File size: 229,769 Bytes
e5ea348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 |
---
base_model: microsoft/deberta-v3-small
datasets:
- sentence-transformers/all-nli
- jinaai/negation-dataset-v2
- tals/vitaminc
- nyu-mll/glue
- allenai/scitail
- sentence-transformers/xsum
- sentence-transformers/sentence-compression
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/quora-duplicates
- sentence-transformers/gooaq
- sentence-transformers/simple-wiki
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:322768
- loss:AdaptiveLayerLoss
- loss:GISTEmbedLoss
- loss:TripletLoss
- loss:OnlineContrastiveLoss
- loss:MultipleNegativesSymmetricRankingLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A magnet will stick to which of the following?
sentences:
- if a magnet is attracted to a metal then that magnet will stick to that metal
- the circulatory system brings oxygen from the lungs to the rest of the body
- humans eat crops
- source_sentence: What does the activity of an organism depend on the totality of?
sentences:
- The digestive system consists of organs that break down food, absorb nutrients,
and eliminate waste.
- The fundamental and overtones can be present simultaneously in a variety of combinations.
For example, middle C on a trumpet has a sound distinctively different from middle
C on a clarinet, both instruments being modified versions of a tube closed at
one end. The fundamental frequency is the same (and usually the most intense),
but the overtones and their mix of intensities are different and subject to shading
by the musician. This mix is what gives various musical instruments (and human
voices) their distinctive characteristics, whether they have air columns, strings,
sounding boxes, or drumheads. In fact, much of our speech is determined by shaping
the cavity formed by the throat and mouth and positioning the tongue to adjust
the fundamental and combination of overtones. Simple resonant cavities can be
made to resonate with the sound of the vowels, for example. (See Figure 17.30.
) In boys, at puberty, the larynx grows and the shape of the resonant cavity changes
giving rise to the difference in predominant frequencies in speech between men
and women.
- the activity of an organism depends on the total activity of independent cells,.
- source_sentence: The Ministry insisted that it was not the Sports Code, but IOA's
constitution, which was not aligned with the Olympic Charter.
sentences:
- Three more sketches of those involved in serial Jaipur blasts released
- 'IOA''s constitution not aligned with Olympic Charter:'
- Cincinnati Reds defeat Florida Marlins
- source_sentence: Two female workers sit on some steps during work.
sentences:
- A woman is brushing her hair.
- a guy is waxing
- Two women sitting on steps at their job.
- source_sentence: A volcanic arc is formed when a subducting plate flows under another
tectonic plate.
sentences:
- Where do streams often start?
- What is formed when a subducting plate flows under another tectonic plate?
- Where is multiple fission more often observed?
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.731642468323062
name: Pearson Cosine
- type: spearman_cosine
value: 0.7388342851809555
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7306876393922224
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7326322535482364
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7213340791831213
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7248067929450137
name: Spearman Euclidean
- type: pearson_dot
value: 0.7060174899825389
name: Pearson Dot
- type: spearman_dot
value: 0.7163801725525887
name: Spearman Dot
- type: pearson_max
value: 0.731642468323062
name: Pearson Max
- type: spearman_max
value: 0.7388342851809555
name: Spearman Max
- task:
type: triplet
name: Triplet
dataset:
name: negation
type: negation
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0
name: Dot Accuracy
- type: manhattan_accuracy
value: 1.0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 1.0
name: Euclidean Accuracy
- type: max_accuracy
value: 1.0
name: Max Accuracy
- task:
type: binary-classification
name: Binary Classification
dataset:
name: mrpc
type: mrpc
metrics:
- type: cosine_accuracy
value: 0.70703125
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7692825198173523
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8009708737864077
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6043864488601685
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6762295081967213
name: Cosine Precision
- type: cosine_recall
value: 0.9821428571428571
name: Cosine Recall
- type: cosine_ap
value: 0.7930850238332522
name: Cosine Ap
- type: dot_accuracy
value: 0.68359375
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 111.09579467773438
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8028846153846153
name: Dot F1
- type: dot_f1_threshold
value: 100.36712646484375
name: Dot F1 Threshold
- type: dot_precision
value: 0.6733870967741935
name: Dot Precision
- type: dot_recall
value: 0.9940476190476191
name: Dot Recall
- type: dot_ap
value: 0.685668349677386
name: Dot Ap
- type: manhattan_accuracy
value: 0.6953125
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 166.01010131835938
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7970660146699267
name: Manhattan F1
- type: manhattan_f1_threshold
value: 243.34291076660156
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6763485477178424
name: Manhattan Precision
- type: manhattan_recall
value: 0.9702380952380952
name: Manhattan Recall
- type: manhattan_ap
value: 0.8185487109494757
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6953125
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 8.249982833862305
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7999999999999999
name: Euclidean F1
- type: euclidean_f1_threshold
value: 10.622720718383789
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.6960352422907489
name: Euclidean Precision
- type: euclidean_recall
value: 0.9404761904761905
name: Euclidean Recall
- type: euclidean_ap
value: 0.8099812581176395
name: Euclidean Ap
- type: max_accuracy
value: 0.70703125
name: Max Accuracy
- type: max_accuracy_threshold
value: 166.01010131835938
name: Max Accuracy Threshold
- type: max_f1
value: 0.8028846153846153
name: Max F1
- type: max_f1_threshold
value: 243.34291076660156
name: Max F1 Threshold
- type: max_precision
value: 0.6960352422907489
name: Max Precision
- type: max_recall
value: 0.9940476190476191
name: Max Recall
- type: max_ap
value: 0.8185487109494757
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Vitaminc
type: Vitaminc
metrics:
- type: cosine_accuracy
value: 0.55859375
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7416476011276245
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6542553191489362
name: Cosine F1
- type: cosine_f1_threshold
value: 0.39137744903564453
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.48616600790513836
name: Cosine Precision
- type: cosine_recall
value: 1.0
name: Cosine Recall
- type: cosine_ap
value: 0.5386900578010883
name: Cosine Ap
- type: dot_accuracy
value: 0.55859375
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 168.04440307617188
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6542553191489362
name: Dot F1
- type: dot_f1_threshold
value: 82.83587646484375
name: Dot F1 Threshold
- type: dot_precision
value: 0.48616600790513836
name: Dot Precision
- type: dot_recall
value: 1.0
name: Dot Recall
- type: dot_ap
value: 0.5406067293020295
name: Dot Ap
- type: manhattan_accuracy
value: 0.5625
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 209.30810546875
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6594005449591281
name: Manhattan F1
- type: manhattan_f1_threshold
value: 300.77703857421875
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.4959016393442623
name: Manhattan Precision
- type: manhattan_recall
value: 0.983739837398374
name: Manhattan Recall
- type: manhattan_ap
value: 0.5310137997739139
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.57421875
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 10.546405792236328
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6556473829201103
name: Euclidean F1
- type: euclidean_f1_threshold
value: 14.913542747497559
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.49583333333333335
name: Euclidean Precision
- type: euclidean_recall
value: 0.967479674796748
name: Euclidean Recall
- type: euclidean_ap
value: 0.5319997521875279
name: Euclidean Ap
- type: max_accuracy
value: 0.57421875
name: Max Accuracy
- type: max_accuracy_threshold
value: 209.30810546875
name: Max Accuracy Threshold
- type: max_f1
value: 0.6594005449591281
name: Max F1
- type: max_f1_threshold
value: 300.77703857421875
name: Max F1 Threshold
- type: max_precision
value: 0.4959016393442623
name: Max Precision
- type: max_recall
value: 1.0
name: Max Recall
- type: max_ap
value: 0.5406067293020295
name: Max Ap
---
# SentenceTransformer based on microsoft/deberta-v3-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [nli-pairs2](https://huggingface.co/datasets/sentence-transformers/all-nli), [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [xsum-pairs2](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [compression-pairs2](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [compression-pairs3](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [qasc_facts_sym](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [msmarco_pairs2](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [nq_pairs2](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [gooaq_pairs2](https://huggingface.co/datasets/sentence-transformers/gooaq), [mrpc_pairs](https://huggingface.co/datasets/nyu-mll/glue), [simple_wiki_pairs](https://huggingface.co/datasets/sentence-transformers/simple-wiki) and [simple_wiki_pairs2](https://huggingface.co/datasets/sentence-transformers/simple-wiki) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli)
- [nli-pairs2](https://huggingface.co/datasets/sentence-transformers/all-nli)
- [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum)
- [xsum-pairs2](https://huggingface.co/datasets/sentence-transformers/xsum)
- [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
- [compression-pairs2](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
- [compression-pairs3](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
- [qasc_facts_sym](https://huggingface.co/datasets/allenai/qasc)
- openbookqa_pairs
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [msmarco_pairs2](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [nq_pairs2](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
- [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [gooaq_pairs2](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [mrpc_pairs](https://huggingface.co/datasets/nyu-mll/glue)
- [simple_wiki_pairs](https://huggingface.co/datasets/sentence-transformers/simple-wiki)
- [simple_wiki_pairs2](https://huggingface.co/datasets/sentence-transformers/simple-wiki)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-ST-AllLayers-v3.5-checkpoints-tmp")
# Run inference
sentences = [
'A volcanic arc is formed when a subducting plate flows under another tectonic plate.',
'What is formed when a subducting plate flows under another tectonic plate?',
'Where is multiple fission more often observed?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7316 |
| **spearman_cosine** | **0.7388** |
| pearson_manhattan | 0.7307 |
| spearman_manhattan | 0.7326 |
| pearson_euclidean | 0.7213 |
| spearman_euclidean | 0.7248 |
| pearson_dot | 0.706 |
| spearman_dot | 0.7164 |
| pearson_max | 0.7316 |
| spearman_max | 0.7388 |
#### Triplet
* Dataset: `negation`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:--------|
| cosine_accuracy | 1.0 |
| dot_accuracy | 0.0 |
| manhattan_accuracy | 1.0 |
| euclidean_accuracy | 1.0 |
| **max_accuracy** | **1.0** |
#### Binary Classification
* Dataset: `mrpc`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.707 |
| cosine_accuracy_threshold | 0.7693 |
| cosine_f1 | 0.801 |
| cosine_f1_threshold | 0.6044 |
| cosine_precision | 0.6762 |
| cosine_recall | 0.9821 |
| cosine_ap | 0.7931 |
| dot_accuracy | 0.6836 |
| dot_accuracy_threshold | 111.0958 |
| dot_f1 | 0.8029 |
| dot_f1_threshold | 100.3671 |
| dot_precision | 0.6734 |
| dot_recall | 0.994 |
| dot_ap | 0.6857 |
| manhattan_accuracy | 0.6953 |
| manhattan_accuracy_threshold | 166.0101 |
| manhattan_f1 | 0.7971 |
| manhattan_f1_threshold | 243.3429 |
| manhattan_precision | 0.6763 |
| manhattan_recall | 0.9702 |
| manhattan_ap | 0.8185 |
| euclidean_accuracy | 0.6953 |
| euclidean_accuracy_threshold | 8.25 |
| euclidean_f1 | 0.8 |
| euclidean_f1_threshold | 10.6227 |
| euclidean_precision | 0.696 |
| euclidean_recall | 0.9405 |
| euclidean_ap | 0.81 |
| max_accuracy | 0.707 |
| max_accuracy_threshold | 166.0101 |
| max_f1 | 0.8029 |
| max_f1_threshold | 243.3429 |
| max_precision | 0.696 |
| max_recall | 0.994 |
| **max_ap** | **0.8185** |
#### Binary Classification
* Dataset: `Vitaminc`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.5586 |
| cosine_accuracy_threshold | 0.7416 |
| cosine_f1 | 0.6543 |
| cosine_f1_threshold | 0.3914 |
| cosine_precision | 0.4862 |
| cosine_recall | 1.0 |
| cosine_ap | 0.5387 |
| dot_accuracy | 0.5586 |
| dot_accuracy_threshold | 168.0444 |
| dot_f1 | 0.6543 |
| dot_f1_threshold | 82.8359 |
| dot_precision | 0.4862 |
| dot_recall | 1.0 |
| dot_ap | 0.5406 |
| manhattan_accuracy | 0.5625 |
| manhattan_accuracy_threshold | 209.3081 |
| manhattan_f1 | 0.6594 |
| manhattan_f1_threshold | 300.777 |
| manhattan_precision | 0.4959 |
| manhattan_recall | 0.9837 |
| manhattan_ap | 0.531 |
| euclidean_accuracy | 0.5742 |
| euclidean_accuracy_threshold | 10.5464 |
| euclidean_f1 | 0.6556 |
| euclidean_f1_threshold | 14.9135 |
| euclidean_precision | 0.4958 |
| euclidean_recall | 0.9675 |
| euclidean_ap | 0.532 |
| max_accuracy | 0.5742 |
| max_accuracy_threshold | 209.3081 |
| max_f1 | 0.6594 |
| max_f1_threshold | 300.777 |
| max_precision | 0.4959 |
| max_recall | 1.0 |
| **max_ap** | **0.5406** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### nli-pairs
* Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 14,000 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 16.29 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.62 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
| anchor | positive |
|:----------------------------------------------------------------------------|:----------------------------------------------------|
| <code>A young child jumping on the bed as a man looks the other way.</code> | <code>A child plays on the bed.</code> |
| <code>A running dog and a standing man on a dry field of grass.</code> | <code>A dog is running.</code> |
| <code>Children play with large hoops.</code> | <code>The hoops being played with are large.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### nli-pairs2
* Dataset: [nli-pairs2](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,000 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.03 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.31 tokens</li><li>max: 24 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| <code>Man holding crying baby in chair near window.</code> | <code>A man with a baby.</code> |
| <code>A man with a white camp is standing on a platform in front of a large black cylinder device, and fabric on a clothesline.</code> | <code>A man stands outdoors in front of several things.</code> |
| <code>A man with glasses and a mustache plays an electric guitar while standing behind a microphone.</code> | <code>The man is wearing glasses.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.5,
"prior_layers_weight": 1.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.75
}
```
#### negation-triplets
* Dataset: [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
* Size: 25,000 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 22.12 tokens</li><li>max: 112 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.15 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.45 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
| <code>Cute little boy in an army shirt blowing a kiss at a small lizard.</code> | <code>There was a kiss blown towards the small lizard by a little boy.</code> | <code>There was no kiss blown towards the small lizard by a little boy.</code> |
| <code>A woman wearing gold jewelry weaves a beautiful piece.</code> | <code>A woman is wearing gold jewelry.</code> | <code>A woman is not wearing gold jewelry.</code> |
| <code>A dog runs uphill towards the camera in near a fenced area.</code> | <code>a dog is running</code> | <code>a dog is not running</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "TripletLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 0.5,
"kl_temperature": 1.1
}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 23,000 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.16 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 36.84 tokens</li><li>max: 333 tokens</li></ul> |
* Samples:
| claim | evidence |
|:-----------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Before March 9 , more than five people who attended a dance class in Indonesia tested positive for COVID-19 due to the pandemic .</code> | <code>By 8 March , a total of 6 people who had attended the dance class were infected by the coronavirus , including one case of repatriated Indonesian from the Diamond Princess .</code> |
| <code>Benin is a tropical fruit .</code> | <code>Benin is a juicy stone fruit produced from numerous species of tropical trees belonging to the flowering plant genus Mangifera , cultivated mostly for their edible fruit .</code> |
| <code>Susan Calman is famous for her Glaswegian humor .</code> | <code>The long-running TV drama Taggart and the comedies Empty , Chewin ' the Fat , Rab C. Nesbitt , Still Game , Limmy 's Show and Dear Green Place depict the Glaswegian patois , while Kevin Bridges , Frankie Boyle , Craig Ferguson , Susan Calman and Billy Connolly have made Glaswegian humour known to the rest of the world .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### qnli-contrastive
* Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 25,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.78 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 34.93 tokens</li><li>max: 174 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>What is the most popular sport in Germany?</code> | <code>Football is by far the most popular sport, and the German Football Federation (Deutscher Fußballbund) with more than 6.3 million members is the largest athletic organisation in the country.</code> | <code>0</code> |
| <code>How many people did Carlton have per km2 between 2012 and 2013?</code> | <code>Surrounding inner city suburbs experienced an increase in population density between 2012 and 2013; Carlton (9,000 people per km2) and Fitzroy (7,900).</code> | <code>0</code> |
| <code>What does this Gospel show that Athanasius also believed?</code> | <code>This Gospel in itself is the greatest support of Athanasius's stand.</code> | <code>0</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "OnlineContrastiveLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 0.5,
"kl_temperature": 1.1
}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 14,687 training samples
* Columns: <code>sentence2</code> and <code>sentence1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.86 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.94 tokens</li><li>max: 34 tokens</li></ul> |
* Samples:
| sentence2 | sentence1 |
|:--------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| <code>Archaeans produce methane gas as a waste product.</code> | <code>Archaeans produce what kind of gas as a waste product?</code> |
| <code>The term elastic potential energy is used to describe potential energy due to an object’s shape.</code> | <code>What term is used to describe potential energy due to an object’s shape?</code> |
| <code>Over 90% of the energy we use comes originally from the sun.</code> | <code>Over 90% of the energy we use comes originally from what?</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 8,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 23.99 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.62 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|
| <code>coagulation in water treatment, the use of chemicals to make suspended solids gather or group together into small flocs.</code> | <code>When drinking water is treated, the term for when chemicals cause solids in the water to clump together is coagulation.</code> |
| <code>air pressure is the force exerted on a surface by the weight of the air above it.</code> | <code>At the earth’s surface, the air pressure exerted on you is a result of the weight of air above you.</code> |
| <code>The heart is a pump with four chambers.</code> | <code>There are four chambers in the heart.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### xsum-pairs
* Dataset: [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) at [788ddaf](https://huggingface.co/datasets/sentence-transformers/xsum/tree/788ddafe04e539956d56b567bc32a036ee7b9206)
* Size: 15,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 222.93 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 25.83 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The 20-year-old impressed in Uruguay's Copa America win in July and has signed a long-term contract at Anfield.<br>A 6ft 6ins centre-back, Coates passed a medical and secured a work permit and is Liverpool's sixth summer signing.<br>Coates was last seen on the pitch in Buenos Aires celebrating victory in the Copa America, and accepting an award for the best young player of the tournament. Impressive credentials for a player who is not 21 until October<br>Read more from Tim's blog<br>He joins compatriot Luis Suarez, who tweeted: "I want to welcome Coates, partner in the Uruguay team, friend and great player," at Anfield.<br>Liverpool boss Kenny Dalglish was keen to strengthen his defensive resources after Greek defender Sotirios Kyrgiakos left for Wolfsburg on a free transfer.<br>Manchester City were strongly linked with Coates but he has now joined a Liverpool squad recently bolstered by the arrivals of midfielders Jordan Henderson, Charlie Adam and Stewart Downing, goalkeeper Doni and defender Jose Enrique.</code> | <code>Liverpool have completed the signing of Uruguay international defender Sebastian Coates from Nacional.</code> |
| <code>The court made the decision after a case was brought by protester Samira Ibrahim.<br>She accused the Egyptian army of forcing her to undergo a virginity test after she was arrested during a protest in Tahrir Square in March.<br>Human rights organisations say the Egyptian military has used the practice widely as a punishment.<br>"The court orders that the execution of the procedure of virginity tests on girls inside military prisons be stopped," judge Aly Fekry, head of Cairo administrative court said, according to Reuters.<br>The ruling was greeted by cheers from hundreds of activists inside the courtroom.<br>Activists had demanded that the authorities prosecute anyone responsible for subjecting protesters to such tests.<br>Earlier this year, an Egyptian general was quoted as acknowledging that the military had conducted such tests, saying that they were used so women would not later claim they had been raped by authorities.<br>Human rights groups say such tests are a degrading form of abuse and the general's justification a legal absurdity.</code> | <code>A Cairo court has ordered forced virginity tests on female detainees in military prisons to be stopped.</code> |
| <code>The claim: Completing the single market in services will create 700 to 800,000 new jobs over the coming years.<br>Reality Check verdict: This is an estimate of the impact of a whole range of extensions planned for the single market by 2030.<br>He is referring to this report from the Centre for Economics and Business Research, commissioned by Britain Stronger in Europe.<br>The report said that the boost to the economy could deliver 300,000 new jobs by 2020, rising to 790,000 by 2030.<br>It has taken a report from the European Parliament called The Cost of Non-Europe, and worked out how much of the pan-European benefits it identified from completing the single market could be allocated to the UK.<br>The report does not suggest that all the extra jobs would come from the single market in services - it includes areas such as further reform of energy markets and the introduction of the Transatlantic Trade and Investment Partnership (TTIP) to increase trade with the USA.<br>Working out how many jobs would be created by economic benefits to the economy is not an easy thing to do and certainly not a precise science.<br>So, for example, one of the benefits cited was having cheaper mortgages as a result of increased competition in financial services, which the report decided would create a benefit of £4bn a year in 2020.<br>But would cheaper mortgages create any jobs? Not if the people who have cheaper mortgages decide to save that extra money. You have to assume that it means more mortgages are sold and that the money saved is spent elsewhere.<br>Read more: The facts behind claims in the EU debate</code> | <code>"Most analysis says if we complete the single market in services… it will create something like 700 to 800,000 new jobs over the coming years," Remain campaigner Alan Johnson said in last week's televised EU Referendum debate.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
#### xsum-pairs2
* Dataset: [xsum-pairs2](https://huggingface.co/datasets/sentence-transformers/xsum) at [788ddaf](https://huggingface.co/datasets/sentence-transformers/xsum/tree/788ddafe04e539956d56b567bc32a036ee7b9206)
* Size: 4,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 222.42 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 25.77 tokens</li><li>max: 70 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Media playback is unsupported on your device<br>11 February 2014 Last updated at 12:37 GMT<br>The woman had been driving east towards Newmarket on the westbound carriageway before being stopped at junction 27.<br>She stopped in front of the police car with inches to spare.<br>Simon Newton reports.</code> | <code>An 81-year-old motorist driving the wrong way along the A14 at 50mph was stopped by police who put their car in the way of her vehicle.</code> |
| <code>The 33-year-old all-rounder helped the Steelbacks win the T20 Blast competition in August, and has spent two seasons with the side.<br>In that time he has taken 81 County Championship wickets and scored 782 runs, with 30 wickets in T20 cricket.<br>"Rory Kleinveldt is a Steelback to the core, we love having him here," said Northants head coach David Ripley.</code> | <code>Former South Africa international Rory Kleinveldt has signed a new one-year contract with Northants.</code> |
| <code>There have been security concerns across Europe since the attacks in Paris, which killed 130 people.<br>However, France's sports minister Patrick Kanner said fan zones would "tell the French people and foreigners that everything is under control".<br>Elsewhere, Russia says security at the 2018 World Cup will be strengthened.<br>"We discussed the problems of security in detail," said Russia's sports minister Vitaly Mutko after a meeting with Fifa inspectors.<br>The minister said that security at the World Cup construction sites had already been toughened up, and the fan zones at the 2017 Confederation Cup and the World Cup will be at the centre of the security forces' attention.<br>Euro 2016 will be played from 10 June to 10 July in 10 French cities.<br>In Paris, the fan zone is expected to have a 120,000 capacity and will be situated on the Champs de Mars, below the Eiffel Tower.</code> | <code>Euro 2016 organisers are hopeful supporters will be allowed to watch matches on big screens in public areas of France next summer.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.5,
"prior_layers_weight": 1.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.75
}
```
#### compression-pairs
* Dataset: [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 13,750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 31.04 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.11 tokens</li><li>max: 24 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------|
| <code>Former basketball coach Ralph Klein, 77, has been hospitalized for two days at Sheba Medical Center at Tel Hashomer, in what hospital officials describe as very serious condition.</code> | <code>Ralph Klein, coaching legend, hospitalized</code> |
| <code>A 31-year-old man has been charged with glassing another man at a Canley Vale hotel last week and will face Bankstown Local Court today, July 11 .</code> | <code>Man charged over glassing in Canley Vale</code> |
| <code>A 14-year-old girl is in hospital after running into a TTC streetcar in Toronto's west end on Sunday.</code> | <code>Girl in hospital after running into streetcar</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
#### compression-pairs2
* Dataset: [compression-pairs2](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 5,624 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 31.25 tokens</li><li>max: 144 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.24 tokens</li><li>max: 27 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------|
| <code>Lonmin PLC on Sunday warned miners to either return to work on Monday or face being sacked from the platinum mine.</code> | <code>Lonmin warns miners;</code> |
| <code>An autopsy couldn't determine a cause of death for an Elliot Lake man who died in police custody Wednesday.</code> | <code>Autopsy can't determine cause of death</code> |
| <code>A massive asteroid with its own small moon in tow flew by Earth over the weekend.</code> | <code>Massive asteroid flies by Earth</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.5,
"prior_layers_weight": 1.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.75
}
```
#### compression-pairs3
* Dataset: [compression-pairs3](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 5,624 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 31.39 tokens</li><li>max: 112 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.12 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
| <code>Ryan O'Neal pleaded guilty to a felony charge of drug possession on Friday afternoon and agreed to enter an 18-month drug deferment program.</code> | <code>O'Neal pleads guilty to drug possession</code> |
| <code>Australian sprinter 'Ortensia' has drawn well for her international debut in Sunday's Group 1 Hong Kong Sprint.</code> | <code>Ortensia draws well in Hong Kong Sprint</code> |
| <code>More than 30 cars in Kennewick are vandalized on Halloween night, possibly because the owners weren't handing out any candy.</code> | <code>More than 30 cars vandalized on Halloween</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.25,
"prior_layers_weight": 2.5,
"kl_div_weight": 1.5,
"kl_temperature": 0.5
}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 11,445 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.86 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 89.64 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The water cycle involves movement of water between air and what?</code> | <code></code> |
| <code>What do wind turbines turn wind energy into?</code> | <code>Wind energy is energy provided by the blowing wind. Wind turbines, like those in Figure above , can turn wind energy into electricity. The wind blows because of differences in heating of Earth’s atmosphere by the sun. There will never be a shortage of wind.</code> |
| <code>Lacking blood vessels, nerve endings, or glands, the epidermis is the outer layer of what?</code> | <code>The epidermis is the outer layer of skin. It consists almost entirely of epithelial cells. There are no blood vessels, nerve endings, or glands in this skin layer. Nonetheless, this layer of skin is very active. It is constantly being renewed. How does this happen?.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 7,971 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.4 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 34.32 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What do lobsters lack?</code> | <code>Invertebrates are animals that lack a vertebral column, or backbone.. Lobsters are invertebrates, animals without a backbone.. Lobsters do not have a backbone</code> |
| <code>What can cause the most damage to thin soil?</code> | <code>soil erosion means soil loss through wind. Erosion also damages the thin soil.. Wind can cause damage to thin soil.</code> |
| <code>What are encoded in DNA and called genetic traits?</code> | <code>Characteristics that are encoded in DNA are called genetic traits.. An observable characteristic is called a phenotype .. phenotypes encoded in DNA are called genetic traits</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### qasc_facts_sym
* Dataset: [qasc_facts_sym](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 7,971 training samples
* Columns: <code>combinedfact</code> and <code>facts</code>
* Approximate statistics based on the first 1000 samples:
| | combinedfact | facts |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.62 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 25.19 tokens</li><li>max: 47 tokens</li></ul> |
* Samples:
| combinedfact | facts |
|:---------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
| <code>Biomass is the total mass of organisms at a step in the food chain</code> | <code>Biomass is the total mass of organisms at a trophic level.. Each of the steps in the food chain is a trophic level ..</code> |
| <code>Nuclear reactions in stars cause them to brighten up the summer sky.</code> | <code>nuclear reactions in stars causes stars to produce light. June Summer Triangle Three bright stars light up the summer sky..</code> |
| <code>Nephrons are the structural and functional units of an organ that filters blood</code> | <code>Nephrons are the structural and functional units of the kidneys.. Blood is filtered in the kidney..</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 4,505 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.81 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.49 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| <code>What is animal competition?</code> | <code>if two animals eat the same prey then those animals compete for that pey</code> |
| <code>If you wanted to make a metal bed frame, where would you start?</code> | <code>alloys are made of two or more metals</code> |
| <code>Places lacking warmth have few what</code> | <code>cold environments contain few organisms</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 15,399 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.66 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 77.26 tokens</li><li>max: 199 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the systrust service?</code> | <code>The SysTrust service is an assurance service that was jointly developed by the American Institute of Certified Public Accountants (AICPA) and the Canadian Institute of Chartered Accountants (CICA) .</code> |
| <code>does jamaica recognize daylight saving time</code> | <code>Actual current time in Kingston, Jamaica, DST, Daylight Savings Time conversion dates 2015, GMT offset, fall time change 2015 Kingston clock. Copyright © 2005-2015 24TimeZones.com. All rights reserved.</code> |
| <code>what is a caregivers responsibilities</code> | <code>Caregiver Job Responsibilities. A caregiver is usually responsible for attending to the specific needs of an elderly person, but a caregiver may also attend to the needs of an infant or a disabled person. Caregivers serve a key role in the health care industry. Caregivers ensure that those under their care are clean, fed and safe.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### msmarco_pairs2
* Dataset: [msmarco_pairs2](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 6,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.69 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 75.78 tokens</li><li>max: 238 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>caillou first episode date</code> | <code>Caillou is a Canadian educational children's television series that was first shown on Télétoon and Teletoon, with its first episode airing on the former channel on September 15, 1997; the show... fandom</code> |
| <code>how to practice yoga breathinh</code> | <code>How to Practice Kapalabhati Pranayama in Yoga. Learning yogic breath control exercises is one of the most important parts of developing your yoga practice. Called âpranayamaâ in Sanskrit, these breathing exercises can help to bring balance and depth to your overall well-being.</code> |
| <code>why identifying bacteria is important</code> | <code>Bacterial identification is a process which is used to pinpoint the identity of specific bacteria. It is an important part of medical treatment, since many treatments are heavily dependent on the identity of the particular organism causing a medical problem, and it is also an important part of scientific research.acterial identification is a process which is used to pinpoint the identity of specific bacteria. It is an important part of medical treatment, since many treatments are heavily dependent on the identity of the particular organism causing a medical problem, and it is also an important part of scientific research.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.5,
"prior_layers_weight": 1.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.75
}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 15,399 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 132.12 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>inflation means specific prices are rising and relative prices are falling</code> | <code>Inflation Conceptually, inflation refers to the general trend of prices, not changes in any specific price. For example, if people choose to buy more cucumbers than tomatoes, cucumbers consequently become more expensive and tomatoes cheaper. These changes are not related to inflation, they reflect a shift in tastes. Inflation is related to the value of currency itself. When currency was linked with gold, if new gold deposits were found, the price of gold and the value of currency would fall, and consequently prices of all other goods would become higher.[36]</code> |
| <code>what is the sum of all angles in a hexagon</code> | <code>Hexagon In geometry, a hexagon (from Greek ἕξ hex, "six" and γωνία, gonía, "corner, angle") is a six-sided polygon or 6-gon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.</code> |
| <code>when do deer lose their antlers in california</code> | <code>California mule deer Rutting season occurs in autumn when the does come into estrus for a period lasting only several days. Males exhibit aggressive behavior in competing for mates. Does begin estrus again if they do not become pregnant. The gestation period is about 200 days, with fawns arriving in the spring; the young remain with mothers throughout the summer and are weaned in the autumn. The buck's antlers fall off in the winter, and commence growing once more in spring in anticipation of next autumn's rut.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### nq_pairs2
* Dataset: [nq_pairs2](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 6,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 11.83 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 132.0 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>tomb of the unknown soldier guard change times</code> | <code>Tomb of the Unknowns While Arlington National Cemetery is open, during the day in summer months from April 1 to September 30, the guard is changed every half hour. During the winter months, from October 1 to March 31, the guard is changed every hour. After the cemetery closes to the public (7 p.m. to 8 a.m. April through September, and 5 p.m. to 8 a.m. October through March), the guard is changed every 2 hours. The ceremony can be witnessed by the public whenever Arlington National Cemetery is open.[20][21]</code> |
| <code>which european country was the first to industrialize and when</code> | <code>History of industrialisation In the 18th and 19th centuries, the UK experienced a massive increase in agricultural productivity known as the British Agricultural Revolution, which enabled an unprecedented population growth, freeing a significant percentage of the workforce from farming, and helping to drive the Industrial Revolution.</code> |
| <code>who starred in barefoot in the park on broadway</code> | <code>Barefoot in the Park Barefoot in the Park is a romantic comedy by Neil Simon. The play premiered on Broadway in 1963, and starred Robert Redford and Elizabeth Ashley. The play was made into a film in 1967, also starring Redford (and Jane Fonda).</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.5,
"prior_layers_weight": 1.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.75
}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 19,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 17.95 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 447.58 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>In Europe which colour denotes runs for expert skiers?</code> | <code>Ski slope colour codes Written by snowman What do the slope colors and symbols mean? This can be confusing for beginners, or even for experienced skiers who are heading to a different ski region. Europe is much different from the US in these codes. Let’s start with the US markings: North American slope markings Green (circle): Beginner slope. This is for people who have never skied before, or are just starting out. Probably not exciting for intermediate or expert skiers, because these may not even be steep enough to make many turns. Blue (square): Intermediate slope. More varied terrain, and a bit steeper. Could also be good for experts who want to do some nice, carving turns without picking up tons of speed. Black (diamond): Expert slope. This could be a mogul run, or a steep piste. It’s recommended that beginners avoid these entirely, and intermediates only try them once their skills are improving and their confidence is rising. Double black diamond: Experts only. If you have any fear at all on a standard Black Diamond, stay away from the double blacks. They may be very steep, have huge moguls, or have a narrow couloir (a steep and narrow corridor where you have to go straight down, and turning might crash you into rocks or trees). Orange (rectangle): Terrain park. May also have a trail rating showing how difficult it is. Only go in here if you want to do some jumps and tricks. Probably not for beginners ;-). European slope markings Green: Learner slope, hardly any grade at all, may be very wide. Not used in all countries. Blue: Beginner slope. This is usually equivalent to the US “Green Circle” so don’t be confused at an Austrian resort with no “green” slopes. Here, blue is beginner! Red: Intermediate slope. Yep, there’s an extra color in Europe, and red slopes are open for intermediate skiers and boarders to improve their skills. Black: Expert slope. These may range from a normal expert slope like in North America to a super-tough one. But in most places (like the ultra-steep Harikiri at Mayrhofen), there will be an extra sign explaining if the slope is exceptionally hard. Orange: This means extremely difficult, and may be found only in certain countries like Austria and Switzerland. Yellow: Generally a “skiroute,” which may be an uncontrolled or ungroomed off-piste area. Often these trails are marked but wind a long way down the mountain with flat spots which may be a pain for snowboarders. May be marked with orange squares in Austria.</code> |
| <code>With which brand name do you associate the synthetic substance polytetrafluoroethylene?</code> | <code>What is PTFE? (with pictures) What is PTFE? Last Modified Date: 09 January 2017 Copyright Protected: You won't believe these 10 facts about people Polytetrafluoroethylene (PTFE) is a synthetic material accidentally invented in the late 1930s while a chemist was endeavoring to develop a new type of perfluorethylene-based refrigerant. Rather than achieving a chlorofluorocarbon, the scientist was surprised to find that the perfluorethylene used in the process reacted with the iron content of its container and polymerized under pressure. Less than a decade later, this new material was being distributed on a commercial scale and was eventually patented under the name Teflon®. It would be another 20 years before this material would hit the frying pan and become known as the first non-stick coating for cookware, however. In fact, this material was used for a variety of other purposes at first. During World War II, PTFE was used to prevent the escape of radioactive materials from the facility designated to produce the first atomic bomb in the U.S., an objective dubbed as the Manhattan Project. This facility represented an impressive piece of real estate with more 2,000,000 square feet (609,600 sq. meters) in which to house uranium hexafluoride. Not only is this substance highly toxic and corrosive in its own right, but it also forms a dangerous gas known as hydrogen fluoride in the presence of water or water vapor. For this reason, PTFE was used as a coating for pipefittings to make them leak proof. Ad The exceptional insulating properties of this material made its use in electronic components ideal. For one thing, it is non-conductive, making it resistant to high electric fields. It is also highly resistant to water, heat, and chemical corrosion . In fact, it continues to be used to produce laboratory equipment and accessories that come into contact with hydrofluoric acid, which would otherwise dissolve other materials, even glass. PTFE also possesses very low frictional properties, which is expressed as frictional coefficient. This measurement is relative and differs according to the materials brought into contact to generate or simulate friction. In terms of plastics, friction is usually observed against polished steel. To put the low friction coefficient of PTFE into proper perspective, it is the only known synthetic surface material to which the toe pads of a gecko fail to stick. This quality makes it suitable for manufacturing parts that need to resist friction, such as gears and ball bearings . This material was eventually introduced to American households by Marion Trozzolo, founder of Laboratory Plasticware Fabricators. While Trozzolo had been producing Teflon®-coated scientific tools for a number of years, he became inspired by a French engineer who found it such an effective non-stick coating for his fishing gear that he later treated his wife’s pots and pans with it. While this experiment led to the production of cookware known as Tefal (T-Fal®) in France in the mid-1950s, Trozzolo became the first U.S. producer of Teflon®-coated cookware. In fact, "The Happy Pan," launched in 1961, earned a place of historical significance in the Smithsonian Institute and Trozzolo a name of distinction in the Plastics Hall of Fame. Ad</code> |
| <code>The legend of ‘Lohengrin’ comes from which European country?</code> | <code>Christmas traditions in Europe Christmas traditions in Europe Christmas The origin and the name given to this celebration are different depending on the country. For exemple, for the French word Noël definitely comes from the Latin word natalis(birth). The masses of Christ, held by English evangelists in December, gave birth to the English word "Christmas". "The Holy Night" is translated in German as Weihnacht...Taking place in the last few days of December, this holiday is not celebrated in the same way in every country. There are many symbols attached to this holiday in Europe, and each country has kept its own identity and traditions, while enriching them with influences form various other sources. This diversity and richness prove the importance given by Europeans to the Christmas holiday. Here are some exemples... Advent, its crown and its calendar... Advent corresponds to the four-week period that precedes "the arrival"(adventus in Latin) of baby Jesus, that is Christmas. In certain parts of Germany, Advent begins on the 11th November, on Saint Martin's Day. Depending on the country, various saints (Saint Martin, Saint Catherine, Saint Eligius, Saint Barbe, Saint Nicholas or Saint Lucia) are honoured in a meaningful way during this period. These celebrations sometimes become more important than Christmas itself. The Advent Crown The Advent Crown, made of woven fir branches and four candles, representing the four seasons of the year, appeared quite late in the Protestant regions of Germany. It reached Scandinavia before spreading to various other countries. The four candles are lit one by one, on each of the four Sundays before Christmas. The Advent Calendar The Advent Calendar is a tradition of German origin aimed to encourage children to be patient until Christmas. Thus, in order to feel that they have less time to wait, children are given an Advent Calendar at the beginning of December, which has twenty four little doors. Every evening, they open one door, the last one being opened on Christmas Eve, just before the arrival of Santa Claus. Originally, the closed doors hid pious images that have been replaced nowadays with sweets. The first Advent Calendar is thought to date back to 1851. The Christmas tree The evergreen Christmas tree, like ivy and holly, is the symbol of eternal life. This tradition is first mentioned in the 16th century, in Alsace; but as early as the 11th century, the houses seem to have been decorated with "greenery taken from trees". Very early on, the Christmas tree was covered with various decorations and candles to light it up when Christmas came. In Hungary for exemple, the tree is decorated with biscuits, sweets and chocolates, which can be eaten from December 24, making sure that the coloured wrappers are not removed, so as not to leave the tree bare. In the 18th century, the Christmas tree reached the whole of Germany, and then spread to many other countries. However, certain countries, such as Italy and Spain, were long reluctant to adopt this tradition. In Greece, the Christmas tree does not exist, but people grow a Christmas rose called Ellebore. The Christmas crib The Christmas crib, which reminds us of the Nativity, first appeared in Italy and underwent considerable development in other southern Catholic countries of Europe (Spain, Portugal) as well as in France and Southern Germany after the 13th century. In the Early Middle Ages, cribs were set up in churches and liturgical games (Nativity games) were organised on Christmas night. Set up in a cave, or more modestly, in a stable, the traditional crib gradually became commonplace in the homes of churchgoers. At that time, it included only the main characters: baby Jesus, Mary, Joseph, the shepherds, the three Wise Men, the Angel Gabriel, not to mention the donkey and the bullock. However, in certain countries, other characters are traditionally included in the Nativity scene. This is particulary the case in Poland, where national heroes, represented by small figurines, are included alongside the crib characters. More</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### quora_pairs
* Dataset: [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 23,520 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 13.67 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.94 tokens</li><li>max: 46 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------|:-------------------------------------------------------------------------------------|
| <code>What is difference between stock and shares?</code> | <code>What is the difference between a stock and a share?</code> |
| <code>How can I troubleshoot my Belkin router?</code> | <code>What are some ways I can troubleshoot my belkin router?</code> |
| <code>Why should I vote for Hillary Clinton?</code> | <code>Something simple, yet important. Why should I vote for Hillary Clinton?</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.5,
"prior_layers_weight": 1.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.75
}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 15,399 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.43 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.01 tokens</li><li>max: 146 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is ginger ale bad for you?</code> | <code>However, not too many know that drinking ginger ale also has its drawbacks. The University of Maryland Medical Center has said that drinking too much of this beverage could actually lead to gastrointestinal ailments. Heavy drinkers may experience heartburn and even diarrhea.</code> |
| <code>how to do shradh at home?</code> | <code>Collect all the contents of the puja in a vessel and carry it on the head to the nearest water body (lake, river or sea) and chant “Idam Pindam Gayaar-pitho Asthu. After this, remove the grass ring. Take bath and visit temples. Do puja at home in the regular altar.</code> |
| <code>how long can a woman have chlamydia and not know it?</code> | <code>Most people who have chlamydia don't notice any symptoms. If you do get symptoms, these usually appear between 1 and 3 weeks after having unprotected sex with an infected person. For some people they don't develop until many months later. Sometimes the symptoms can disappear after a few days.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### gooaq_pairs2
* Dataset: [gooaq_pairs2](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 6,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.46 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 57.89 tokens</li><li>max: 132 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is yucca good for cholesterol?</code> | <code>In addition to lowering cholesterol, the regular consumption of yucca can help fight heart disease by reducing that oxidative stress (the imbalance between free radicals and antioxidants) placed on the cardiovascular system.</code> |
| <code>what is the maximum amount you can collect in social security?</code> | <code>The maximum monthly Social Security benefit that an individual can receive per month in 2020 is $3,790 for someone who files at age 70. For someone at full retirement age, the maximum amount is $3,011, and for someone aged 62, the maximum amount is $2,265.</code> |
| <code>how can you tell the difference between real and fake airpods?</code> | <code>The shapes vary on authentic AirPods as well, but they should always come in an oval shape. Fakes, on the other hand, seem to get this diffuser shape closer to a circle, rather than an oval. Besides, highlighted in a square you will notice the difference in the two white strips that can be noticed at the bottom.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.5,
"prior_layers_weight": 1.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.75
}
```
#### mrpc_pairs
* Dataset: [mrpc_pairs](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 2,474 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 26.56 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 26.59 tokens</li><li>max: 52 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
| <code>And if estimates hold , it will mark the first time in history that five films grossed more than $ 20 million each in one weekend .</code> | <code>It is also the first time in history that five films grossed more than $ 20 million each in one weekend .</code> |
| <code>General Huweirini , who has worked closely with the US , was wounded in the shooting on December 4 , US officials said .</code> | <code>Huweirini , who has worked closely with U.S. officials , was wounded in an attack Dec. 4 , the U.S. officials said .</code> |
| <code>While robbery appeared to be the motive , the suspects drove off before taking anything .</code> | <code>While robbery appeared to be the motive , the suspects fled before they could take anything , he said .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
#### simple_wiki_pairs
* Dataset: [simple_wiki_pairs](https://huggingface.co/datasets/sentence-transformers/simple-wiki) at [60fd9b4](https://huggingface.co/datasets/sentence-transformers/simple-wiki/tree/60fd9b4680642ace0e2604cc2de44d376df419a7)
* Size: 12,600 training samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
| | text | simplified |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 32.92 tokens</li><li>max: 174 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 28.68 tokens</li><li>max: 114 tokens</li></ul> |
* Samples:
| text | simplified |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Most nesting sites are on islands in the northern and southern regions of the Great Barrier Reef , with 1.4 â `` 1.7 million birds using the sites to breed .</code> | <code>Most nesting sites are on islands in the northern and southern regions of the Great Barrier Reef . About 1.7 million birds use the sites to breed .</code> |
| <code>This cemetery and one in Winchester , Virginia were both dedicated on the same day , with each group thinking that they were the first confederate cemetery .</code> | <code>This cemetery and one in Winchester , Virginia were both dedicated on the same day . Each group thinking that they were the first confederate cemetery .</code> |
| <code>The second half was conducted over the internet on WWF 's official website , WWF.com .</code> | <code>The second half , or the supplemental draft , was conducted over the internet on WWF 's official website , WWF.com .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
#### simple_wiki_pairs2
* Dataset: [simple_wiki_pairs2](https://huggingface.co/datasets/sentence-transformers/simple-wiki) at [60fd9b4](https://huggingface.co/datasets/sentence-transformers/simple-wiki/tree/60fd9b4680642ace0e2604cc2de44d376df419a7)
* Size: 5,400 training samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
| | text | simplified |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 33.7 tokens</li><li>max: 308 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 28.27 tokens</li><li>max: 108 tokens</li></ul> |
* Samples:
| text | simplified |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Safeway would close Food Barn or rebrand stores as Safeway before the decade was over .</code> | <code>Safeway stores also have a Safeway ATM Network .</code> |
| <code>He succeeded Dick Cheney . Biden is the first United States Vice President from Delaware and the first Roman Catholic to attain that office .</code> | <code>When Biden became Vice President , he said he would do things differently from Dick Cheney , who had been Vice President before him .</code> |
| <code>It was called Lake Rezaiyeh in the early 1930s after Reza Shah Pahlavi , but the lake was renamed ` Urmia ' in the late 1970s .</code> | <code>In the early years of the 20th century , it was named Rezaiyeh Lake after the name of Reza Pahlavi , the king of Iran . After the Islamic Revolution , its name was changed back to Urmia Lake .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 3,
"last_layer_weight": 0.25,
"prior_layers_weight": 2.5,
"kl_div_weight": 1.5,
"kl_temperature": 0.5
}
```
### Evaluation Datasets
#### nli-pairs
* Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 640 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 17.8 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.64 tokens</li><li>max: 25 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 108 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.36 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.11 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
| claim | evidence |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### negation-triplets
* Dataset: [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
* Size: 89 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 13.76 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 13.24 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 13.52 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:----------------------------------------------------------|:---------------------------------------------------------------------|:------------------------------------------------------------------|
| <code>a man with a bike at a marina</code> | <code>A man stands next to his bike at the marina.</code> | <code>A man stands away from his bike at the marina.</code> |
| <code>A black cat is inside a white toilet.</code> | <code>A black cat drinking water from a toilet</code> | <code>A black cat drinking water from a dog bowl</code> |
| <code>A children play area absent of any children.</code> | <code>A craft supply room with craft supplies and containers.</code> | <code>An empty room with no craft supplies and containers.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "TripletLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 0.5,
"kl_temperature": 1.1
}
```
#### qnli-contrastive
* Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 14.41 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 37.94 tokens</li><li>max: 115 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>What came into force after the new constitution was herald?</code> | <code>As of that day, the new constitution heralding the Second Republic came into force.</code> | <code>0</code> |
| <code>What is the first major city in the stream of the Rhine?</code> | <code>The most important tributaries in this area are the Ill below of Strasbourg, the Neckar in Mannheim and the Main across from Mainz.</code> | <code>0</code> |
| <code>What is the minimum required if you want to teach in Canada?</code> | <code>In most provinces a second Bachelor's Degree such as a Bachelor of Education is required to become a qualified teacher.</code> | <code>0</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "OnlineContrastiveLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 0.5,
"kl_temperature": 1.1
}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence2</code> and <code>sentence1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 16.59 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.62 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| sentence2 | sentence1 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The core is the sun's innermost layer.</code> | <code>What is the suns innermost layer called?</code> |
| <code>Heirloom seeds come from plants that were traditionally grown in human populations, as opposed to the seeds used for large-scale agricultural production.</code> | <code>What type of seeds come from plants that were traditionally grown in human populations, as opposed to the seeds used for large-scale agricultural production?</code> |
| <code>Multiple fission is more often observed among protists.</code> | <code>Where is multiple fission more often observed?</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 22.98 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.52 tokens</li><li>max: 36 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
| <code>An introduction to atoms and elements, compounds, atomic structure and bonding, the molecule and chemical reactions.</code> | <code>Replace another in a molecule happens to atoms during a substitution reaction.</code> |
| <code>Wavelength The distance between two consecutive points on a sinusoidal wave that are in phase;</code> | <code>Wavelength is the distance between two corresponding points of adjacent waves called.</code> |
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### xsum-pairs
* Dataset: [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) at [788ddaf](https://huggingface.co/datasets/sentence-transformers/xsum/tree/788ddafe04e539956d56b567bc32a036ee7b9206)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 26 tokens</li><li>mean: 233.24 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 26.44 tokens</li><li>max: 55 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
| <code>The former ABC cinema in the centre of Tunbridge Wells has been derelict for nearly 14 years despite a number of demolition and redevelopment plans.<br>Work was due to start on Monday but work to make safe the electricity and gas supplies has delayed demolition.<br>A former dental surgery on the site will pulled down first, with the project due to take 12 weeks.<br>Liberal Democrat councillor Ben Chapelard, who has campaigned for the redevelopment of the site, has previously called it the town's "number one grot spot".<br>In February, the Conservative-led borough council issued a demolition notice on the owners.</code> | <code>Demolition of a derelict town centre cinema in Kent, branded as a "grot spot" is due to start this week.</code> |
| <code>International ballroom champion Shirley Ballas has been named as the new head judge on Strictly Come Dancing.<br>Nicknamed the Queen of Latin, the 56-year-old will replace Len Goodman when the BBC show returns this autumn.<br>Highly regarded in the world of ballroom, she has numerous titles to her name and is also the mother to Dancing with the Stars professional champion Mark Ballas.<br>Strictly professional Anton Du Beke and former judge Arlene Phillips were among the favourites to take on the head judge role.<br>Although not widely known to UK audiences, Ballas has been frequently seen on Dancing with the Stars, the US version of Strictly - on which Mark appeared for 10 years - giving masterclasses and commentary.<br>"I am so excited and over the moon to have been given this wonderful opportunity," she said.<br>"I can't wait to get in to the ballroom and be part of the incredible and respected judging panel. Strictly is so loved by the British public, I have always been a massive fan. I just can't wait!"<br>Read more:<br>Follow us on Facebook, on Twitter @BBCNewsEnts, or on Instagram at bbcnewsents. If you have a story suggestion email [email protected].<br>Get news from the BBC in your inbox, each weekday morning</code> | <code>It's the announcement everyone has been waiting a year for.</code> |
| <code>The Prime Minister told BBC Radio Kent that he "wasn't particularly happy" about what he had heard about her.<br>"I don't think she's making a very good fist of her job... the people of Kent elected her, they can un-elect her at the next available opportunity."<br>The BBC has been unable to contact Mrs Barnes for her reaction to his comments, as she is away on holiday.<br>Mr Cameron's remarks follow a Channel 4 documentary last month, in which Mrs Barnes admitted she should not have taken part.<br>The "fly-on-the-wall" TV programme Meet the Police Commissioner, saw Mrs Barnes talk about her £85,000-a-year role.<br>At points in the broadcast, she struggled to explain an approach to policing priorities called "the onion", brought her dogs into the office and failed to write her title correctly on a whiteboard.<br>Mrs Barnes was also criticised last year after she appointed teenager Paris Brown as Kent's first youth commissioner.<br>Ms Brown later resigned over comments she had posted on Twitter.<br>However, earlier this month, within days of the Channel 4 programme, it was claimed Ms Brown's replacement had been involved in a relationship with 50-year-old former county councillor and youth leader Robert Burgess.<br>Kerry Boyd, 20, has since not undertaken any public engagements.<br>The BBC has also learned that Mrs Barnes will still be on holiday when a new policing model for Kent is introduced on Tuesday.<br>When asked about this, the Prime Minister said that while she was responsible for her own movements, "that doesn't sound particularly impressive".<br>"As I've said, I don't think she has impressed in this role," Mr Cameron added.</code> | <code>Ann Barnes has failed to impress in her role as Kent's Police and Crime Commissioner, David Cameron has said.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
#### compression-pairs
* Dataset: [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 30.67 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.03 tokens</li><li>max: 21 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|
| <code>Actor Joshua Jackson has banned his girlfriend Diane Kruger from watching his early work, because he suffered from acne and bloating during his teenage years.</code> | <code>Joshua Jackson bans Diane Kruger from watching his early work</code> |
| <code>The latest figures from the NCAA show that football and men's basketball players are graduating in record numbers.</code> | <code>Football, basketball players graduating in record numbers</code> |
| <code>The US economy shrank at a worse-than-expected annualised 6.1% pace at the start of this year as sharp cutbacks by businesses and the biggest drop in US exports in 40 years overwhelmed a rebound in consumer spending.</code> | <code>US economy shrinks</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.14 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 81.41 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What do scientists collect to test a hypothesis?</code> | <code>Scientists collect evidence to test a hypothesis. The evidence may refute the hypothesis. In that case, it will be thrown out. The evidence may support the hypothesis. The scientists will then gather more evidence. The scientists will accept the hypothesis if: (1) There is no significant evidence to refute the hypothesis. (2) There is an enormous amount of evidence to support the hypothesis. The hypothesis may then become a theory.</code> |
| <code>What is a force that opposes motion between any surfaces that are touching?</code> | <code>Friction is a force that opposes motion between any surfaces that are touching.</code> |
| <code>What is the largest mammal on earth?</code> | <code>Biological organization exists at all levels in organisms. It can be seen at the smallest level, in the molecules that make up such compounds as DNA and proteins, to the largest level, in an organism such as a blue whale, the largest mammal on Earth. Similarly, single celled prokaryotes and eukaryotes show order in the way their cells are arranged. Single-celled organisms such as an amoeba are free-floating and independent-living. Their single-celled "bodies" are able to carry out all the processes of life such as metabolism and respiration without help from other cells.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 11.36 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 35.0 tokens</li><li>max: 64 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are vascular plants that produce seeds in cones?</code> | <code>Gymnosperms are vascular plants that produce seeds in cones.. Gymnosperms are the plants that are known as evergreens.. Evergreens are vascular plants that produce seeds in cones</code> |
| <code>What do producers turn sunlight into?</code> | <code>Producers make food from inorganic molecules.. Autotrophs absorb sunlight energy and transfer inorganic mineral nutrients into organic molecules.. Producers make sunlight energy into food.</code> |
| <code>What kind of animal breathes by converting oxygen in water into oxygen in blood?</code> | <code>breathing is when a gill converts from oxygen in water into oxygen in blood. All fish have gills .. Fish breathe by converting oxygen in water into oxygen in blood.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### qasc_facts_sym
* Dataset: [qasc_facts_sym](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>combinedfact</code> and <code>facts</code>
* Approximate statistics based on the first 1000 samples:
| | combinedfact | facts |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.28 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 24.46 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
| combinedfact | facts |
|:------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>cells converting oxygen and carbohydrates into carbon dioxide, water, and energy is a requirement for life</code> | <code>cellular respiration is when a cell converts from oxygen and carbohydrates into carbon dioxide, water, and energy. Cellular respiration is a requirement for life..</code> |
| <code>rocks interacting with wind over long periods of time can form sediment</code> | <code>rocks interacting with wind over long periods of time causes weathering. When a rock undergoes erosion and weathering, it breaks down to form sediments..</code> |
| <code>aging is natural</code> | <code>Aging is associated with the death of cells.. Cell death is natural..</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.82 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.68 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code> |
| <code>What creates a valley?</code> | <code>a valley is formed by a river flowing</code> |
| <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.05 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 80.83 tokens</li><li>max: 187 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>polygenic trait meaning</code> | <code>A polygenic trait, is a trait that nonallelic genes control. These traits result from one or more genes contributing to the phenotype. An individual's physical appearance is determined by chromosomal inheritance and genotypic ratio.This phenomenon is known as Mendel's Laws of Inheritance.olygenic trait molding is done mostly with the environment and genes. More than one gene determines these traits, with each gene giving a small, yet additive effect. Multifactorial traits do not exhibit Mendelian ratios, and are determined between genes, or a gene, and the environment.</code> |
| <code>name four viruses that can cause diseases that are often fatal quizlet</code> | <code>Some diseases caused by viruses are poliomyelitis, influenza, measles caused by rubeola virus, chikenguniya caused by chikanguniya virus, chickenpox caused by varicella zoster ⦠virus, AIDS caused by human immunodeficiency virus, and the common cold.</code> |
| <code>how much does a caddie make at the masters</code> | <code>A survey by Salary Expert shows that, on average, caddie masters earn less than $40,000 a year except for those in San Francisco, Manhattan and Los Angeles. Forbes sports writer Matt Woolsey explains that PGA caddies earn an average of $1,000 each week.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.62 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 131.67 tokens</li><li>max: 325 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the relation between nanometer and meter</code> | <code>Nanometre The nanometre (International spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American spelling) is a unit of length in the metric system, equal to one billionth (short scale) of a metre (6991100000000000000♠0.000000001 m). The name combines the SI prefix nano- (from the Ancient Greek νάνος, nanos, "dwarf") with the parent unit name metre (from Greek μέτρον, metrοn, "unit of measurement"). It can be written in scientific notation as 6991100000000000000♠1×10−9 m, in engineering notation as 1 E−9 m, and is simply 1/7009100000000000000♠1000000000 metres. One nanometre equals ten ångströms. When used as a prefix for something other than a unit of measure (as in "nanoscience"), nano refers to nanotechnology, or phenomena typically occurring on a scale of nanometres (see nanoscopic scale).[1]</code> |
| <code>what does the star on the chile flag represent</code> | <code>Flag of Chile The star may represent a guide to progress and honor while other interpretations refer to its reference to an independent state; blue symbolizes the sky and the Pacific Ocean, white is for the snow-covered Andes, and red stands for the blood spilled to achieve independence.[2]</code> |
| <code>when did the crazy horse memorial project began</code> | <code>Crazy Horse Memorial Henry Standing Bear ("Mato Naji"), an Oglala Lakota chief, and well-known statesman and elder in the Native American community, recruited and commissioned Polish-American sculptor Korczak Ziolkowski to build the Crazy Horse Memorial in the Black Hills of South Dakota. In October 1931, Luther Standing Bear, Henry's older brother, wrote sculptor Gutzon Borglum, who was carving the heads of four American presidents at Mount Rushmore. Luther suggested that it would be "most fitting to have the face of Crazy Horse sculpted there. Crazy Horse is the real patriot of the Sioux tribe and the only one worthy to place by the side of Washington and Lincoln." Borglum never replied.[7] Thereafter, Henry Standing Bear began a campaign to have Borglum carve an image of Crazy Horse on Mt. Rushmore.[8] In summer of 1935, Standing Bear, frustrated over the stalled Crazy Horse project, wrote to James H. Cook, a long time friend of Chief Red Cloud's "I am struggling hopelessly with this because I am without funds, no employment and no assistance from any Indian or White."[9]</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 17.51 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 38 tokens</li><li>mean: 448.58 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The tomb of which English king is in Worcester Cathedral?</code> | <code>Worcester Cathedral - The Tomb of King John WORCESTER CATHEDRAL WICKED KING JOHN'S FINAL RESTING PLACE Worcester Cathedral, Worcester, Worcestershire King John (1167-1216), the fourth and youngest son of Henry 11, was the archetypal wicked king, whose record of rebellion and intrigue against his brother, Richard 1st, led contemporary historian William of Newburgh (1135-1198), to denounce him as "nature’s enemy." His bullying manner and excessive taxation provoked the powerful English barons to rebel against him, and force him to seal Magna Carta. Later hailed as a declaration of English liberties, it was at the time, little more than a criticism of his style of government and, as such, he had no intention of adhering to its terms. His reign ended with England wracked by civil war. But one place he had reverence for was Worcester and, as he lay dying, he made a codicil to his will ordering that he was to be buried in its cathedral, between the tombs of its two saints, St Oswald and St Wulfstan. Their bones were long ago dispersed, but the tomb of "evil" King John can still exists. The marble top of his tomb is the lid of his original coffin, and thought to be the oldest royal effigy in England. The tomb itself has been opened several times, shedding light upon a legend concerning the Kings final days. It is said that John, realising that the chances of him attaining heaven were limited, gave orders that his corpse was to be dressed in the garb of a monk. Thus attired, he hoped to hoodwink his way into Paradise. When the tomb was opened in 1797, the remnants of an ancient cowl were, supposedly, found wrapped around his skull! HEREFORDSHIRE AND</code> |
| <code>Which Oscar-winning actress was born on exactly the same day as actress Lindsay Wagner?</code> | <code>#219 Meryl Streep / Alan Osmond / Lindsay Wagner – 22 June 1949 | Born On The Same Day Born On The Same Day Posted on January 29, 2011 by Born On The Same Day Meryl Streep Mary Louise “Meryl” Streep (born June 22, 1949) is an American actress who has worked in theatre, television and film. She is widely regarded as one of the most talented and respected actors of the modern era. Streep has received 16 Academy Award nominations, winning two, and 25 Golden Globe nominations, winning seven, more nominations than any other actor in the history of either award. Her work has also earned her two Emmy Awards, two Screen Actors Guild Awards, a Cannes Film Festival award, four New York Film Critics Circle Awards, five Grammy Award nominations, a BAFTA award, an Australian Film Institute Award and a Tony Award nomination, amongst others. She was awarded the American Film Institute’s Lifetime Achievement Award in 2004. Alan Osmond Alan Ralph Osmond (born on June 22, 1949 in Ogden, Utah, United States) was a member of the family musical group The Osmonds. He was the oldest of the seven siblings who could sing, as the two oldest brothers, Virl and Tom, are hearing impaired. During much of the Osmonds’ career, Alan was the leader of the group. Today he performs only rarely because he has multiple sclerosis. Lindsay Wagner Lindsay Jean Wagner (born June 22, 1949) is an American actress. She is probably most widely known for her portrayal of Jaime Sommers in the 1970s television series The Bionic Woman (for which she won an Emmy award). Links:</code> |
| <code>Lipshen is the name of the cat in which Roald Dahl book?</code> | <code>The Witches - Roald Dahl Roald Dahl Published in 1983 Synopsis Roald Dahl's The Witches tells the story of a brave young boy and his Norwegian grandmother as they battle England's witches. Background Background Witches absolutely detest children. To a witch, a child smells like dogs' droppings. And now the Grand High Witch is planning to get rid of every child in England - can anybody stop them? The Witches tells the story of a brave young boy and his Norwegian grandmother as they battle against England's child-hating witches. It continues to feature in lists dedicated to the scariest children's books more than 30 years after it was first published. Especially around Halloween. When he was a child himself, Roald Dahl used to spend every summer holiday with his family in Norway, where he was inspired by bedtime stories of witches and magic. He wrote about these holidays in Boy: Tales of Childhood. It is also said that the grandmother in The Witches was partially inspired by Roald's own mother. Roald dedicated the book to his wife, Liccy. A film version of the story, starring Angelica Huston as the witches' leader The Grand High Witch, was released in 1990. The main difference between the film and the original story is the ending - in the book, there is no spell cast to change the boy's state back to what it was before the witches found him. The film also gives its central character the name Luke, whereas in the book we don't find out the name of either the boy who narrates the story or his grandmother. In 1983, the year it was published, The Witches won three awards: The New York Times Outstanding Books Award, The Federation of Children's Book Groups Award and The Whitbread Award. The Witches helped inspire Boy</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### quora_pairs
* Dataset: [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 1,600 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.34 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.52 tokens</li><li>max: 47 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------|:--------------------------------------------------------------------|
| <code>Why is "Sazae San" anime underrated in America?</code> | <code>Why is "Sazae-San" anime underrated in America?</code> |
| <code>Why's watching and playing snooker different?</code> | <code>Why would watching snooker be different to playing it?</code> |
| <code>Who is wrong in the Israel-Palestine conflict?</code> | <code>Which side is right in the Israel-Palestine conflict?</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.5,
"prior_layers_weight": 1.5,
"kl_div_weight": 1.25,
"kl_temperature": 0.75
}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.47 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 59.1 tokens</li><li>max: 112 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what are the three types of symbiosis quizlet?</code> | <code>['parasitism. A relationship between two organisms where one benefits and the other is harmed.', 'commensalism. A relationship between two organisms where one benefits and the other is unharmed.', 'mutualism. A relationship between two organisms where both benefit.']</code> |
| <code>are beet greens safe to eat?</code> | <code>Here's a tip: when you're washing and peeling the beets, and you trim off the green leafy tops, don't toss them away! The greens and the stems are edible, and make a great substitute for any green such as spinach, swiss chard, and bok choy. They can be steamed, sauteed, braised, added to soups, and eaten raw.</code> |
| <code>is it true vampire diaries is leaving netflix?</code> | <code>According to The Verge, Netflix has a deal with The CW's parent companies, which secures that series such as (Riverdale, The Flash, and more) end up on Netflix after their season finales. ... Overall, while The Vampire Diaries will remain part of the Netflix queue, its future on the streaming service may not be permanent.</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "GISTEmbedLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.5,
"prior_layers_weight": 0.5,
"kl_div_weight": 0.33,
"kl_temperature": 1.5
}
```
#### mrpc_pairs
* Dataset: [mrpc_pairs](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 14 tokens</li><li>mean: 26.86 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 26.91 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
| <code>He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .</code> | <code>" The foodservice pie business does not fit our long-term growth strategy .</code> |
| <code>The AFL-CIO is waiting until October to decide if it will endorse a candidate .</code> | <code>The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .</code> |
| <code>Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed .</code> | <code>It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesSymmetricRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 0.75,
"prior_layers_weight": 1.75,
"kl_div_weight": 0.75,
"kl_temperature": 0.9
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 42
- `per_device_eval_batch_size`: 42
- `learning_rate`: 3.5e-05
- `weight_decay`: 5e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {'num_cycles': 3}
- `warmup_ratio`: 0.15
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-ST-AllLayers-v3.5-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 42
- `per_device_eval_batch_size`: 42
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 3.5e-05
- `weight_decay`: 5e-05
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {'num_cycles': 3}
- `warmup_ratio`: 0.15
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-ST-AllLayers-v3.5-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | vitaminc-pairs loss | quora pairs loss | negation-triplets loss | openbookqa pairs loss | mrpc pairs loss | msmarco pairs loss | xsum-pairs loss | nli-pairs loss | compression-pairs loss | scitail-pairs-qa loss | sciq pairs loss | scitail-pairs-pos loss | gooaq pairs loss | qnli-contrastive loss | nq pairs loss | qasc pairs loss | qasc facts sym loss | trivia pairs loss | Vitaminc_max_ap | mrpc_max_ap | negation_max_accuracy | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:-------------------:|:----------------:|:----------------------:|:---------------------:|:---------------:|:------------------:|:---------------:|:--------------:|:----------------------:|:---------------------:|:---------------:|:----------------------:|:----------------:|:---------------------:|:-------------:|:---------------:|:-------------------:|:-----------------:|:---------------:|:-----------:|:---------------------:|:------------------------:|
| None | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.5180 | 0.8169 | 1.0 | 0.0710 |
| 0.0200 | 154 | 10.0783 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0400 | 308 | 7.9365 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0600 | 462 | 7.0986 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0800 | 616 | 6.0384 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1000 | 770 | 5.2434 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1200 | 924 | 4.4737 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1401 | 1078 | 3.953 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1601 | 1232 | 3.7847 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1801 | 1386 | 3.3807 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2001 | 1540 | 3.3067 | 5.9961 | 1.3539 | 4.7618 | 3.7795 | 0.4998 | 3.2895 | 1.7732 | 2.8770 | 0.9280 | 0.2923 | 0.7724 | 1.1874 | 3.3780 | 3.1273 | 3.1534 | 2.3403 | 1.3450 | 3.8939 | 0.5406 | 0.8185 | 1.0 | 0.7388 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### AdaptiveLayerLoss
```bibtex
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### TripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |