prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Melyik megyében található az alábbi város?

### Input:
Pécs

### Response:"""
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
)
with torch.no_grad():
    generation_output = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=256,
    )
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print(output.split("### Response:")[1].strip())
```