--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-arsenic results: - task: name: Image Classification type: image-classification dataset: name: arsenic_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9993451211525868 --- # finetuned-arsenic This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the arsenic_images dataset. It achieves the following results on the evaluation set: - Loss: 0.0026 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2214 | 0.1848 | 100 | 0.1243 | 0.9607 | | 0.1213 | 0.3697 | 200 | 0.1763 | 0.9339 | | 0.1201 | 0.5545 | 300 | 0.1018 | 0.9607 | | 0.0991 | 0.7394 | 400 | 0.2071 | 0.9417 | | 0.1127 | 0.9242 | 500 | 0.0886 | 0.9666 | | 0.0314 | 1.1091 | 600 | 0.0333 | 0.9908 | | 0.0252 | 1.2939 | 700 | 0.0110 | 0.9974 | | 0.0582 | 1.4787 | 800 | 0.0104 | 0.9987 | | 0.0455 | 1.6636 | 900 | 0.0198 | 0.9954 | | 0.0569 | 1.8484 | 1000 | 0.0180 | 0.9961 | | 0.0627 | 2.0333 | 1100 | 0.0244 | 0.9948 | | 0.0328 | 2.2181 | 1200 | 0.0054 | 0.9987 | | 0.0156 | 2.4030 | 1300 | 0.0193 | 0.9948 | | 0.0016 | 2.5878 | 1400 | 0.0074 | 0.9974 | | 0.0032 | 2.7726 | 1500 | 0.0045 | 0.9980 | | 0.0233 | 2.9575 | 1600 | 0.0029 | 0.9993 | | 0.0434 | 3.1423 | 1700 | 0.0026 | 0.9993 | | 0.0079 | 3.3272 | 1800 | 0.0095 | 0.9980 | | 0.0175 | 3.5120 | 1900 | 0.0111 | 0.9974 | | 0.0013 | 3.6969 | 2000 | 0.0109 | 0.9974 | | 0.0008 | 3.8817 | 2100 | 0.0053 | 0.9987 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1