bobox commited on
Commit
423d217
·
verified ·
1 Parent(s): 41c650d

Training in progress, step 55, checkpoint

Browse files
checkpoint-55/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-55/README.md ADDED
@@ -0,0 +1,906 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/deberta-v3-small
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ - cosine_accuracy
18
+ - cosine_accuracy_threshold
19
+ - cosine_f1
20
+ - cosine_f1_threshold
21
+ - cosine_precision
22
+ - cosine_recall
23
+ - cosine_ap
24
+ - dot_accuracy
25
+ - dot_accuracy_threshold
26
+ - dot_f1
27
+ - dot_f1_threshold
28
+ - dot_precision
29
+ - dot_recall
30
+ - dot_ap
31
+ - manhattan_accuracy
32
+ - manhattan_accuracy_threshold
33
+ - manhattan_f1
34
+ - manhattan_f1_threshold
35
+ - manhattan_precision
36
+ - manhattan_recall
37
+ - manhattan_ap
38
+ - euclidean_accuracy
39
+ - euclidean_accuracy_threshold
40
+ - euclidean_f1
41
+ - euclidean_f1_threshold
42
+ - euclidean_precision
43
+ - euclidean_recall
44
+ - euclidean_ap
45
+ - max_accuracy
46
+ - max_accuracy_threshold
47
+ - max_f1
48
+ - max_f1_threshold
49
+ - max_precision
50
+ - max_recall
51
+ - max_ap
52
+ pipeline_tag: sentence-similarity
53
+ tags:
54
+ - sentence-transformers
55
+ - sentence-similarity
56
+ - feature-extraction
57
+ - generated_from_trainer
58
+ - dataset_size:116445
59
+ - loss:CachedGISTEmbedLoss
60
+ widget:
61
+ - source_sentence: what is the main purpose of the brain
62
+ sentences:
63
+ - Brain Physiologically, the function of the brain is to exert centralized control
64
+ over the other organs of the body. The brain acts on the rest of the body both
65
+ by generating patterns of muscle activity and by driving the secretion of chemicals
66
+ called hormones. This centralized control allows rapid and coordinated responses
67
+ to changes in the environment. Some basic types of responsiveness such as reflexes
68
+ can be mediated by the spinal cord or peripheral ganglia, but sophisticated purposeful
69
+ control of behavior based on complex sensory input requires the information integrating
70
+ capabilities of a centralized brain.
71
+ - How do scientists know that some mountains were once at the bottom of an ocean?
72
+ - The Smiths Wiki | Fandom powered by Wikia Share Ad blocker interference detected!
73
+ Wikia is a free-to-use site that makes money from advertising. We have a modified
74
+ experience for viewers using ad blockers Wikia is not accessible if you’ve made
75
+ further modifications. Remove the custom ad blocker rule(s) and the page will
76
+ load as expected. The Smiths were an English rock band formed in Manchester in
77
+ 1982. Based on the songwriting partnership of Morrissey (vocals) and Johnny Marr
78
+ (guitar), the band also included Andy Rourke (bass), Mike Joyce (drums) and for
79
+ a brief time Craig Gannon (rhythm guitar). Critics have called them one of the
80
+ most important alternative rock bands to emerge from the British independent music
81
+ scene of the 1980s,and the group has had major influence on subsequent artists.
82
+ Morrissey's lovelorn tales of alienation found an audience amongst youth culture
83
+ bored by the ubiquitous synthesiser-pop bands of the early 1980s, while Marr's
84
+ complex melodies helped return guitar-based music to popularity. The group were
85
+ signed to the independent record label Rough Trade Records , for whom they released
86
+ four studio albums and several compilations, as well as numerous non-LP singles.
87
+ Although they had limited commercial success outside the UK while they were still
88
+ together, and never released a single that charted higher than number 10 in their
89
+ home country, The Smiths won a growing following, and they remain cult and commercial
90
+ favourites. The band broke up in 1987 amid disagreements between Morrissey and
91
+ Marr and has turned down several offers to reform. Welcome to The Smiths Wiki
92
+ - source_sentence: There were 29 Muslims fatalities in the Cave of the Patriarchs
93
+ massacre .
94
+ sentences:
95
+ - In August , after the end of the war in June 1902 , Higgins Southampton left the
96
+ `` SSBavarian '' and returned to Cape Town the following month .
97
+ - Between 29 and 52 Muslims were killed and more than 100 others wounded . [ Settlers
98
+ remember gunman Goldstein ; Hebron riots continue ] .
99
+ - 29 Muslims were killed and more than 100 others wounded . [ Settlers remember
100
+ gunman Goldstein ; Hebron riots continue ] .
101
+ - source_sentence: are tabby cats all male?
102
+ sentences:
103
+ - Did you know orange tabby cats are typically male? In fact, up to 80 percent of
104
+ orange tabbies are male, making orange female cats a bit of a rarity. According
105
+ to the BBC's Focus Magazine, the ginger gene in cats works a little differently
106
+ compared to humans; it is on the X chromosome.
107
+ - Shawnee Trails Council was formed from the merger of the Four Rivers Council and
108
+ the Audubon Council .
109
+ - 'A picture of a modern looking kitchen area
110
+
111
+ '
112
+ - source_sentence: Aamir Khan agreed to act immediately after reading Mehra 's screenplay
113
+ in `` Rang De Basanti '' .
114
+ sentences:
115
+ - Chris Rea — Free listening, videos, concerts, stats and photos at Last.fm singer-songwriter
116
+ Christopher Anton Rea (pronounced Ree-ah), born 4 March 1951, is a singer, songwriter,
117
+ and guitarist from Middlesbrough, England. Rea's recording career began in 1978.
118
+ Although he almost immediately had a US hit single with "Fool (If You Think It's
119
+ Over)", Rea's initial focus was on continental Europe, releasing eight albums
120
+ in the 1980s. It wasn't until 1985's Shamrock Diaries and the songs "Stainsby
121
+ Girls" and "Josephine," that UK audiences began to take notice of him. Follow
122
+ up albums… read more
123
+ - "Healthy Fast Food Meal No. 1. Grilled Chicken Sandwich and Fruit Cup (Chick-fil-A)\
124
+ \ Several fast food chains offer a grilled chicken sandwich. The trick is ordering\
125
+ \ it without mayo or creamy sauce, and making sure itâ\x80\x99s served with a\
126
+ \ whole grain bun."
127
+ - Aamir Khan agreed to act in `` Rang De Basanti '' immediately after reading Mehra
128
+ 's script .
129
+ - source_sentence: 'A man wearing a blue bow tie and a fedora hat in a car. '
130
+ sentences:
131
+ - A man takes a photo of himself wearing a bowtie and hat
132
+ - Scientists explain the world based on what?
133
+ - 'County of Angus - definition of County of Angus by The Free Dictionary County
134
+ of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus
135
+  (ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland
136
+ and are usually black but also occur in a red variety. Also called Black Angus.
137
+ [After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council
138
+ area of E Scotland on the North Sea: the historical county of Angus became part
139
+ of Tayside region in 1975; reinstated as a unitary authority (excluding City of
140
+ Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area:
141
+ 2181 sq km (842 sq miles) An•gus'
142
+ model-index:
143
+ - name: SentenceTransformer based on microsoft/deberta-v3-small
144
+ results:
145
+ - task:
146
+ type: semantic-similarity
147
+ name: Semantic Similarity
148
+ dataset:
149
+ name: sts test
150
+ type: sts-test
151
+ metrics:
152
+ - type: pearson_cosine
153
+ value: 0.2589065791031549
154
+ name: Pearson Cosine
155
+ - type: spearman_cosine
156
+ value: 0.31323211323674593
157
+ name: Spearman Cosine
158
+ - type: pearson_manhattan
159
+ value: 0.27236487282828553
160
+ name: Pearson Manhattan
161
+ - type: spearman_manhattan
162
+ value: 0.29656486394161036
163
+ name: Spearman Manhattan
164
+ - type: pearson_euclidean
165
+ value: 0.2585939429800171
166
+ name: Pearson Euclidean
167
+ - type: spearman_euclidean
168
+ value: 0.2833925986586202
169
+ name: Spearman Euclidean
170
+ - type: pearson_dot
171
+ value: 0.28511212645281553
172
+ name: Pearson Dot
173
+ - type: spearman_dot
174
+ value: 0.2967423026930272
175
+ name: Spearman Dot
176
+ - type: pearson_max
177
+ value: 0.28511212645281553
178
+ name: Pearson Max
179
+ - type: spearman_max
180
+ value: 0.31323211323674593
181
+ name: Spearman Max
182
+ - task:
183
+ type: binary-classification
184
+ name: Binary Classification
185
+ dataset:
186
+ name: allNLI dev
187
+ type: allNLI-dev
188
+ metrics:
189
+ - type: cosine_accuracy
190
+ value: 0.66796875
191
+ name: Cosine Accuracy
192
+ - type: cosine_accuracy_threshold
193
+ value: 0.9721465110778809
194
+ name: Cosine Accuracy Threshold
195
+ - type: cosine_f1
196
+ value: 0.5343511450381679
197
+ name: Cosine F1
198
+ - type: cosine_f1_threshold
199
+ value: 0.85741126537323
200
+ name: Cosine F1 Threshold
201
+ - type: cosine_precision
202
+ value: 0.39886039886039887
203
+ name: Cosine Precision
204
+ - type: cosine_recall
205
+ value: 0.8092485549132948
206
+ name: Cosine Recall
207
+ - type: cosine_ap
208
+ value: 0.4140638596370657
209
+ name: Cosine Ap
210
+ - type: dot_accuracy
211
+ value: 0.666015625
212
+ name: Dot Accuracy
213
+ - type: dot_accuracy_threshold
214
+ value: 518.88671875
215
+ name: Dot Accuracy Threshold
216
+ - type: dot_f1
217
+ value: 0.514018691588785
218
+ name: Dot F1
219
+ - type: dot_f1_threshold
220
+ value: 323.9651184082031
221
+ name: Dot F1 Threshold
222
+ - type: dot_precision
223
+ value: 0.35181236673773986
224
+ name: Dot Precision
225
+ - type: dot_recall
226
+ value: 0.953757225433526
227
+ name: Dot Recall
228
+ - type: dot_ap
229
+ value: 0.3781233337023534
230
+ name: Dot Ap
231
+ - type: manhattan_accuracy
232
+ value: 0.671875
233
+ name: Manhattan Accuracy
234
+ - type: manhattan_accuracy_threshold
235
+ value: 114.41839599609375
236
+ name: Manhattan Accuracy Threshold
237
+ - type: manhattan_f1
238
+ value: 0.5384615384615384
239
+ name: Manhattan F1
240
+ - type: manhattan_f1_threshold
241
+ value: 226.82566833496094
242
+ name: Manhattan F1 Threshold
243
+ - type: manhattan_precision
244
+ value: 0.3941018766756032
245
+ name: Manhattan Precision
246
+ - type: manhattan_recall
247
+ value: 0.8497109826589595
248
+ name: Manhattan Recall
249
+ - type: manhattan_ap
250
+ value: 0.4272864144491257
251
+ name: Manhattan Ap
252
+ - type: euclidean_accuracy
253
+ value: 0.671875
254
+ name: Euclidean Accuracy
255
+ - type: euclidean_accuracy_threshold
256
+ value: 5.084325790405273
257
+ name: Euclidean Accuracy Threshold
258
+ - type: euclidean_f1
259
+ value: 0.5404339250493098
260
+ name: Euclidean F1
261
+ - type: euclidean_f1_threshold
262
+ value: 11.333902359008789
263
+ name: Euclidean F1 Threshold
264
+ - type: euclidean_precision
265
+ value: 0.4101796407185629
266
+ name: Euclidean Precision
267
+ - type: euclidean_recall
268
+ value: 0.791907514450867
269
+ name: Euclidean Recall
270
+ - type: euclidean_ap
271
+ value: 0.41769294415599645
272
+ name: Euclidean Ap
273
+ - type: max_accuracy
274
+ value: 0.671875
275
+ name: Max Accuracy
276
+ - type: max_accuracy_threshold
277
+ value: 518.88671875
278
+ name: Max Accuracy Threshold
279
+ - type: max_f1
280
+ value: 0.5404339250493098
281
+ name: Max F1
282
+ - type: max_f1_threshold
283
+ value: 323.9651184082031
284
+ name: Max F1 Threshold
285
+ - type: max_precision
286
+ value: 0.4101796407185629
287
+ name: Max Precision
288
+ - type: max_recall
289
+ value: 0.953757225433526
290
+ name: Max Recall
291
+ - type: max_ap
292
+ value: 0.4272864144491257
293
+ name: Max Ap
294
+ - task:
295
+ type: binary-classification
296
+ name: Binary Classification
297
+ dataset:
298
+ name: Qnli dev
299
+ type: Qnli-dev
300
+ metrics:
301
+ - type: cosine_accuracy
302
+ value: 0.640625
303
+ name: Cosine Accuracy
304
+ - type: cosine_accuracy_threshold
305
+ value: 0.8695281744003296
306
+ name: Cosine Accuracy Threshold
307
+ - type: cosine_f1
308
+ value: 0.6578512396694215
309
+ name: Cosine F1
310
+ - type: cosine_f1_threshold
311
+ value: 0.7936367988586426
312
+ name: Cosine F1 Threshold
313
+ - type: cosine_precision
314
+ value: 0.5392953929539296
315
+ name: Cosine Precision
316
+ - type: cosine_recall
317
+ value: 0.8432203389830508
318
+ name: Cosine Recall
319
+ - type: cosine_ap
320
+ value: 0.6314640856589909
321
+ name: Cosine Ap
322
+ - type: dot_accuracy
323
+ value: 0.609375
324
+ name: Dot Accuracy
325
+ - type: dot_accuracy_threshold
326
+ value: 351.17626953125
327
+ name: Dot Accuracy Threshold
328
+ - type: dot_f1
329
+ value: 0.6501650165016502
330
+ name: Dot F1
331
+ - type: dot_f1_threshold
332
+ value: 316.48046875
333
+ name: Dot F1 Threshold
334
+ - type: dot_precision
335
+ value: 0.5324324324324324
336
+ name: Dot Precision
337
+ - type: dot_recall
338
+ value: 0.8347457627118644
339
+ name: Dot Recall
340
+ - type: dot_ap
341
+ value: 0.5366456296706419
342
+ name: Dot Ap
343
+ - type: manhattan_accuracy
344
+ value: 0.658203125
345
+ name: Manhattan Accuracy
346
+ - type: manhattan_accuracy_threshold
347
+ value: 206.32894897460938
348
+ name: Manhattan Accuracy Threshold
349
+ - type: manhattan_f1
350
+ value: 0.652373660030628
351
+ name: Manhattan F1
352
+ - type: manhattan_f1_threshold
353
+ value: 261.3590393066406
354
+ name: Manhattan F1 Threshold
355
+ - type: manhattan_precision
356
+ value: 0.5107913669064749
357
+ name: Manhattan Precision
358
+ - type: manhattan_recall
359
+ value: 0.902542372881356
360
+ name: Manhattan Recall
361
+ - type: manhattan_ap
362
+ value: 0.6679289689394285
363
+ name: Manhattan Ap
364
+ - type: euclidean_accuracy
365
+ value: 0.65234375
366
+ name: Euclidean Accuracy
367
+ - type: euclidean_accuracy_threshold
368
+ value: 10.764808654785156
369
+ name: Euclidean Accuracy Threshold
370
+ - type: euclidean_f1
371
+ value: 0.6393210749646393
372
+ name: Euclidean F1
373
+ - type: euclidean_f1_threshold
374
+ value: 15.096710205078125
375
+ name: Euclidean F1 Threshold
376
+ - type: euclidean_precision
377
+ value: 0.47983014861995754
378
+ name: Euclidean Precision
379
+ - type: euclidean_recall
380
+ value: 0.9576271186440678
381
+ name: Euclidean Recall
382
+ - type: euclidean_ap
383
+ value: 0.6460602994393339
384
+ name: Euclidean Ap
385
+ - type: max_accuracy
386
+ value: 0.658203125
387
+ name: Max Accuracy
388
+ - type: max_accuracy_threshold
389
+ value: 351.17626953125
390
+ name: Max Accuracy Threshold
391
+ - type: max_f1
392
+ value: 0.6578512396694215
393
+ name: Max F1
394
+ - type: max_f1_threshold
395
+ value: 316.48046875
396
+ name: Max F1 Threshold
397
+ - type: max_precision
398
+ value: 0.5392953929539296
399
+ name: Max Precision
400
+ - type: max_recall
401
+ value: 0.9576271186440678
402
+ name: Max Recall
403
+ - type: max_ap
404
+ value: 0.6679289689394285
405
+ name: Max Ap
406
+ ---
407
+
408
+ # SentenceTransformer based on microsoft/deberta-v3-small
409
+
410
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
411
+
412
+ ## Model Details
413
+
414
+ ### Model Description
415
+ - **Model Type:** Sentence Transformer
416
+ - **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
417
+ - **Maximum Sequence Length:** 512 tokens
418
+ - **Output Dimensionality:** 768 tokens
419
+ - **Similarity Function:** Cosine Similarity
420
+ - **Training Dataset:**
421
+ - bobox/enhanced_nli-50_k
422
+ <!-- - **Language:** Unknown -->
423
+ <!-- - **License:** Unknown -->
424
+
425
+ ### Model Sources
426
+
427
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
428
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
429
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
430
+
431
+ ### Full Model Architecture
432
+
433
+ ```
434
+ SentenceTransformer(
435
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
436
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
437
+ )
438
+ ```
439
+
440
+ ## Usage
441
+
442
+ ### Direct Usage (Sentence Transformers)
443
+
444
+ First install the Sentence Transformers library:
445
+
446
+ ```bash
447
+ pip install -U sentence-transformers
448
+ ```
449
+
450
+ Then you can load this model and run inference.
451
+ ```python
452
+ from sentence_transformers import SentenceTransformer
453
+
454
+ # Download from the 🤗 Hub
455
+ model = SentenceTransformer("bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp")
456
+ # Run inference
457
+ sentences = [
458
+ 'A man wearing a blue bow tie and a fedora hat in a car. ',
459
+ 'A man takes a photo of himself wearing a bowtie and hat',
460
+ 'County of Angus - definition of County of Angus by The Free Dictionary County of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus \xa0(ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland and are usually black but also occur in a red variety. Also called Black Angus. [After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council area of E Scotland on the North Sea: the historical county of Angus became part of Tayside region in 1975; reinstated as a unitary authority (excluding City of Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area: 2181 sq km (842 sq miles) An•gus',
461
+ ]
462
+ embeddings = model.encode(sentences)
463
+ print(embeddings.shape)
464
+ # [3, 768]
465
+
466
+ # Get the similarity scores for the embeddings
467
+ similarities = model.similarity(embeddings, embeddings)
468
+ print(similarities.shape)
469
+ # [3, 3]
470
+ ```
471
+
472
+ <!--
473
+ ### Direct Usage (Transformers)
474
+
475
+ <details><summary>Click to see the direct usage in Transformers</summary>
476
+
477
+ </details>
478
+ -->
479
+
480
+ <!--
481
+ ### Downstream Usage (Sentence Transformers)
482
+
483
+ You can finetune this model on your own dataset.
484
+
485
+ <details><summary>Click to expand</summary>
486
+
487
+ </details>
488
+ -->
489
+
490
+ <!--
491
+ ### Out-of-Scope Use
492
+
493
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
494
+ -->
495
+
496
+ ## Evaluation
497
+
498
+ ### Metrics
499
+
500
+ #### Semantic Similarity
501
+ * Dataset: `sts-test`
502
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
503
+
504
+ | Metric | Value |
505
+ |:--------------------|:-----------|
506
+ | pearson_cosine | 0.2589 |
507
+ | **spearman_cosine** | **0.3132** |
508
+ | pearson_manhattan | 0.2724 |
509
+ | spearman_manhattan | 0.2966 |
510
+ | pearson_euclidean | 0.2586 |
511
+ | spearman_euclidean | 0.2834 |
512
+ | pearson_dot | 0.2851 |
513
+ | spearman_dot | 0.2967 |
514
+ | pearson_max | 0.2851 |
515
+ | spearman_max | 0.3132 |
516
+
517
+ #### Binary Classification
518
+ * Dataset: `allNLI-dev`
519
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
520
+
521
+ | Metric | Value |
522
+ |:-----------------------------|:-----------|
523
+ | cosine_accuracy | 0.668 |
524
+ | cosine_accuracy_threshold | 0.9721 |
525
+ | cosine_f1 | 0.5344 |
526
+ | cosine_f1_threshold | 0.8574 |
527
+ | cosine_precision | 0.3989 |
528
+ | cosine_recall | 0.8092 |
529
+ | cosine_ap | 0.4141 |
530
+ | dot_accuracy | 0.666 |
531
+ | dot_accuracy_threshold | 518.8867 |
532
+ | dot_f1 | 0.514 |
533
+ | dot_f1_threshold | 323.9651 |
534
+ | dot_precision | 0.3518 |
535
+ | dot_recall | 0.9538 |
536
+ | dot_ap | 0.3781 |
537
+ | manhattan_accuracy | 0.6719 |
538
+ | manhattan_accuracy_threshold | 114.4184 |
539
+ | manhattan_f1 | 0.5385 |
540
+ | manhattan_f1_threshold | 226.8257 |
541
+ | manhattan_precision | 0.3941 |
542
+ | manhattan_recall | 0.8497 |
543
+ | manhattan_ap | 0.4273 |
544
+ | euclidean_accuracy | 0.6719 |
545
+ | euclidean_accuracy_threshold | 5.0843 |
546
+ | euclidean_f1 | 0.5404 |
547
+ | euclidean_f1_threshold | 11.3339 |
548
+ | euclidean_precision | 0.4102 |
549
+ | euclidean_recall | 0.7919 |
550
+ | euclidean_ap | 0.4177 |
551
+ | max_accuracy | 0.6719 |
552
+ | max_accuracy_threshold | 518.8867 |
553
+ | max_f1 | 0.5404 |
554
+ | max_f1_threshold | 323.9651 |
555
+ | max_precision | 0.4102 |
556
+ | max_recall | 0.9538 |
557
+ | **max_ap** | **0.4273** |
558
+
559
+ #### Binary Classification
560
+ * Dataset: `Qnli-dev`
561
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
562
+
563
+ | Metric | Value |
564
+ |:-----------------------------|:-----------|
565
+ | cosine_accuracy | 0.6406 |
566
+ | cosine_accuracy_threshold | 0.8695 |
567
+ | cosine_f1 | 0.6579 |
568
+ | cosine_f1_threshold | 0.7936 |
569
+ | cosine_precision | 0.5393 |
570
+ | cosine_recall | 0.8432 |
571
+ | cosine_ap | 0.6315 |
572
+ | dot_accuracy | 0.6094 |
573
+ | dot_accuracy_threshold | 351.1763 |
574
+ | dot_f1 | 0.6502 |
575
+ | dot_f1_threshold | 316.4805 |
576
+ | dot_precision | 0.5324 |
577
+ | dot_recall | 0.8347 |
578
+ | dot_ap | 0.5366 |
579
+ | manhattan_accuracy | 0.6582 |
580
+ | manhattan_accuracy_threshold | 206.3289 |
581
+ | manhattan_f1 | 0.6524 |
582
+ | manhattan_f1_threshold | 261.359 |
583
+ | manhattan_precision | 0.5108 |
584
+ | manhattan_recall | 0.9025 |
585
+ | manhattan_ap | 0.6679 |
586
+ | euclidean_accuracy | 0.6523 |
587
+ | euclidean_accuracy_threshold | 10.7648 |
588
+ | euclidean_f1 | 0.6393 |
589
+ | euclidean_f1_threshold | 15.0967 |
590
+ | euclidean_precision | 0.4798 |
591
+ | euclidean_recall | 0.9576 |
592
+ | euclidean_ap | 0.6461 |
593
+ | max_accuracy | 0.6582 |
594
+ | max_accuracy_threshold | 351.1763 |
595
+ | max_f1 | 0.6579 |
596
+ | max_f1_threshold | 316.4805 |
597
+ | max_precision | 0.5393 |
598
+ | max_recall | 0.9576 |
599
+ | **max_ap** | **0.6679** |
600
+
601
+ <!--
602
+ ## Bias, Risks and Limitations
603
+
604
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
605
+ -->
606
+
607
+ <!--
608
+ ### Recommendations
609
+
610
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
611
+ -->
612
+
613
+ ## Training Details
614
+
615
+ ### Training Dataset
616
+
617
+ #### bobox/enhanced_nli-50_k
618
+
619
+ * Dataset: bobox/enhanced_nli-50_k
620
+ * Size: 116,445 training samples
621
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
622
+ * Approximate statistics based on the first 1000 samples:
623
+ | | sentence1 | sentence2 |
624
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
625
+ | type | string | string |
626
+ | details | <ul><li>min: 4 tokens</li><li>mean: 33.67 tokens</li><li>max: 338 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 51.48 tokens</li><li>max: 512 tokens</li></ul> |
627
+ * Samples:
628
+ | sentence1 | sentence2 |
629
+ |:---------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
630
+ | <code>who is darnell from my name is earl</code> | <code>Eddie Steeples Eddie Steeples (born November 25, 1973)[1] is an American actor known for his roles as the "Rubberband Man" in an advertising campaign for OfficeMax, and as Darnell Turner on the NBC sitcom My Name Is Earl.</code> |
631
+ | <code>Ferrell and the Chili Peppers toured together in 2013 .</code> | <code>Ferrell and the Chili Peppers wrapped up I 'm With You World Tour in April 2013 .</code> |
632
+ | <code>Cells have four cycles.</code> | <code>How many cycles do cells have?</code> |
633
+ * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
634
+ ```json
635
+ {'guide': SentenceTransformer(
636
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
637
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
638
+ (2): Normalize()
639
+ ), 'temperature': 0.025}
640
+ ```
641
+
642
+ ### Evaluation Dataset
643
+
644
+ #### bobox/enhanced_nli-50_k
645
+
646
+ * Dataset: bobox/enhanced_nli-50_k
647
+ * Size: 1,506 evaluation samples
648
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
649
+ * Approximate statistics based on the first 1000 samples:
650
+ | | sentence1 | sentence2 |
651
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
652
+ | type | string | string |
653
+ | details | <ul><li>min: 3 tokens</li><li>mean: 32.36 tokens</li><li>max: 341 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 61.99 tokens</li><li>max: 431 tokens</li></ul> |
654
+ * Samples:
655
+ | sentence1 | sentence2 |
656
+ |:----------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
657
+ | <code>Interestingly, snakes use their forked tongues to smell.</code> | <code>Snakes use their tongue to smell things.</code> |
658
+ | <code>Soil is a renewable resource that can take thousand of years to form.</code> | <code>What is a renewable resource that can take thousand of years to form?</code> |
659
+ | <code>As of March 22 , there were more than 321,000 cases with over 13,600 deaths and more than 96,000 recoveries reported worldwide .</code> | <code>As of 22 March , more than 321,000 cases of COVID-19 have been reported in over 180 countries and territories , resulting in more than 13,600 deaths and 96,000 recoveries .</code> |
660
+ * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
661
+ ```json
662
+ {'guide': SentenceTransformer(
663
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
664
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
665
+ (2): Normalize()
666
+ ), 'temperature': 0.025}
667
+ ```
668
+
669
+ ### Training Hyperparameters
670
+ #### Non-Default Hyperparameters
671
+
672
+ - `eval_strategy`: steps
673
+ - `per_device_train_batch_size`: 640
674
+ - `per_device_eval_batch_size`: 128
675
+ - `learning_rate`: 3.75e-05
676
+ - `weight_decay`: 0.0005
677
+ - `lr_scheduler_type`: cosine_with_min_lr
678
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06}
679
+ - `warmup_ratio`: 0.33
680
+ - `save_safetensors`: False
681
+ - `fp16`: True
682
+ - `push_to_hub`: True
683
+ - `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp
684
+ - `hub_strategy`: all_checkpoints
685
+ - `batch_sampler`: no_duplicates
686
+
687
+ #### All Hyperparameters
688
+ <details><summary>Click to expand</summary>
689
+
690
+ - `overwrite_output_dir`: False
691
+ - `do_predict`: False
692
+ - `eval_strategy`: steps
693
+ - `prediction_loss_only`: True
694
+ - `per_device_train_batch_size`: 640
695
+ - `per_device_eval_batch_size`: 128
696
+ - `per_gpu_train_batch_size`: None
697
+ - `per_gpu_eval_batch_size`: None
698
+ - `gradient_accumulation_steps`: 1
699
+ - `eval_accumulation_steps`: None
700
+ - `torch_empty_cache_steps`: None
701
+ - `learning_rate`: 3.75e-05
702
+ - `weight_decay`: 0.0005
703
+ - `adam_beta1`: 0.9
704
+ - `adam_beta2`: 0.999
705
+ - `adam_epsilon`: 1e-08
706
+ - `max_grad_norm`: 1.0
707
+ - `num_train_epochs`: 3
708
+ - `max_steps`: -1
709
+ - `lr_scheduler_type`: cosine_with_min_lr
710
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06}
711
+ - `warmup_ratio`: 0.33
712
+ - `warmup_steps`: 0
713
+ - `log_level`: passive
714
+ - `log_level_replica`: warning
715
+ - `log_on_each_node`: True
716
+ - `logging_nan_inf_filter`: True
717
+ - `save_safetensors`: False
718
+ - `save_on_each_node`: False
719
+ - `save_only_model`: False
720
+ - `restore_callback_states_from_checkpoint`: False
721
+ - `no_cuda`: False
722
+ - `use_cpu`: False
723
+ - `use_mps_device`: False
724
+ - `seed`: 42
725
+ - `data_seed`: None
726
+ - `jit_mode_eval`: False
727
+ - `use_ipex`: False
728
+ - `bf16`: False
729
+ - `fp16`: True
730
+ - `fp16_opt_level`: O1
731
+ - `half_precision_backend`: auto
732
+ - `bf16_full_eval`: False
733
+ - `fp16_full_eval`: False
734
+ - `tf32`: None
735
+ - `local_rank`: 0
736
+ - `ddp_backend`: None
737
+ - `tpu_num_cores`: None
738
+ - `tpu_metrics_debug`: False
739
+ - `debug`: []
740
+ - `dataloader_drop_last`: False
741
+ - `dataloader_num_workers`: 0
742
+ - `dataloader_prefetch_factor`: None
743
+ - `past_index`: -1
744
+ - `disable_tqdm`: False
745
+ - `remove_unused_columns`: True
746
+ - `label_names`: None
747
+ - `load_best_model_at_end`: False
748
+ - `ignore_data_skip`: False
749
+ - `fsdp`: []
750
+ - `fsdp_min_num_params`: 0
751
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
752
+ - `fsdp_transformer_layer_cls_to_wrap`: None
753
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
754
+ - `deepspeed`: None
755
+ - `label_smoothing_factor`: 0.0
756
+ - `optim`: adamw_torch
757
+ - `optim_args`: None
758
+ - `adafactor`: False
759
+ - `group_by_length`: False
760
+ - `length_column_name`: length
761
+ - `ddp_find_unused_parameters`: None
762
+ - `ddp_bucket_cap_mb`: None
763
+ - `ddp_broadcast_buffers`: False
764
+ - `dataloader_pin_memory`: True
765
+ - `dataloader_persistent_workers`: False
766
+ - `skip_memory_metrics`: True
767
+ - `use_legacy_prediction_loop`: False
768
+ - `push_to_hub`: True
769
+ - `resume_from_checkpoint`: None
770
+ - `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp
771
+ - `hub_strategy`: all_checkpoints
772
+ - `hub_private_repo`: False
773
+ - `hub_always_push`: False
774
+ - `gradient_checkpointing`: False
775
+ - `gradient_checkpointing_kwargs`: None
776
+ - `include_inputs_for_metrics`: False
777
+ - `eval_do_concat_batches`: True
778
+ - `fp16_backend`: auto
779
+ - `push_to_hub_model_id`: None
780
+ - `push_to_hub_organization`: None
781
+ - `mp_parameters`:
782
+ - `auto_find_batch_size`: False
783
+ - `full_determinism`: False
784
+ - `torchdynamo`: None
785
+ - `ray_scope`: last
786
+ - `ddp_timeout`: 1800
787
+ - `torch_compile`: False
788
+ - `torch_compile_backend`: None
789
+ - `torch_compile_mode`: None
790
+ - `dispatch_batches`: None
791
+ - `split_batches`: None
792
+ - `include_tokens_per_second`: False
793
+ - `include_num_input_tokens_seen`: False
794
+ - `neftune_noise_alpha`: None
795
+ - `optim_target_modules`: None
796
+ - `batch_eval_metrics`: False
797
+ - `eval_on_start`: False
798
+ - `eval_use_gather_object`: False
799
+ - `batch_sampler`: no_duplicates
800
+ - `multi_dataset_batch_sampler`: proportional
801
+
802
+ </details>
803
+
804
+ ### Training Logs
805
+ | Epoch | Step | Training Loss | loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
806
+ |:------:|:----:|:-------------:|:------:|:---------------:|:-----------------:|:------------------------:|
807
+ | 0.0055 | 1 | 8.8159 | - | - | - | - |
808
+ | 0.0110 | 2 | 9.1259 | - | - | - | - |
809
+ | 0.0165 | 3 | 8.9017 | - | - | - | - |
810
+ | 0.0220 | 4 | 9.1969 | - | - | - | - |
811
+ | 0.0275 | 5 | 9.3716 | 1.3746 | 0.6067 | 0.3706 | 0.1943 |
812
+ | 0.0330 | 6 | 9.0425 | - | - | - | - |
813
+ | 0.0385 | 7 | 8.7309 | - | - | - | - |
814
+ | 0.0440 | 8 | 9.0123 | - | - | - | - |
815
+ | 0.0495 | 9 | 8.8095 | - | - | - | - |
816
+ | 0.0549 | 10 | 9.3194 | 1.3227 | 0.6089 | 0.3721 | 0.1976 |
817
+ | 0.0604 | 11 | 8.9873 | - | - | - | - |
818
+ | 0.0659 | 12 | 8.5575 | - | - | - | - |
819
+ | 0.0714 | 13 | 8.8096 | - | - | - | - |
820
+ | 0.0769 | 14 | 8.0996 | - | - | - | - |
821
+ | 0.0824 | 15 | 8.1942 | 1.2244 | 0.6140 | 0.3743 | 0.2085 |
822
+ | 0.0879 | 16 | 8.1654 | - | - | - | - |
823
+ | 0.0934 | 17 | 7.7336 | - | - | - | - |
824
+ | 0.0989 | 18 | 7.9535 | - | - | - | - |
825
+ | 0.1044 | 19 | 7.9322 | - | - | - | - |
826
+ | 0.1099 | 20 | 7.6812 | 1.1301 | 0.6199 | 0.3790 | 0.2233 |
827
+ | 0.1154 | 21 | 7.551 | - | - | - | - |
828
+ | 0.1209 | 22 | 7.3788 | - | - | - | - |
829
+ | 0.1264 | 23 | 7.1746 | - | - | - | - |
830
+ | 0.1319 | 24 | 7.1849 | - | - | - | - |
831
+ | 0.1374 | 25 | 7.1085 | 1.0723 | 0.6195 | 0.3852 | 0.2357 |
832
+ | 0.1429 | 26 | 7.3926 | - | - | - | - |
833
+ | 0.1484 | 27 | 7.1817 | - | - | - | - |
834
+ | 0.1538 | 28 | 7.239 | - | - | - | - |
835
+ | 0.1593 | 29 | 7.0023 | - | - | - | - |
836
+ | 0.1648 | 30 | 6.9898 | 1.0282 | 0.6215 | 0.3898 | 0.2477 |
837
+ | 0.1703 | 31 | 6.9776 | - | - | - | - |
838
+ | 0.1758 | 32 | 6.8088 | - | - | - | - |
839
+ | 0.1813 | 33 | 6.8916 | - | - | - | - |
840
+ | 0.1868 | 34 | 6.6931 | - | - | - | - |
841
+ | 0.1923 | 35 | 6.5707 | 0.9846 | 0.6253 | 0.3952 | 0.2608 |
842
+ | 0.1978 | 36 | 6.6231 | - | - | - | - |
843
+ | 0.2033 | 37 | 6.4951 | - | - | - | - |
844
+ | 0.2088 | 38 | 6.4607 | - | - | - | - |
845
+ | 0.2143 | 39 | 6.4504 | - | - | - | - |
846
+ | 0.2198 | 40 | 6.3649 | 0.9314 | 0.6299 | 0.4041 | 0.2738 |
847
+ | 0.2253 | 41 | 6.2244 | - | - | - | - |
848
+ | 0.2308 | 42 | 6.007 | - | - | - | - |
849
+ | 0.2363 | 43 | 5.977 | - | - | - | - |
850
+ | 0.2418 | 44 | 6.0748 | - | - | - | - |
851
+ | 0.2473 | 45 | 5.7946 | 0.8549 | 0.6404 | 0.4116 | 0.2847 |
852
+ | 0.2527 | 46 | 5.8751 | - | - | - | - |
853
+ | 0.2582 | 47 | 5.543 | - | - | - | - |
854
+ | 0.2637 | 48 | 5.5511 | - | - | - | - |
855
+ | 0.2692 | 49 | 5.411 | - | - | - | - |
856
+ | 0.2747 | 50 | 5.378 | 0.7943 | 0.6557 | 0.4159 | 0.2866 |
857
+ | 0.2802 | 51 | 5.3831 | - | - | - | - |
858
+ | 0.2857 | 52 | 4.9729 | - | - | - | - |
859
+ | 0.2912 | 53 | 5.0425 | - | - | - | - |
860
+ | 0.2967 | 54 | 4.9446 | - | - | - | - |
861
+ | 0.3022 | 55 | 4.9288 | 0.7178 | 0.6679 | 0.4273 | 0.3132 |
862
+
863
+
864
+ ### Framework Versions
865
+ - Python: 3.10.14
866
+ - Sentence Transformers: 3.0.1
867
+ - Transformers: 4.44.0
868
+ - PyTorch: 2.4.0
869
+ - Accelerate: 0.33.0
870
+ - Datasets: 2.21.0
871
+ - Tokenizers: 0.19.1
872
+
873
+ ## Citation
874
+
875
+ ### BibTeX
876
+
877
+ #### Sentence Transformers
878
+ ```bibtex
879
+ @inproceedings{reimers-2019-sentence-bert,
880
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
881
+ author = "Reimers, Nils and Gurevych, Iryna",
882
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
883
+ month = "11",
884
+ year = "2019",
885
+ publisher = "Association for Computational Linguistics",
886
+ url = "https://arxiv.org/abs/1908.10084",
887
+ }
888
+ ```
889
+
890
+ <!--
891
+ ## Glossary
892
+
893
+ *Clearly define terms in order to be accessible across audiences.*
894
+ -->
895
+
896
+ <!--
897
+ ## Model Card Authors
898
+
899
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
900
+ -->
901
+
902
+ <!--
903
+ ## Model Card Contact
904
+
905
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
906
+ -->
checkpoint-55/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
checkpoint-55/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-small",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-07,
13
+ "max_position_embeddings": 512,
14
+ "max_relative_positions": -1,
15
+ "model_type": "deberta-v2",
16
+ "norm_rel_ebd": "layer_norm",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "pooler_dropout": 0,
21
+ "pooler_hidden_act": "gelu",
22
+ "pooler_hidden_size": 768,
23
+ "pos_att_type": [
24
+ "p2c",
25
+ "c2p"
26
+ ],
27
+ "position_biased_input": false,
28
+ "position_buckets": 256,
29
+ "relative_attention": true,
30
+ "share_att_key": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.44.0",
33
+ "type_vocab_size": 0,
34
+ "vocab_size": 128100
35
+ }
checkpoint-55/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-55/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-55/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff739ea1aebd41763f78ab4fbd3e69fd3499c134215c3442f121e2eb09d7e5e2
3
+ size 1130520122
checkpoint-55/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cac081e343e82b05447bdbf9eba69a8392f074ac4c145f047269de4849479ac
3
+ size 565251810
checkpoint-55/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb18977cba831ef16b5b9ff397991d6bc68979d68a5301ff774c20dbd315171f
3
+ size 14244
checkpoint-55/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb0d2459c53df9954d756297e82f27d2632da6c4b10b0ba4d4a016ae5c356b6a
3
+ size 1064
checkpoint-55/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-55/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
checkpoint-55/spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
checkpoint-55/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-55/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }
checkpoint-55/trainer_state.json ADDED
@@ -0,0 +1,1397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.3021978021978022,
5
+ "eval_steps": 5,
6
+ "global_step": 55,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005494505494505495,
13
+ "grad_norm": 38.56446075439453,
14
+ "learning_rate": 2.0718232044198892e-07,
15
+ "loss": 8.8159,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01098901098901099,
20
+ "grad_norm": 42.89330291748047,
21
+ "learning_rate": 4.1436464088397783e-07,
22
+ "loss": 9.1259,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.016483516483516484,
27
+ "grad_norm": 40.88720703125,
28
+ "learning_rate": 6.215469613259668e-07,
29
+ "loss": 8.9017,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.02197802197802198,
34
+ "grad_norm": 43.001651763916016,
35
+ "learning_rate": 8.287292817679557e-07,
36
+ "loss": 9.1969,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.027472527472527472,
41
+ "grad_norm": 47.374000549316406,
42
+ "learning_rate": 1.0359116022099446e-06,
43
+ "loss": 9.3716,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.027472527472527472,
48
+ "eval_Qnli-dev_cosine_accuracy": 0.599609375,
49
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.9149316549301147,
50
+ "eval_Qnli-dev_cosine_ap": 0.5535936772329058,
51
+ "eval_Qnli-dev_cosine_f1": 0.6315789473684211,
52
+ "eval_Qnli-dev_cosine_f1_threshold": 0.6663029193878174,
53
+ "eval_Qnli-dev_cosine_precision": 0.4633663366336634,
54
+ "eval_Qnli-dev_cosine_recall": 0.9915254237288136,
55
+ "eval_Qnli-dev_dot_accuracy": 0.576171875,
56
+ "eval_Qnli-dev_dot_accuracy_threshold": 376.8692321777344,
57
+ "eval_Qnli-dev_dot_ap": 0.49386849366879665,
58
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
59
+ "eval_Qnli-dev_dot_f1_threshold": 237.3916015625,
60
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
61
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
62
+ "eval_Qnli-dev_euclidean_accuracy": 0.603515625,
63
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 8.217397689819336,
64
+ "eval_Qnli-dev_euclidean_ap": 0.5622359472661989,
65
+ "eval_Qnli-dev_euclidean_f1": 0.6307277628032345,
66
+ "eval_Qnli-dev_euclidean_f1_threshold": 17.456497192382812,
67
+ "eval_Qnli-dev_euclidean_precision": 0.4624505928853755,
68
+ "eval_Qnli-dev_euclidean_recall": 0.9915254237288136,
69
+ "eval_Qnli-dev_manhattan_accuracy": 0.6171875,
70
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 170.3812255859375,
71
+ "eval_Qnli-dev_manhattan_ap": 0.6067473143476283,
72
+ "eval_Qnli-dev_manhattan_f1": 0.629878869448183,
73
+ "eval_Qnli-dev_manhattan_f1_threshold": 251.22586059570312,
74
+ "eval_Qnli-dev_manhattan_precision": 0.46153846153846156,
75
+ "eval_Qnli-dev_manhattan_recall": 0.9915254237288136,
76
+ "eval_Qnli-dev_max_accuracy": 0.6171875,
77
+ "eval_Qnli-dev_max_accuracy_threshold": 376.8692321777344,
78
+ "eval_Qnli-dev_max_ap": 0.6067473143476283,
79
+ "eval_Qnli-dev_max_f1": 0.6315789473684211,
80
+ "eval_Qnli-dev_max_f1_threshold": 251.22586059570312,
81
+ "eval_Qnli-dev_max_precision": 0.4633663366336634,
82
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
83
+ "eval_allNLI-dev_cosine_accuracy": 0.6640625,
84
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.984787106513977,
85
+ "eval_allNLI-dev_cosine_ap": 0.34628735123984455,
86
+ "eval_allNLI-dev_cosine_f1": 0.5105105105105106,
87
+ "eval_allNLI-dev_cosine_f1_threshold": 0.7257537841796875,
88
+ "eval_allNLI-dev_cosine_precision": 0.3448275862068966,
89
+ "eval_allNLI-dev_cosine_recall": 0.9826589595375722,
90
+ "eval_allNLI-dev_dot_accuracy": 0.66015625,
91
+ "eval_allNLI-dev_dot_accuracy_threshold": 510.50128173828125,
92
+ "eval_allNLI-dev_dot_ap": 0.3331728171237445,
93
+ "eval_allNLI-dev_dot_f1": 0.5073746312684366,
94
+ "eval_allNLI-dev_dot_f1_threshold": 320.4217834472656,
95
+ "eval_allNLI-dev_dot_precision": 0.3405940594059406,
96
+ "eval_allNLI-dev_dot_recall": 0.9942196531791907,
97
+ "eval_allNLI-dev_euclidean_accuracy": 0.6640625,
98
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 3.554497241973877,
99
+ "eval_allNLI-dev_euclidean_ap": 0.3510566487009116,
100
+ "eval_allNLI-dev_euclidean_f1": 0.5120481927710844,
101
+ "eval_allNLI-dev_euclidean_f1_threshold": 16.369325637817383,
102
+ "eval_allNLI-dev_euclidean_precision": 0.34623217922606925,
103
+ "eval_allNLI-dev_euclidean_recall": 0.9826589595375722,
104
+ "eval_allNLI-dev_manhattan_accuracy": 0.6640625,
105
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 59.6655387878418,
106
+ "eval_allNLI-dev_manhattan_ap": 0.3706224646404015,
107
+ "eval_allNLI-dev_manhattan_f1": 0.5096870342771982,
108
+ "eval_allNLI-dev_manhattan_f1_threshold": 247.54861450195312,
109
+ "eval_allNLI-dev_manhattan_precision": 0.3433734939759036,
110
+ "eval_allNLI-dev_manhattan_recall": 0.9884393063583815,
111
+ "eval_allNLI-dev_max_accuracy": 0.6640625,
112
+ "eval_allNLI-dev_max_accuracy_threshold": 510.50128173828125,
113
+ "eval_allNLI-dev_max_ap": 0.3706224646404015,
114
+ "eval_allNLI-dev_max_f1": 0.5120481927710844,
115
+ "eval_allNLI-dev_max_f1_threshold": 320.4217834472656,
116
+ "eval_allNLI-dev_max_precision": 0.34623217922606925,
117
+ "eval_allNLI-dev_max_recall": 0.9942196531791907,
118
+ "eval_loss": 1.3745524883270264,
119
+ "eval_runtime": 56.8233,
120
+ "eval_samples_per_second": 26.503,
121
+ "eval_sequential_score": 0.6067473143476283,
122
+ "eval_steps_per_second": 0.211,
123
+ "eval_sts-test_pearson_cosine": 0.1514570156735535,
124
+ "eval_sts-test_pearson_dot": 0.28408663830954645,
125
+ "eval_sts-test_pearson_euclidean": 0.14094815932702276,
126
+ "eval_sts-test_pearson_manhattan": 0.18757962873571718,
127
+ "eval_sts-test_pearson_max": 0.28408663830954645,
128
+ "eval_sts-test_spearman_cosine": 0.19430208270682803,
129
+ "eval_sts-test_spearman_dot": 0.29861509823099586,
130
+ "eval_sts-test_spearman_euclidean": 0.16253371729283397,
131
+ "eval_sts-test_spearman_manhattan": 0.20774542441268956,
132
+ "eval_sts-test_spearman_max": 0.29861509823099586,
133
+ "step": 5
134
+ },
135
+ {
136
+ "epoch": 0.03296703296703297,
137
+ "grad_norm": 41.89334487915039,
138
+ "learning_rate": 1.2430939226519335e-06,
139
+ "loss": 9.0425,
140
+ "step": 6
141
+ },
142
+ {
143
+ "epoch": 0.038461538461538464,
144
+ "grad_norm": 38.501129150390625,
145
+ "learning_rate": 1.4502762430939224e-06,
146
+ "loss": 8.7309,
147
+ "step": 7
148
+ },
149
+ {
150
+ "epoch": 0.04395604395604396,
151
+ "grad_norm": 42.019371032714844,
152
+ "learning_rate": 1.6574585635359113e-06,
153
+ "loss": 9.0123,
154
+ "step": 8
155
+ },
156
+ {
157
+ "epoch": 0.04945054945054945,
158
+ "grad_norm": 41.45735168457031,
159
+ "learning_rate": 1.8646408839779003e-06,
160
+ "loss": 8.8095,
161
+ "step": 9
162
+ },
163
+ {
164
+ "epoch": 0.054945054945054944,
165
+ "grad_norm": 45.60405731201172,
166
+ "learning_rate": 2.071823204419889e-06,
167
+ "loss": 9.3194,
168
+ "step": 10
169
+ },
170
+ {
171
+ "epoch": 0.054945054945054944,
172
+ "eval_Qnli-dev_cosine_accuracy": 0.6015625,
173
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.915002703666687,
174
+ "eval_Qnli-dev_cosine_ap": 0.5561367291733588,
175
+ "eval_Qnli-dev_cosine_f1": 0.6315789473684211,
176
+ "eval_Qnli-dev_cosine_f1_threshold": 0.6884599328041077,
177
+ "eval_Qnli-dev_cosine_precision": 0.4633663366336634,
178
+ "eval_Qnli-dev_cosine_recall": 0.9915254237288136,
179
+ "eval_Qnli-dev_dot_accuracy": 0.580078125,
180
+ "eval_Qnli-dev_dot_accuracy_threshold": 375.57147216796875,
181
+ "eval_Qnli-dev_dot_ap": 0.49566240556276475,
182
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
183
+ "eval_Qnli-dev_dot_f1_threshold": 236.90142822265625,
184
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
185
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
186
+ "eval_Qnli-dev_euclidean_accuracy": 0.599609375,
187
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 8.115190505981445,
188
+ "eval_Qnli-dev_euclidean_ap": 0.5639171158048,
189
+ "eval_Qnli-dev_euclidean_f1": 0.6307277628032345,
190
+ "eval_Qnli-dev_euclidean_f1_threshold": 16.781246185302734,
191
+ "eval_Qnli-dev_euclidean_precision": 0.4624505928853755,
192
+ "eval_Qnli-dev_euclidean_recall": 0.9915254237288136,
193
+ "eval_Qnli-dev_manhattan_accuracy": 0.6171875,
194
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 169.50537109375,
195
+ "eval_Qnli-dev_manhattan_ap": 0.608914651260932,
196
+ "eval_Qnli-dev_manhattan_f1": 0.629878869448183,
197
+ "eval_Qnli-dev_manhattan_f1_threshold": 245.56036376953125,
198
+ "eval_Qnli-dev_manhattan_precision": 0.46153846153846156,
199
+ "eval_Qnli-dev_manhattan_recall": 0.9915254237288136,
200
+ "eval_Qnli-dev_max_accuracy": 0.6171875,
201
+ "eval_Qnli-dev_max_accuracy_threshold": 375.57147216796875,
202
+ "eval_Qnli-dev_max_ap": 0.608914651260932,
203
+ "eval_Qnli-dev_max_f1": 0.6315789473684211,
204
+ "eval_Qnli-dev_max_f1_threshold": 245.56036376953125,
205
+ "eval_Qnli-dev_max_precision": 0.4633663366336634,
206
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
207
+ "eval_allNLI-dev_cosine_accuracy": 0.6640625,
208
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.985245406627655,
209
+ "eval_allNLI-dev_cosine_ap": 0.34847362780632896,
210
+ "eval_allNLI-dev_cosine_f1": 0.5097451274362819,
211
+ "eval_allNLI-dev_cosine_f1_threshold": 0.7295986413955688,
212
+ "eval_allNLI-dev_cosine_precision": 0.3441295546558704,
213
+ "eval_allNLI-dev_cosine_recall": 0.9826589595375722,
214
+ "eval_allNLI-dev_dot_accuracy": 0.66015625,
215
+ "eval_allNLI-dev_dot_accuracy_threshold": 511.2210693359375,
216
+ "eval_allNLI-dev_dot_ap": 0.3336754845077054,
217
+ "eval_allNLI-dev_dot_f1": 0.5066273932253312,
218
+ "eval_allNLI-dev_dot_f1_threshold": 324.83251953125,
219
+ "eval_allNLI-dev_dot_precision": 0.33992094861660077,
220
+ "eval_allNLI-dev_dot_recall": 0.9942196531791907,
221
+ "eval_allNLI-dev_euclidean_accuracy": 0.666015625,
222
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 4.795613765716553,
223
+ "eval_allNLI-dev_euclidean_ap": 0.3551307012605588,
224
+ "eval_allNLI-dev_euclidean_f1": 0.5121212121212121,
225
+ "eval_allNLI-dev_euclidean_f1_threshold": 15.640409469604492,
226
+ "eval_allNLI-dev_euclidean_precision": 0.3470225872689938,
227
+ "eval_allNLI-dev_euclidean_recall": 0.976878612716763,
228
+ "eval_allNLI-dev_manhattan_accuracy": 0.6640625,
229
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 59.08678436279297,
230
+ "eval_allNLI-dev_manhattan_ap": 0.37214209846872026,
231
+ "eval_allNLI-dev_manhattan_f1": 0.5096870342771982,
232
+ "eval_allNLI-dev_manhattan_f1_threshold": 243.08975219726562,
233
+ "eval_allNLI-dev_manhattan_precision": 0.3433734939759036,
234
+ "eval_allNLI-dev_manhattan_recall": 0.9884393063583815,
235
+ "eval_allNLI-dev_max_accuracy": 0.666015625,
236
+ "eval_allNLI-dev_max_accuracy_threshold": 511.2210693359375,
237
+ "eval_allNLI-dev_max_ap": 0.37214209846872026,
238
+ "eval_allNLI-dev_max_f1": 0.5121212121212121,
239
+ "eval_allNLI-dev_max_f1_threshold": 324.83251953125,
240
+ "eval_allNLI-dev_max_precision": 0.3470225872689938,
241
+ "eval_allNLI-dev_max_recall": 0.9942196531791907,
242
+ "eval_loss": 1.3227455615997314,
243
+ "eval_runtime": 56.8227,
244
+ "eval_samples_per_second": 26.503,
245
+ "eval_sequential_score": 0.608914651260932,
246
+ "eval_steps_per_second": 0.211,
247
+ "eval_sts-test_pearson_cosine": 0.15490047433594056,
248
+ "eval_sts-test_pearson_dot": 0.2911984188989889,
249
+ "eval_sts-test_pearson_euclidean": 0.14360669882703436,
250
+ "eval_sts-test_pearson_manhattan": 0.1892258838489897,
251
+ "eval_sts-test_pearson_max": 0.2911984188989889,
252
+ "eval_sts-test_spearman_cosine": 0.19757270192698087,
253
+ "eval_sts-test_spearman_dot": 0.3042365279306765,
254
+ "eval_sts-test_spearman_euclidean": 0.16524958184415522,
255
+ "eval_sts-test_spearman_manhattan": 0.21029544078929435,
256
+ "eval_sts-test_spearman_max": 0.3042365279306765,
257
+ "step": 10
258
+ },
259
+ {
260
+ "epoch": 0.06043956043956044,
261
+ "grad_norm": 39.49834442138672,
262
+ "learning_rate": 2.2790055248618783e-06,
263
+ "loss": 8.9873,
264
+ "step": 11
265
+ },
266
+ {
267
+ "epoch": 0.06593406593406594,
268
+ "grad_norm": 35.96696853637695,
269
+ "learning_rate": 2.486187845303867e-06,
270
+ "loss": 8.5575,
271
+ "step": 12
272
+ },
273
+ {
274
+ "epoch": 0.07142857142857142,
275
+ "grad_norm": 37.535030364990234,
276
+ "learning_rate": 2.693370165745856e-06,
277
+ "loss": 8.8096,
278
+ "step": 13
279
+ },
280
+ {
281
+ "epoch": 0.07692307692307693,
282
+ "grad_norm": 27.989038467407227,
283
+ "learning_rate": 2.900552486187845e-06,
284
+ "loss": 8.0996,
285
+ "step": 14
286
+ },
287
+ {
288
+ "epoch": 0.08241758241758242,
289
+ "grad_norm": 27.93619728088379,
290
+ "learning_rate": 3.107734806629834e-06,
291
+ "loss": 8.1942,
292
+ "step": 15
293
+ },
294
+ {
295
+ "epoch": 0.08241758241758242,
296
+ "eval_Qnli-dev_cosine_accuracy": 0.59765625,
297
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.9154062867164612,
298
+ "eval_Qnli-dev_cosine_ap": 0.5603803949927255,
299
+ "eval_Qnli-dev_cosine_f1": 0.6315789473684211,
300
+ "eval_Qnli-dev_cosine_f1_threshold": 0.7283656597137451,
301
+ "eval_Qnli-dev_cosine_precision": 0.4633663366336634,
302
+ "eval_Qnli-dev_cosine_recall": 0.9915254237288136,
303
+ "eval_Qnli-dev_dot_accuracy": 0.58203125,
304
+ "eval_Qnli-dev_dot_accuracy_threshold": 388.41607666015625,
305
+ "eval_Qnli-dev_dot_ap": 0.497501149468079,
306
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
307
+ "eval_Qnli-dev_dot_f1_threshold": 236.0553741455078,
308
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
309
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
310
+ "eval_Qnli-dev_euclidean_accuracy": 0.58984375,
311
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 8.941183090209961,
312
+ "eval_Qnli-dev_euclidean_ap": 0.5662645897099401,
313
+ "eval_Qnli-dev_euclidean_f1": 0.6307277628032345,
314
+ "eval_Qnli-dev_euclidean_f1_threshold": 15.756710052490234,
315
+ "eval_Qnli-dev_euclidean_precision": 0.4624505928853755,
316
+ "eval_Qnli-dev_euclidean_recall": 0.9915254237288136,
317
+ "eval_Qnli-dev_manhattan_accuracy": 0.615234375,
318
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 163.0137939453125,
319
+ "eval_Qnli-dev_manhattan_ap": 0.6139853178845948,
320
+ "eval_Qnli-dev_manhattan_f1": 0.6291834002677376,
321
+ "eval_Qnli-dev_manhattan_f1_threshold": 285.00634765625,
322
+ "eval_Qnli-dev_manhattan_precision": 0.4598825831702544,
323
+ "eval_Qnli-dev_manhattan_recall": 0.9957627118644068,
324
+ "eval_Qnli-dev_max_accuracy": 0.615234375,
325
+ "eval_Qnli-dev_max_accuracy_threshold": 388.41607666015625,
326
+ "eval_Qnli-dev_max_ap": 0.6139853178845948,
327
+ "eval_Qnli-dev_max_f1": 0.6315789473684211,
328
+ "eval_Qnli-dev_max_f1_threshold": 285.00634765625,
329
+ "eval_Qnli-dev_max_precision": 0.4633663366336634,
330
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
331
+ "eval_allNLI-dev_cosine_accuracy": 0.6640625,
332
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.9861629009246826,
333
+ "eval_allNLI-dev_cosine_ap": 0.35265879982526854,
334
+ "eval_allNLI-dev_cosine_f1": 0.5096296296296297,
335
+ "eval_allNLI-dev_cosine_f1_threshold": 0.7308962941169739,
336
+ "eval_allNLI-dev_cosine_precision": 0.3426294820717131,
337
+ "eval_allNLI-dev_cosine_recall": 0.9942196531791907,
338
+ "eval_allNLI-dev_dot_accuracy": 0.662109375,
339
+ "eval_allNLI-dev_dot_accuracy_threshold": 498.35491943359375,
340
+ "eval_allNLI-dev_dot_ap": 0.33242433107393726,
341
+ "eval_allNLI-dev_dot_f1": 0.5058823529411766,
342
+ "eval_allNLI-dev_dot_f1_threshold": 329.3536376953125,
343
+ "eval_allNLI-dev_dot_precision": 0.33925049309664695,
344
+ "eval_allNLI-dev_dot_recall": 0.9942196531791907,
345
+ "eval_allNLI-dev_euclidean_accuracy": 0.666015625,
346
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 4.617646217346191,
347
+ "eval_allNLI-dev_euclidean_ap": 0.3596931915774687,
348
+ "eval_allNLI-dev_euclidean_f1": 0.5104477611940298,
349
+ "eval_allNLI-dev_euclidean_f1_threshold": 15.696537971496582,
350
+ "eval_allNLI-dev_euclidean_precision": 0.3440643863179074,
351
+ "eval_allNLI-dev_euclidean_recall": 0.9884393063583815,
352
+ "eval_allNLI-dev_manhattan_accuracy": 0.6640625,
353
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 57.86843490600586,
354
+ "eval_allNLI-dev_manhattan_ap": 0.37425821741092197,
355
+ "eval_allNLI-dev_manhattan_f1": 0.5089285714285714,
356
+ "eval_allNLI-dev_manhattan_f1_threshold": 239.49026489257812,
357
+ "eval_allNLI-dev_manhattan_precision": 0.342685370741483,
358
+ "eval_allNLI-dev_manhattan_recall": 0.9884393063583815,
359
+ "eval_allNLI-dev_max_accuracy": 0.666015625,
360
+ "eval_allNLI-dev_max_accuracy_threshold": 498.35491943359375,
361
+ "eval_allNLI-dev_max_ap": 0.37425821741092197,
362
+ "eval_allNLI-dev_max_f1": 0.5104477611940298,
363
+ "eval_allNLI-dev_max_f1_threshold": 329.3536376953125,
364
+ "eval_allNLI-dev_max_precision": 0.3440643863179074,
365
+ "eval_allNLI-dev_max_recall": 0.9942196531791907,
366
+ "eval_loss": 1.224420189857483,
367
+ "eval_runtime": 56.895,
368
+ "eval_samples_per_second": 26.47,
369
+ "eval_sequential_score": 0.6139853178845948,
370
+ "eval_steps_per_second": 0.211,
371
+ "eval_sts-test_pearson_cosine": 0.16376006142638552,
372
+ "eval_sts-test_pearson_dot": 0.30438012531511927,
373
+ "eval_sts-test_pearson_euclidean": 0.1505780981176037,
374
+ "eval_sts-test_pearson_manhattan": 0.19362843879381605,
375
+ "eval_sts-test_pearson_max": 0.30438012531511927,
376
+ "eval_sts-test_spearman_cosine": 0.20852655768027648,
377
+ "eval_sts-test_spearman_dot": 0.3147068910558995,
378
+ "eval_sts-test_spearman_euclidean": 0.17318335397119086,
379
+ "eval_sts-test_spearman_manhattan": 0.21532141020490103,
380
+ "eval_sts-test_spearman_max": 0.3147068910558995,
381
+ "step": 15
382
+ },
383
+ {
384
+ "epoch": 0.08791208791208792,
385
+ "grad_norm": 28.57341766357422,
386
+ "learning_rate": 3.3149171270718227e-06,
387
+ "loss": 8.1654,
388
+ "step": 16
389
+ },
390
+ {
391
+ "epoch": 0.09340659340659341,
392
+ "grad_norm": 21.84433364868164,
393
+ "learning_rate": 3.522099447513812e-06,
394
+ "loss": 7.7336,
395
+ "step": 17
396
+ },
397
+ {
398
+ "epoch": 0.0989010989010989,
399
+ "grad_norm": 23.60162353515625,
400
+ "learning_rate": 3.7292817679558005e-06,
401
+ "loss": 7.9535,
402
+ "step": 18
403
+ },
404
+ {
405
+ "epoch": 0.1043956043956044,
406
+ "grad_norm": 22.785541534423828,
407
+ "learning_rate": 3.936464088397789e-06,
408
+ "loss": 7.9322,
409
+ "step": 19
410
+ },
411
+ {
412
+ "epoch": 0.10989010989010989,
413
+ "grad_norm": 18.464128494262695,
414
+ "learning_rate": 4.143646408839778e-06,
415
+ "loss": 7.6812,
416
+ "step": 20
417
+ },
418
+ {
419
+ "epoch": 0.10989010989010989,
420
+ "eval_Qnli-dev_cosine_accuracy": 0.583984375,
421
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.9213418960571289,
422
+ "eval_Qnli-dev_cosine_ap": 0.5636458261475978,
423
+ "eval_Qnli-dev_cosine_f1": 0.6328767123287672,
424
+ "eval_Qnli-dev_cosine_f1_threshold": 0.7996987700462341,
425
+ "eval_Qnli-dev_cosine_precision": 0.4676113360323887,
426
+ "eval_Qnli-dev_cosine_recall": 0.9788135593220338,
427
+ "eval_Qnli-dev_dot_accuracy": 0.578125,
428
+ "eval_Qnli-dev_dot_accuracy_threshold": 391.3887939453125,
429
+ "eval_Qnli-dev_dot_ap": 0.49946111380185365,
430
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
431
+ "eval_Qnli-dev_dot_f1_threshold": 237.4534149169922,
432
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
433
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
434
+ "eval_Qnli-dev_euclidean_accuracy": 0.59375,
435
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 7.3581438064575195,
436
+ "eval_Qnli-dev_euclidean_ap": 0.5724385046320207,
437
+ "eval_Qnli-dev_euclidean_f1": 0.6321525885558583,
438
+ "eval_Qnli-dev_euclidean_f1_threshold": 13.227872848510742,
439
+ "eval_Qnli-dev_euclidean_precision": 0.46586345381526106,
440
+ "eval_Qnli-dev_euclidean_recall": 0.9830508474576272,
441
+ "eval_Qnli-dev_manhattan_accuracy": 0.62109375,
442
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 162.46531677246094,
443
+ "eval_Qnli-dev_manhattan_ap": 0.6199265668268106,
444
+ "eval_Qnli-dev_manhattan_f1": 0.6332794830371568,
445
+ "eval_Qnli-dev_manhattan_f1_threshold": 181.62945556640625,
446
+ "eval_Qnli-dev_manhattan_precision": 0.5117493472584856,
447
+ "eval_Qnli-dev_manhattan_recall": 0.8305084745762712,
448
+ "eval_Qnli-dev_max_accuracy": 0.62109375,
449
+ "eval_Qnli-dev_max_accuracy_threshold": 391.3887939453125,
450
+ "eval_Qnli-dev_max_ap": 0.6199265668268106,
451
+ "eval_Qnli-dev_max_f1": 0.6332794830371568,
452
+ "eval_Qnli-dev_max_f1_threshold": 237.4534149169922,
453
+ "eval_Qnli-dev_max_precision": 0.5117493472584856,
454
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
455
+ "eval_allNLI-dev_cosine_accuracy": 0.6640625,
456
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.987220287322998,
457
+ "eval_allNLI-dev_cosine_ap": 0.3616430753144169,
458
+ "eval_allNLI-dev_cosine_f1": 0.5103857566765578,
459
+ "eval_allNLI-dev_cosine_f1_threshold": 0.7597876787185669,
460
+ "eval_allNLI-dev_cosine_precision": 0.34331337325349304,
461
+ "eval_allNLI-dev_cosine_recall": 0.9942196531791907,
462
+ "eval_allNLI-dev_dot_accuracy": 0.662109375,
463
+ "eval_allNLI-dev_dot_accuracy_threshold": 499.94134521484375,
464
+ "eval_allNLI-dev_dot_ap": 0.32968058746925677,
465
+ "eval_allNLI-dev_dot_f1": 0.5065885797950219,
466
+ "eval_allNLI-dev_dot_f1_threshold": 326.2508850097656,
467
+ "eval_allNLI-dev_dot_precision": 0.3392156862745098,
468
+ "eval_allNLI-dev_dot_recall": 1.0,
469
+ "eval_allNLI-dev_euclidean_accuracy": 0.66796875,
470
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 4.4667768478393555,
471
+ "eval_allNLI-dev_euclidean_ap": 0.36738456823550303,
472
+ "eval_allNLI-dev_euclidean_f1": 0.5081723625557207,
473
+ "eval_allNLI-dev_euclidean_f1_threshold": 15.153694152832031,
474
+ "eval_allNLI-dev_euclidean_precision": 0.342,
475
+ "eval_allNLI-dev_euclidean_recall": 0.9884393063583815,
476
+ "eval_allNLI-dev_manhattan_accuracy": 0.6640625,
477
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 56.36178970336914,
478
+ "eval_allNLI-dev_manhattan_ap": 0.37895381964253766,
479
+ "eval_allNLI-dev_manhattan_f1": 0.5074183976261127,
480
+ "eval_allNLI-dev_manhattan_f1_threshold": 235.34033203125,
481
+ "eval_allNLI-dev_manhattan_precision": 0.3413173652694611,
482
+ "eval_allNLI-dev_manhattan_recall": 0.9884393063583815,
483
+ "eval_allNLI-dev_max_accuracy": 0.66796875,
484
+ "eval_allNLI-dev_max_accuracy_threshold": 499.94134521484375,
485
+ "eval_allNLI-dev_max_ap": 0.37895381964253766,
486
+ "eval_allNLI-dev_max_f1": 0.5103857566765578,
487
+ "eval_allNLI-dev_max_f1_threshold": 326.2508850097656,
488
+ "eval_allNLI-dev_max_precision": 0.34331337325349304,
489
+ "eval_allNLI-dev_max_recall": 1.0,
490
+ "eval_loss": 1.1300753355026245,
491
+ "eval_runtime": 56.883,
492
+ "eval_samples_per_second": 26.475,
493
+ "eval_sequential_score": 0.6199265668268106,
494
+ "eval_steps_per_second": 0.211,
495
+ "eval_sts-test_pearson_cosine": 0.1779758357593114,
496
+ "eval_sts-test_pearson_dot": 0.3143294512111131,
497
+ "eval_sts-test_pearson_euclidean": 0.16236578525254278,
498
+ "eval_sts-test_pearson_manhattan": 0.20112989669839879,
499
+ "eval_sts-test_pearson_max": 0.3143294512111131,
500
+ "eval_sts-test_spearman_cosine": 0.22331353797679107,
501
+ "eval_sts-test_spearman_dot": 0.32041258738078016,
502
+ "eval_sts-test_spearman_euclidean": 0.18499862675500958,
503
+ "eval_sts-test_spearman_manhattan": 0.22244513974949096,
504
+ "eval_sts-test_spearman_max": 0.32041258738078016,
505
+ "step": 20
506
+ },
507
+ {
508
+ "epoch": 0.11538461538461539,
509
+ "grad_norm": 16.04839324951172,
510
+ "learning_rate": 4.3508287292817675e-06,
511
+ "loss": 7.551,
512
+ "step": 21
513
+ },
514
+ {
515
+ "epoch": 0.12087912087912088,
516
+ "grad_norm": 13.244675636291504,
517
+ "learning_rate": 4.558011049723757e-06,
518
+ "loss": 7.3788,
519
+ "step": 22
520
+ },
521
+ {
522
+ "epoch": 0.12637362637362637,
523
+ "grad_norm": 10.887700080871582,
524
+ "learning_rate": 4.765193370165746e-06,
525
+ "loss": 7.1746,
526
+ "step": 23
527
+ },
528
+ {
529
+ "epoch": 0.13186813186813187,
530
+ "grad_norm": 11.019057273864746,
531
+ "learning_rate": 4.972375690607734e-06,
532
+ "loss": 7.1849,
533
+ "step": 24
534
+ },
535
+ {
536
+ "epoch": 0.13736263736263737,
537
+ "grad_norm": 10.919517517089844,
538
+ "learning_rate": 5.179558011049724e-06,
539
+ "loss": 7.1085,
540
+ "step": 25
541
+ },
542
+ {
543
+ "epoch": 0.13736263736263737,
544
+ "eval_Qnli-dev_cosine_accuracy": 0.58984375,
545
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.9257529973983765,
546
+ "eval_Qnli-dev_cosine_ap": 0.5652038241773732,
547
+ "eval_Qnli-dev_cosine_f1": 0.6346153846153846,
548
+ "eval_Qnli-dev_cosine_f1_threshold": 0.8198822140693665,
549
+ "eval_Qnli-dev_cosine_precision": 0.4695121951219512,
550
+ "eval_Qnli-dev_cosine_recall": 0.9788135593220338,
551
+ "eval_Qnli-dev_dot_accuracy": 0.57421875,
552
+ "eval_Qnli-dev_dot_accuracy_threshold": 398.296875,
553
+ "eval_Qnli-dev_dot_ap": 0.5000550252228433,
554
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
555
+ "eval_Qnli-dev_dot_f1_threshold": 245.24951171875,
556
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
557
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
558
+ "eval_Qnli-dev_euclidean_accuracy": 0.587890625,
559
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 7.207454681396484,
560
+ "eval_Qnli-dev_euclidean_ap": 0.5720947339439485,
561
+ "eval_Qnli-dev_euclidean_f1": 0.631424375917768,
562
+ "eval_Qnli-dev_euclidean_f1_threshold": 11.139533996582031,
563
+ "eval_Qnli-dev_euclidean_precision": 0.48314606741573035,
564
+ "eval_Qnli-dev_euclidean_recall": 0.9110169491525424,
565
+ "eval_Qnli-dev_manhattan_accuracy": 0.630859375,
566
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 159.41851806640625,
567
+ "eval_Qnli-dev_manhattan_ap": 0.6195419467022242,
568
+ "eval_Qnli-dev_manhattan_f1": 0.6365007541478129,
569
+ "eval_Qnli-dev_manhattan_f1_threshold": 184.75155639648438,
570
+ "eval_Qnli-dev_manhattan_precision": 0.49414519906323184,
571
+ "eval_Qnli-dev_manhattan_recall": 0.8940677966101694,
572
+ "eval_Qnli-dev_max_accuracy": 0.630859375,
573
+ "eval_Qnli-dev_max_accuracy_threshold": 398.296875,
574
+ "eval_Qnli-dev_max_ap": 0.6195419467022242,
575
+ "eval_Qnli-dev_max_f1": 0.6365007541478129,
576
+ "eval_Qnli-dev_max_f1_threshold": 245.24951171875,
577
+ "eval_Qnli-dev_max_precision": 0.49414519906323184,
578
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
579
+ "eval_allNLI-dev_cosine_accuracy": 0.666015625,
580
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.9775335788726807,
581
+ "eval_allNLI-dev_cosine_ap": 0.37066068068308244,
582
+ "eval_allNLI-dev_cosine_f1": 0.5066666666666666,
583
+ "eval_allNLI-dev_cosine_f1_threshold": 0.7791957855224609,
584
+ "eval_allNLI-dev_cosine_precision": 0.34063745019920316,
585
+ "eval_allNLI-dev_cosine_recall": 0.9884393063583815,
586
+ "eval_allNLI-dev_dot_accuracy": 0.66015625,
587
+ "eval_allNLI-dev_dot_accuracy_threshold": 524.8079223632812,
588
+ "eval_allNLI-dev_dot_ap": 0.3301995657806253,
589
+ "eval_allNLI-dev_dot_f1": 0.5058479532163743,
590
+ "eval_allNLI-dev_dot_f1_threshold": 326.4276428222656,
591
+ "eval_allNLI-dev_dot_precision": 0.3385518590998043,
592
+ "eval_allNLI-dev_dot_recall": 1.0,
593
+ "eval_allNLI-dev_euclidean_accuracy": 0.66796875,
594
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 4.273993492126465,
595
+ "eval_allNLI-dev_euclidean_ap": 0.3729474782349314,
596
+ "eval_allNLI-dev_euclidean_f1": 0.5075075075075075,
597
+ "eval_allNLI-dev_euclidean_f1_threshold": 13.357471466064453,
598
+ "eval_allNLI-dev_euclidean_precision": 0.34279918864097364,
599
+ "eval_allNLI-dev_euclidean_recall": 0.976878612716763,
600
+ "eval_allNLI-dev_manhattan_accuracy": 0.666015625,
601
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 87.52474975585938,
602
+ "eval_allNLI-dev_manhattan_ap": 0.3851618671264259,
603
+ "eval_allNLI-dev_manhattan_f1": 0.5066273932253312,
604
+ "eval_allNLI-dev_manhattan_f1_threshold": 237.66885375976562,
605
+ "eval_allNLI-dev_manhattan_precision": 0.33992094861660077,
606
+ "eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
607
+ "eval_allNLI-dev_max_accuracy": 0.66796875,
608
+ "eval_allNLI-dev_max_accuracy_threshold": 524.8079223632812,
609
+ "eval_allNLI-dev_max_ap": 0.3851618671264259,
610
+ "eval_allNLI-dev_max_f1": 0.5075075075075075,
611
+ "eval_allNLI-dev_max_f1_threshold": 326.4276428222656,
612
+ "eval_allNLI-dev_max_precision": 0.34279918864097364,
613
+ "eval_allNLI-dev_max_recall": 1.0,
614
+ "eval_loss": 1.0723015069961548,
615
+ "eval_runtime": 56.965,
616
+ "eval_samples_per_second": 26.437,
617
+ "eval_sequential_score": 0.6195419467022242,
618
+ "eval_steps_per_second": 0.211,
619
+ "eval_sts-test_pearson_cosine": 0.19236546870487506,
620
+ "eval_sts-test_pearson_dot": 0.31683240996339884,
621
+ "eval_sts-test_pearson_euclidean": 0.17509975514192921,
622
+ "eval_sts-test_pearson_manhattan": 0.2091062445542419,
623
+ "eval_sts-test_pearson_max": 0.31683240996339884,
624
+ "eval_sts-test_spearman_cosine": 0.23571321748312007,
625
+ "eval_sts-test_spearman_dot": 0.3217659550277789,
626
+ "eval_sts-test_spearman_euclidean": 0.1966071039599386,
627
+ "eval_sts-test_spearman_manhattan": 0.23094926670295998,
628
+ "eval_sts-test_spearman_max": 0.3217659550277789,
629
+ "step": 25
630
+ },
631
+ {
632
+ "epoch": 0.14285714285714285,
633
+ "grad_norm": 11.845592498779297,
634
+ "learning_rate": 5.386740331491712e-06,
635
+ "loss": 7.3926,
636
+ "step": 26
637
+ },
638
+ {
639
+ "epoch": 0.14835164835164835,
640
+ "grad_norm": 11.545681953430176,
641
+ "learning_rate": 5.593922651933701e-06,
642
+ "loss": 7.1817,
643
+ "step": 27
644
+ },
645
+ {
646
+ "epoch": 0.15384615384615385,
647
+ "grad_norm": 11.321039199829102,
648
+ "learning_rate": 5.80110497237569e-06,
649
+ "loss": 7.239,
650
+ "step": 28
651
+ },
652
+ {
653
+ "epoch": 0.15934065934065933,
654
+ "grad_norm": 9.933686256408691,
655
+ "learning_rate": 6.00828729281768e-06,
656
+ "loss": 7.0023,
657
+ "step": 29
658
+ },
659
+ {
660
+ "epoch": 0.16483516483516483,
661
+ "grad_norm": 10.041378021240234,
662
+ "learning_rate": 6.215469613259668e-06,
663
+ "loss": 6.9898,
664
+ "step": 30
665
+ },
666
+ {
667
+ "epoch": 0.16483516483516483,
668
+ "eval_Qnli-dev_cosine_accuracy": 0.59375,
669
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.9396011233329773,
670
+ "eval_Qnli-dev_cosine_ap": 0.57014985501852,
671
+ "eval_Qnli-dev_cosine_f1": 0.6318681318681318,
672
+ "eval_Qnli-dev_cosine_f1_threshold": 0.8371821045875549,
673
+ "eval_Qnli-dev_cosine_precision": 0.46747967479674796,
674
+ "eval_Qnli-dev_cosine_recall": 0.9745762711864406,
675
+ "eval_Qnli-dev_dot_accuracy": 0.57421875,
676
+ "eval_Qnli-dev_dot_accuracy_threshold": 411.27325439453125,
677
+ "eval_Qnli-dev_dot_ap": 0.49761647661900815,
678
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
679
+ "eval_Qnli-dev_dot_f1_threshold": 262.31964111328125,
680
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
681
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
682
+ "eval_Qnli-dev_euclidean_accuracy": 0.595703125,
683
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 7.126171112060547,
684
+ "eval_Qnli-dev_euclidean_ap": 0.5771748855905092,
685
+ "eval_Qnli-dev_euclidean_f1": 0.6312925170068028,
686
+ "eval_Qnli-dev_euclidean_f1_threshold": 12.285415649414062,
687
+ "eval_Qnli-dev_euclidean_precision": 0.4649298597194389,
688
+ "eval_Qnli-dev_euclidean_recall": 0.9830508474576272,
689
+ "eval_Qnli-dev_manhattan_accuracy": 0.62890625,
690
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 153.70269775390625,
691
+ "eval_Qnli-dev_manhattan_ap": 0.621529978717656,
692
+ "eval_Qnli-dev_manhattan_f1": 0.6396255850234009,
693
+ "eval_Qnli-dev_manhattan_f1_threshold": 176.74929809570312,
694
+ "eval_Qnli-dev_manhattan_precision": 0.5061728395061729,
695
+ "eval_Qnli-dev_manhattan_recall": 0.8686440677966102,
696
+ "eval_Qnli-dev_max_accuracy": 0.62890625,
697
+ "eval_Qnli-dev_max_accuracy_threshold": 411.27325439453125,
698
+ "eval_Qnli-dev_max_ap": 0.621529978717656,
699
+ "eval_Qnli-dev_max_f1": 0.6396255850234009,
700
+ "eval_Qnli-dev_max_f1_threshold": 262.31964111328125,
701
+ "eval_Qnli-dev_max_precision": 0.5061728395061729,
702
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
703
+ "eval_allNLI-dev_cosine_accuracy": 0.66796875,
704
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.9714565277099609,
705
+ "eval_allNLI-dev_cosine_ap": 0.3762859388623787,
706
+ "eval_allNLI-dev_cosine_f1": 0.5060606060606061,
707
+ "eval_allNLI-dev_cosine_f1_threshold": 0.8386883735656738,
708
+ "eval_allNLI-dev_cosine_precision": 0.34291581108829566,
709
+ "eval_allNLI-dev_cosine_recall": 0.9653179190751445,
710
+ "eval_allNLI-dev_dot_accuracy": 0.66015625,
711
+ "eval_allNLI-dev_dot_accuracy_threshold": 532.74462890625,
712
+ "eval_allNLI-dev_dot_ap": 0.3295831980167142,
713
+ "eval_allNLI-dev_dot_f1": 0.5036603221083455,
714
+ "eval_allNLI-dev_dot_f1_threshold": 337.565185546875,
715
+ "eval_allNLI-dev_dot_precision": 0.33725490196078434,
716
+ "eval_allNLI-dev_dot_recall": 0.9942196531791907,
717
+ "eval_allNLI-dev_euclidean_accuracy": 0.66796875,
718
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 4.119659423828125,
719
+ "eval_allNLI-dev_euclidean_ap": 0.3787739041503637,
720
+ "eval_allNLI-dev_euclidean_f1": 0.5098634294385432,
721
+ "eval_allNLI-dev_euclidean_f1_threshold": 12.496034622192383,
722
+ "eval_allNLI-dev_euclidean_precision": 0.345679012345679,
723
+ "eval_allNLI-dev_euclidean_recall": 0.9710982658959537,
724
+ "eval_allNLI-dev_manhattan_accuracy": 0.666015625,
725
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 80.58773803710938,
726
+ "eval_allNLI-dev_manhattan_ap": 0.3898279315596962,
727
+ "eval_allNLI-dev_manhattan_f1": 0.5066273932253312,
728
+ "eval_allNLI-dev_manhattan_f1_threshold": 231.53036499023438,
729
+ "eval_allNLI-dev_manhattan_precision": 0.33992094861660077,
730
+ "eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
731
+ "eval_allNLI-dev_max_accuracy": 0.66796875,
732
+ "eval_allNLI-dev_max_accuracy_threshold": 532.74462890625,
733
+ "eval_allNLI-dev_max_ap": 0.3898279315596962,
734
+ "eval_allNLI-dev_max_f1": 0.5098634294385432,
735
+ "eval_allNLI-dev_max_f1_threshold": 337.565185546875,
736
+ "eval_allNLI-dev_max_precision": 0.345679012345679,
737
+ "eval_allNLI-dev_max_recall": 0.9942196531791907,
738
+ "eval_loss": 1.0282095670700073,
739
+ "eval_runtime": 57.0236,
740
+ "eval_samples_per_second": 26.41,
741
+ "eval_sequential_score": 0.621529978717656,
742
+ "eval_steps_per_second": 0.21,
743
+ "eval_sts-test_pearson_cosine": 0.2061136669654613,
744
+ "eval_sts-test_pearson_dot": 0.31343978856163146,
745
+ "eval_sts-test_pearson_euclidean": 0.18904663819220255,
746
+ "eval_sts-test_pearson_manhattan": 0.21785478120910598,
747
+ "eval_sts-test_pearson_max": 0.31343978856163146,
748
+ "eval_sts-test_spearman_cosine": 0.24768503017928584,
749
+ "eval_sts-test_spearman_dot": 0.31740404957995916,
750
+ "eval_sts-test_spearman_euclidean": 0.20965200715300875,
751
+ "eval_sts-test_spearman_manhattan": 0.2394205014793063,
752
+ "eval_sts-test_spearman_max": 0.31740404957995916,
753
+ "step": 30
754
+ },
755
+ {
756
+ "epoch": 0.17032967032967034,
757
+ "grad_norm": 9.322327613830566,
758
+ "learning_rate": 6.422651933701657e-06,
759
+ "loss": 6.9776,
760
+ "step": 31
761
+ },
762
+ {
763
+ "epoch": 0.17582417582417584,
764
+ "grad_norm": 8.770292282104492,
765
+ "learning_rate": 6.629834254143645e-06,
766
+ "loss": 6.8088,
767
+ "step": 32
768
+ },
769
+ {
770
+ "epoch": 0.1813186813186813,
771
+ "grad_norm": 10.2041654586792,
772
+ "learning_rate": 6.837016574585635e-06,
773
+ "loss": 6.8916,
774
+ "step": 33
775
+ },
776
+ {
777
+ "epoch": 0.18681318681318682,
778
+ "grad_norm": 8.867596626281738,
779
+ "learning_rate": 7.044198895027624e-06,
780
+ "loss": 6.6931,
781
+ "step": 34
782
+ },
783
+ {
784
+ "epoch": 0.19230769230769232,
785
+ "grad_norm": 9.029094696044922,
786
+ "learning_rate": 7.251381215469613e-06,
787
+ "loss": 6.5707,
788
+ "step": 35
789
+ },
790
+ {
791
+ "epoch": 0.19230769230769232,
792
+ "eval_Qnli-dev_cosine_accuracy": 0.609375,
793
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.9358766078948975,
794
+ "eval_Qnli-dev_cosine_ap": 0.5800406926662295,
795
+ "eval_Qnli-dev_cosine_f1": 0.6291834002677376,
796
+ "eval_Qnli-dev_cosine_f1_threshold": 0.6559731960296631,
797
+ "eval_Qnli-dev_cosine_precision": 0.4598825831702544,
798
+ "eval_Qnli-dev_cosine_recall": 0.9957627118644068,
799
+ "eval_Qnli-dev_dot_accuracy": 0.572265625,
800
+ "eval_Qnli-dev_dot_accuracy_threshold": 415.3104248046875,
801
+ "eval_Qnli-dev_dot_ap": 0.49721213365007333,
802
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
803
+ "eval_Qnli-dev_dot_f1_threshold": 280.5462951660156,
804
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
805
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
806
+ "eval_Qnli-dev_euclidean_accuracy": 0.59765625,
807
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 7.095188140869141,
808
+ "eval_Qnli-dev_euclidean_ap": 0.5853229647222131,
809
+ "eval_Qnli-dev_euclidean_f1": 0.6291834002677376,
810
+ "eval_Qnli-dev_euclidean_f1_threshold": 17.898162841796875,
811
+ "eval_Qnli-dev_euclidean_precision": 0.4598825831702544,
812
+ "eval_Qnli-dev_euclidean_recall": 0.9957627118644068,
813
+ "eval_Qnli-dev_manhattan_accuracy": 0.62890625,
814
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 154.3598175048828,
815
+ "eval_Qnli-dev_manhattan_ap": 0.6252613860599432,
816
+ "eval_Qnli-dev_manhattan_f1": 0.6388888888888888,
817
+ "eval_Qnli-dev_manhattan_f1_threshold": 178.0916748046875,
818
+ "eval_Qnli-dev_manhattan_precision": 0.5024271844660194,
819
+ "eval_Qnli-dev_manhattan_recall": 0.8771186440677966,
820
+ "eval_Qnli-dev_max_accuracy": 0.62890625,
821
+ "eval_Qnli-dev_max_accuracy_threshold": 415.3104248046875,
822
+ "eval_Qnli-dev_max_ap": 0.6252613860599432,
823
+ "eval_Qnli-dev_max_f1": 0.6388888888888888,
824
+ "eval_Qnli-dev_max_f1_threshold": 280.5462951660156,
825
+ "eval_Qnli-dev_max_precision": 0.5024271844660194,
826
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
827
+ "eval_allNLI-dev_cosine_accuracy": 0.673828125,
828
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.9733000993728638,
829
+ "eval_allNLI-dev_cosine_ap": 0.383380605789286,
830
+ "eval_allNLI-dev_cosine_f1": 0.5067466266866567,
831
+ "eval_allNLI-dev_cosine_f1_threshold": 0.8367289900779724,
832
+ "eval_allNLI-dev_cosine_precision": 0.34210526315789475,
833
+ "eval_allNLI-dev_cosine_recall": 0.976878612716763,
834
+ "eval_allNLI-dev_dot_accuracy": 0.66015625,
835
+ "eval_allNLI-dev_dot_accuracy_threshold": 538.5443115234375,
836
+ "eval_allNLI-dev_dot_ap": 0.33316876894590236,
837
+ "eval_allNLI-dev_dot_f1": 0.5037037037037037,
838
+ "eval_allNLI-dev_dot_f1_threshold": 373.13201904296875,
839
+ "eval_allNLI-dev_dot_precision": 0.3386454183266932,
840
+ "eval_allNLI-dev_dot_recall": 0.9826589595375722,
841
+ "eval_allNLI-dev_euclidean_accuracy": 0.669921875,
842
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 5.027232646942139,
843
+ "eval_allNLI-dev_euclidean_ap": 0.38454616945711223,
844
+ "eval_allNLI-dev_euclidean_f1": 0.5075987841945289,
845
+ "eval_allNLI-dev_euclidean_f1_threshold": 12.088457107543945,
846
+ "eval_allNLI-dev_euclidean_precision": 0.3443298969072165,
847
+ "eval_allNLI-dev_euclidean_recall": 0.9653179190751445,
848
+ "eval_allNLI-dev_manhattan_accuracy": 0.66796875,
849
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 79.79684448242188,
850
+ "eval_allNLI-dev_manhattan_ap": 0.39522701729473053,
851
+ "eval_allNLI-dev_manhattan_f1": 0.5073746312684366,
852
+ "eval_allNLI-dev_manhattan_f1_threshold": 228.69581604003906,
853
+ "eval_allNLI-dev_manhattan_precision": 0.3405940594059406,
854
+ "eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
855
+ "eval_allNLI-dev_max_accuracy": 0.673828125,
856
+ "eval_allNLI-dev_max_accuracy_threshold": 538.5443115234375,
857
+ "eval_allNLI-dev_max_ap": 0.39522701729473053,
858
+ "eval_allNLI-dev_max_f1": 0.5075987841945289,
859
+ "eval_allNLI-dev_max_f1_threshold": 373.13201904296875,
860
+ "eval_allNLI-dev_max_precision": 0.3443298969072165,
861
+ "eval_allNLI-dev_max_recall": 0.9942196531791907,
862
+ "eval_loss": 0.9846486449241638,
863
+ "eval_runtime": 56.9294,
864
+ "eval_samples_per_second": 26.454,
865
+ "eval_sequential_score": 0.6252613860599432,
866
+ "eval_steps_per_second": 0.211,
867
+ "eval_sts-test_pearson_cosine": 0.22023788463370408,
868
+ "eval_sts-test_pearson_dot": 0.30789406379111994,
869
+ "eval_sts-test_pearson_euclidean": 0.20441439700667358,
870
+ "eval_sts-test_pearson_manhattan": 0.22863465206140024,
871
+ "eval_sts-test_pearson_max": 0.30789406379111994,
872
+ "eval_sts-test_spearman_cosine": 0.2607946884475894,
873
+ "eval_sts-test_spearman_dot": 0.3140236287969756,
874
+ "eval_sts-test_spearman_euclidean": 0.2252769995703387,
875
+ "eval_sts-test_spearman_manhattan": 0.2514165246078849,
876
+ "eval_sts-test_spearman_max": 0.3140236287969756,
877
+ "step": 35
878
+ },
879
+ {
880
+ "epoch": 0.1978021978021978,
881
+ "grad_norm": 8.10656452178955,
882
+ "learning_rate": 7.458563535911601e-06,
883
+ "loss": 6.6231,
884
+ "step": 36
885
+ },
886
+ {
887
+ "epoch": 0.2032967032967033,
888
+ "grad_norm": 8.79859733581543,
889
+ "learning_rate": 7.665745856353591e-06,
890
+ "loss": 6.4951,
891
+ "step": 37
892
+ },
893
+ {
894
+ "epoch": 0.2087912087912088,
895
+ "grad_norm": 8.37302303314209,
896
+ "learning_rate": 7.872928176795578e-06,
897
+ "loss": 6.4607,
898
+ "step": 38
899
+ },
900
+ {
901
+ "epoch": 0.21428571428571427,
902
+ "grad_norm": 9.559539794921875,
903
+ "learning_rate": 8.08011049723757e-06,
904
+ "loss": 6.4504,
905
+ "step": 39
906
+ },
907
+ {
908
+ "epoch": 0.21978021978021978,
909
+ "grad_norm": 9.13284683227539,
910
+ "learning_rate": 8.287292817679557e-06,
911
+ "loss": 6.3649,
912
+ "step": 40
913
+ },
914
+ {
915
+ "epoch": 0.21978021978021978,
916
+ "eval_Qnli-dev_cosine_accuracy": 0.609375,
917
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.9314916133880615,
918
+ "eval_Qnli-dev_cosine_ap": 0.585206574495468,
919
+ "eval_Qnli-dev_cosine_f1": 0.6291834002677376,
920
+ "eval_Qnli-dev_cosine_f1_threshold": 0.6699934005737305,
921
+ "eval_Qnli-dev_cosine_precision": 0.4598825831702544,
922
+ "eval_Qnli-dev_cosine_recall": 0.9957627118644068,
923
+ "eval_Qnli-dev_dot_accuracy": 0.568359375,
924
+ "eval_Qnli-dev_dot_accuracy_threshold": 410.2371826171875,
925
+ "eval_Qnli-dev_dot_ap": 0.4994333901484545,
926
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
927
+ "eval_Qnli-dev_dot_f1_threshold": 284.4015808105469,
928
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
929
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
930
+ "eval_Qnli-dev_euclidean_accuracy": 0.607421875,
931
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 7.864487171173096,
932
+ "eval_Qnli-dev_euclidean_ap": 0.594681744506572,
933
+ "eval_Qnli-dev_euclidean_f1": 0.6291834002677376,
934
+ "eval_Qnli-dev_euclidean_f1_threshold": 17.5451717376709,
935
+ "eval_Qnli-dev_euclidean_precision": 0.4598825831702544,
936
+ "eval_Qnli-dev_euclidean_recall": 0.9957627118644068,
937
+ "eval_Qnli-dev_manhattan_accuracy": 0.626953125,
938
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 160.8733367919922,
939
+ "eval_Qnli-dev_manhattan_ap": 0.629870060597291,
940
+ "eval_Qnli-dev_manhattan_f1": 0.6411149825783973,
941
+ "eval_Qnli-dev_manhattan_f1_threshold": 176.17674255371094,
942
+ "eval_Qnli-dev_manhattan_precision": 0.5443786982248521,
943
+ "eval_Qnli-dev_manhattan_recall": 0.7796610169491526,
944
+ "eval_Qnli-dev_max_accuracy": 0.626953125,
945
+ "eval_Qnli-dev_max_accuracy_threshold": 410.2371826171875,
946
+ "eval_Qnli-dev_max_ap": 0.629870060597291,
947
+ "eval_Qnli-dev_max_f1": 0.6411149825783973,
948
+ "eval_Qnli-dev_max_f1_threshold": 284.4015808105469,
949
+ "eval_Qnli-dev_max_precision": 0.5443786982248521,
950
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
951
+ "eval_allNLI-dev_cosine_accuracy": 0.671875,
952
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.9736817479133606,
953
+ "eval_allNLI-dev_cosine_ap": 0.3931696251670499,
954
+ "eval_allNLI-dev_cosine_f1": 0.5082212257100149,
955
+ "eval_allNLI-dev_cosine_f1_threshold": 0.8241816759109497,
956
+ "eval_allNLI-dev_cosine_precision": 0.34274193548387094,
957
+ "eval_allNLI-dev_cosine_recall": 0.9826589595375722,
958
+ "eval_allNLI-dev_dot_accuracy": 0.66015625,
959
+ "eval_allNLI-dev_dot_accuracy_threshold": 535.3334350585938,
960
+ "eval_allNLI-dev_dot_ap": 0.3396037265960903,
961
+ "eval_allNLI-dev_dot_f1": 0.5065885797950219,
962
+ "eval_allNLI-dev_dot_f1_threshold": 339.2867431640625,
963
+ "eval_allNLI-dev_dot_precision": 0.3392156862745098,
964
+ "eval_allNLI-dev_dot_recall": 1.0,
965
+ "eval_allNLI-dev_euclidean_accuracy": 0.671875,
966
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 5.143446922302246,
967
+ "eval_allNLI-dev_euclidean_ap": 0.39265337020239105,
968
+ "eval_allNLI-dev_euclidean_f1": 0.5096870342771982,
969
+ "eval_allNLI-dev_euclidean_f1_threshold": 13.402521133422852,
970
+ "eval_allNLI-dev_euclidean_precision": 0.3433734939759036,
971
+ "eval_allNLI-dev_euclidean_recall": 0.9884393063583815,
972
+ "eval_allNLI-dev_manhattan_accuracy": 0.669921875,
973
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 84.37629699707031,
974
+ "eval_allNLI-dev_manhattan_ap": 0.4041341581180743,
975
+ "eval_allNLI-dev_manhattan_f1": 0.5081240768094535,
976
+ "eval_allNLI-dev_manhattan_f1_threshold": 237.8282012939453,
977
+ "eval_allNLI-dev_manhattan_precision": 0.3412698412698413,
978
+ "eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
979
+ "eval_allNLI-dev_max_accuracy": 0.671875,
980
+ "eval_allNLI-dev_max_accuracy_threshold": 535.3334350585938,
981
+ "eval_allNLI-dev_max_ap": 0.4041341581180743,
982
+ "eval_allNLI-dev_max_f1": 0.5096870342771982,
983
+ "eval_allNLI-dev_max_f1_threshold": 339.2867431640625,
984
+ "eval_allNLI-dev_max_precision": 0.3433734939759036,
985
+ "eval_allNLI-dev_max_recall": 1.0,
986
+ "eval_loss": 0.9314436912536621,
987
+ "eval_runtime": 56.8956,
988
+ "eval_samples_per_second": 26.47,
989
+ "eval_sequential_score": 0.629870060597291,
990
+ "eval_steps_per_second": 0.211,
991
+ "eval_sts-test_pearson_cosine": 0.2343040951892625,
992
+ "eval_sts-test_pearson_dot": 0.30372753804498825,
993
+ "eval_sts-test_pearson_euclidean": 0.21952614769670548,
994
+ "eval_sts-test_pearson_manhattan": 0.24089043440705574,
995
+ "eval_sts-test_pearson_max": 0.30372753804498825,
996
+ "eval_sts-test_spearman_cosine": 0.2738163657359974,
997
+ "eval_sts-test_spearman_dot": 0.3138135663760044,
998
+ "eval_sts-test_spearman_euclidean": 0.2414264767711758,
999
+ "eval_sts-test_spearman_manhattan": 0.26426890787444923,
1000
+ "eval_sts-test_spearman_max": 0.3138135663760044,
1001
+ "step": 40
1002
+ },
1003
+ {
1004
+ "epoch": 0.22527472527472528,
1005
+ "grad_norm": 10.145929336547852,
1006
+ "learning_rate": 8.494475138121546e-06,
1007
+ "loss": 6.2244,
1008
+ "step": 41
1009
+ },
1010
+ {
1011
+ "epoch": 0.23076923076923078,
1012
+ "grad_norm": 11.5704345703125,
1013
+ "learning_rate": 8.701657458563535e-06,
1014
+ "loss": 6.007,
1015
+ "step": 42
1016
+ },
1017
+ {
1018
+ "epoch": 0.23626373626373626,
1019
+ "grad_norm": 12.0188627243042,
1020
+ "learning_rate": 8.908839779005524e-06,
1021
+ "loss": 5.977,
1022
+ "step": 43
1023
+ },
1024
+ {
1025
+ "epoch": 0.24175824175824176,
1026
+ "grad_norm": 10.774896621704102,
1027
+ "learning_rate": 9.116022099447513e-06,
1028
+ "loss": 6.0748,
1029
+ "step": 44
1030
+ },
1031
+ {
1032
+ "epoch": 0.24725274725274726,
1033
+ "grad_norm": 10.21664810180664,
1034
+ "learning_rate": 9.323204419889502e-06,
1035
+ "loss": 5.7946,
1036
+ "step": 45
1037
+ },
1038
+ {
1039
+ "epoch": 0.24725274725274726,
1040
+ "eval_Qnli-dev_cosine_accuracy": 0.626953125,
1041
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.9162209033966064,
1042
+ "eval_Qnli-dev_cosine_ap": 0.5960506092402249,
1043
+ "eval_Qnli-dev_cosine_f1": 0.6291834002677376,
1044
+ "eval_Qnli-dev_cosine_f1_threshold": 0.6565881967544556,
1045
+ "eval_Qnli-dev_cosine_precision": 0.4598825831702544,
1046
+ "eval_Qnli-dev_cosine_recall": 0.9957627118644068,
1047
+ "eval_Qnli-dev_dot_accuracy": 0.580078125,
1048
+ "eval_Qnli-dev_dot_accuracy_threshold": 380.0188293457031,
1049
+ "eval_Qnli-dev_dot_ap": 0.5101751614495642,
1050
+ "eval_Qnli-dev_dot_f1": 0.6291834002677376,
1051
+ "eval_Qnli-dev_dot_f1_threshold": 259.723876953125,
1052
+ "eval_Qnli-dev_dot_precision": 0.4598825831702544,
1053
+ "eval_Qnli-dev_dot_recall": 0.9957627118644068,
1054
+ "eval_Qnli-dev_euclidean_accuracy": 0.6171875,
1055
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 8.577693939208984,
1056
+ "eval_Qnli-dev_euclidean_ap": 0.6056069399590038,
1057
+ "eval_Qnli-dev_euclidean_f1": 0.6297297297297297,
1058
+ "eval_Qnli-dev_euclidean_f1_threshold": 13.569040298461914,
1059
+ "eval_Qnli-dev_euclidean_precision": 0.4623015873015873,
1060
+ "eval_Qnli-dev_euclidean_recall": 0.9872881355932204,
1061
+ "eval_Qnli-dev_manhattan_accuracy": 0.634765625,
1062
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 177.60205078125,
1063
+ "eval_Qnli-dev_manhattan_ap": 0.6403997437330724,
1064
+ "eval_Qnli-dev_manhattan_f1": 0.6466165413533835,
1065
+ "eval_Qnli-dev_manhattan_f1_threshold": 206.83108520507812,
1066
+ "eval_Qnli-dev_manhattan_precision": 0.5011655011655012,
1067
+ "eval_Qnli-dev_manhattan_recall": 0.9110169491525424,
1068
+ "eval_Qnli-dev_max_accuracy": 0.634765625,
1069
+ "eval_Qnli-dev_max_accuracy_threshold": 380.0188293457031,
1070
+ "eval_Qnli-dev_max_ap": 0.6403997437330724,
1071
+ "eval_Qnli-dev_max_f1": 0.6466165413533835,
1072
+ "eval_Qnli-dev_max_f1_threshold": 259.723876953125,
1073
+ "eval_Qnli-dev_max_precision": 0.5011655011655012,
1074
+ "eval_Qnli-dev_max_recall": 0.9957627118644068,
1075
+ "eval_allNLI-dev_cosine_accuracy": 0.669921875,
1076
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.9787822961807251,
1077
+ "eval_allNLI-dev_cosine_ap": 0.40222842666723646,
1078
+ "eval_allNLI-dev_cosine_f1": 0.5096870342771982,
1079
+ "eval_allNLI-dev_cosine_f1_threshold": 0.7735908031463623,
1080
+ "eval_allNLI-dev_cosine_precision": 0.3433734939759036,
1081
+ "eval_allNLI-dev_cosine_recall": 0.9884393063583815,
1082
+ "eval_allNLI-dev_dot_accuracy": 0.662109375,
1083
+ "eval_allNLI-dev_dot_accuracy_threshold": 506.13720703125,
1084
+ "eval_allNLI-dev_dot_ap": 0.3502405242734096,
1085
+ "eval_allNLI-dev_dot_f1": 0.5065885797950219,
1086
+ "eval_allNLI-dev_dot_f1_threshold": 313.13623046875,
1087
+ "eval_allNLI-dev_dot_precision": 0.3392156862745098,
1088
+ "eval_allNLI-dev_dot_recall": 1.0,
1089
+ "eval_allNLI-dev_euclidean_accuracy": 0.669921875,
1090
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 4.530505180358887,
1091
+ "eval_allNLI-dev_euclidean_ap": 0.40012968794878784,
1092
+ "eval_allNLI-dev_euclidean_f1": 0.5105105105105106,
1093
+ "eval_allNLI-dev_euclidean_f1_threshold": 13.752574920654297,
1094
+ "eval_allNLI-dev_euclidean_precision": 0.3448275862068966,
1095
+ "eval_allNLI-dev_euclidean_recall": 0.9826589595375722,
1096
+ "eval_allNLI-dev_manhattan_accuracy": 0.669921875,
1097
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 84.84814453125,
1098
+ "eval_allNLI-dev_manhattan_ap": 0.411550187432712,
1099
+ "eval_allNLI-dev_manhattan_f1": 0.5152671755725191,
1100
+ "eval_allNLI-dev_manhattan_f1_threshold": 184.89407348632812,
1101
+ "eval_allNLI-dev_manhattan_precision": 0.38461538461538464,
1102
+ "eval_allNLI-dev_manhattan_recall": 0.7803468208092486,
1103
+ "eval_allNLI-dev_max_accuracy": 0.669921875,
1104
+ "eval_allNLI-dev_max_accuracy_threshold": 506.13720703125,
1105
+ "eval_allNLI-dev_max_ap": 0.411550187432712,
1106
+ "eval_allNLI-dev_max_f1": 0.5152671755725191,
1107
+ "eval_allNLI-dev_max_f1_threshold": 313.13623046875,
1108
+ "eval_allNLI-dev_max_precision": 0.38461538461538464,
1109
+ "eval_allNLI-dev_max_recall": 1.0,
1110
+ "eval_loss": 0.8549203276634216,
1111
+ "eval_runtime": 56.9038,
1112
+ "eval_samples_per_second": 26.466,
1113
+ "eval_sequential_score": 0.6403997437330724,
1114
+ "eval_steps_per_second": 0.211,
1115
+ "eval_sts-test_pearson_cosine": 0.24573194235606088,
1116
+ "eval_sts-test_pearson_dot": 0.30146061611878155,
1117
+ "eval_sts-test_pearson_euclidean": 0.2321150570038752,
1118
+ "eval_sts-test_pearson_manhattan": 0.25210046027138755,
1119
+ "eval_sts-test_pearson_max": 0.30146061611878155,
1120
+ "eval_sts-test_spearman_cosine": 0.2847268127657434,
1121
+ "eval_sts-test_spearman_dot": 0.31326692971810843,
1122
+ "eval_sts-test_spearman_euclidean": 0.2512167997282951,
1123
+ "eval_sts-test_spearman_manhattan": 0.27196800438674845,
1124
+ "eval_sts-test_spearman_max": 0.31326692971810843,
1125
+ "step": 45
1126
+ },
1127
+ {
1128
+ "epoch": 0.25274725274725274,
1129
+ "grad_norm": 9.914789199829102,
1130
+ "learning_rate": 9.530386740331491e-06,
1131
+ "loss": 5.8751,
1132
+ "step": 46
1133
+ },
1134
+ {
1135
+ "epoch": 0.25824175824175827,
1136
+ "grad_norm": 10.506736755371094,
1137
+ "learning_rate": 9.73756906077348e-06,
1138
+ "loss": 5.543,
1139
+ "step": 47
1140
+ },
1141
+ {
1142
+ "epoch": 0.26373626373626374,
1143
+ "grad_norm": 8.838153839111328,
1144
+ "learning_rate": 9.944751381215468e-06,
1145
+ "loss": 5.5511,
1146
+ "step": 48
1147
+ },
1148
+ {
1149
+ "epoch": 0.2692307692307692,
1150
+ "grad_norm": 9.893248558044434,
1151
+ "learning_rate": 1.0151933701657457e-05,
1152
+ "loss": 5.411,
1153
+ "step": 49
1154
+ },
1155
+ {
1156
+ "epoch": 0.27472527472527475,
1157
+ "grad_norm": 9.514713287353516,
1158
+ "learning_rate": 1.0359116022099448e-05,
1159
+ "loss": 5.378,
1160
+ "step": 50
1161
+ },
1162
+ {
1163
+ "epoch": 0.27472527472527475,
1164
+ "eval_Qnli-dev_cosine_accuracy": 0.6328125,
1165
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.8978130221366882,
1166
+ "eval_Qnli-dev_cosine_ap": 0.6213005329057975,
1167
+ "eval_Qnli-dev_cosine_f1": 0.6384266263237518,
1168
+ "eval_Qnli-dev_cosine_f1_threshold": 0.8041039705276489,
1169
+ "eval_Qnli-dev_cosine_precision": 0.4964705882352941,
1170
+ "eval_Qnli-dev_cosine_recall": 0.8940677966101694,
1171
+ "eval_Qnli-dev_dot_accuracy": 0.58984375,
1172
+ "eval_Qnli-dev_dot_accuracy_threshold": 356.9898681640625,
1173
+ "eval_Qnli-dev_dot_ap": 0.5268541601927336,
1174
+ "eval_Qnli-dev_dot_f1": 0.6318758815232722,
1175
+ "eval_Qnli-dev_dot_f1_threshold": 291.1335754394531,
1176
+ "eval_Qnli-dev_dot_precision": 0.47357293868921774,
1177
+ "eval_Qnli-dev_dot_recall": 0.9491525423728814,
1178
+ "eval_Qnli-dev_euclidean_accuracy": 0.638671875,
1179
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 10.523520469665527,
1180
+ "eval_Qnli-dev_euclidean_ap": 0.6291519886215534,
1181
+ "eval_Qnli-dev_euclidean_f1": 0.6337448559670782,
1182
+ "eval_Qnli-dev_euclidean_f1_threshold": 14.391512870788574,
1183
+ "eval_Qnli-dev_euclidean_precision": 0.4685598377281947,
1184
+ "eval_Qnli-dev_euclidean_recall": 0.9788135593220338,
1185
+ "eval_Qnli-dev_manhattan_accuracy": 0.650390625,
1186
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 189.05128479003906,
1187
+ "eval_Qnli-dev_manhattan_ap": 0.6556822594753774,
1188
+ "eval_Qnli-dev_manhattan_f1": 0.6430769230769231,
1189
+ "eval_Qnli-dev_manhattan_f1_threshold": 233.51510620117188,
1190
+ "eval_Qnli-dev_manhattan_precision": 0.5048309178743962,
1191
+ "eval_Qnli-dev_manhattan_recall": 0.885593220338983,
1192
+ "eval_Qnli-dev_max_accuracy": 0.650390625,
1193
+ "eval_Qnli-dev_max_accuracy_threshold": 356.9898681640625,
1194
+ "eval_Qnli-dev_max_ap": 0.6556822594753774,
1195
+ "eval_Qnli-dev_max_f1": 0.6430769230769231,
1196
+ "eval_Qnli-dev_max_f1_threshold": 291.1335754394531,
1197
+ "eval_Qnli-dev_max_precision": 0.5048309178743962,
1198
+ "eval_Qnli-dev_max_recall": 0.9788135593220338,
1199
+ "eval_allNLI-dev_cosine_accuracy": 0.66796875,
1200
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.9755356907844543,
1201
+ "eval_allNLI-dev_cosine_ap": 0.4066962429964717,
1202
+ "eval_allNLI-dev_cosine_f1": 0.5179856115107913,
1203
+ "eval_allNLI-dev_cosine_f1_threshold": 0.8535807132720947,
1204
+ "eval_allNLI-dev_cosine_precision": 0.37597911227154046,
1205
+ "eval_allNLI-dev_cosine_recall": 0.8323699421965318,
1206
+ "eval_allNLI-dev_dot_accuracy": 0.666015625,
1207
+ "eval_allNLI-dev_dot_accuracy_threshold": 476.64141845703125,
1208
+ "eval_allNLI-dev_dot_ap": 0.3666780883869565,
1209
+ "eval_allNLI-dev_dot_f1": 0.5111821086261982,
1210
+ "eval_allNLI-dev_dot_f1_threshold": 348.523193359375,
1211
+ "eval_allNLI-dev_dot_precision": 0.35320088300220753,
1212
+ "eval_allNLI-dev_dot_recall": 0.9248554913294798,
1213
+ "eval_allNLI-dev_euclidean_accuracy": 0.669921875,
1214
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 4.862855911254883,
1215
+ "eval_allNLI-dev_euclidean_ap": 0.405432241017242,
1216
+ "eval_allNLI-dev_euclidean_f1": 0.5186567164179104,
1217
+ "eval_allNLI-dev_euclidean_f1_threshold": 11.256525039672852,
1218
+ "eval_allNLI-dev_euclidean_precision": 0.38292011019283745,
1219
+ "eval_allNLI-dev_euclidean_recall": 0.8034682080924855,
1220
+ "eval_allNLI-dev_manhattan_accuracy": 0.66796875,
1221
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 83.92739868164062,
1222
+ "eval_allNLI-dev_manhattan_ap": 0.41593074876648894,
1223
+ "eval_allNLI-dev_manhattan_f1": 0.5261194029850746,
1224
+ "eval_allNLI-dev_manhattan_f1_threshold": 210.06704711914062,
1225
+ "eval_allNLI-dev_manhattan_precision": 0.3884297520661157,
1226
+ "eval_allNLI-dev_manhattan_recall": 0.815028901734104,
1227
+ "eval_allNLI-dev_max_accuracy": 0.669921875,
1228
+ "eval_allNLI-dev_max_accuracy_threshold": 476.64141845703125,
1229
+ "eval_allNLI-dev_max_ap": 0.41593074876648894,
1230
+ "eval_allNLI-dev_max_f1": 0.5261194029850746,
1231
+ "eval_allNLI-dev_max_f1_threshold": 348.523193359375,
1232
+ "eval_allNLI-dev_max_precision": 0.3884297520661157,
1233
+ "eval_allNLI-dev_max_recall": 0.9248554913294798,
1234
+ "eval_loss": 0.794283390045166,
1235
+ "eval_runtime": 56.8695,
1236
+ "eval_samples_per_second": 26.482,
1237
+ "eval_sequential_score": 0.6556822594753774,
1238
+ "eval_steps_per_second": 0.211,
1239
+ "eval_sts-test_pearson_cosine": 0.24584625215267258,
1240
+ "eval_sts-test_pearson_dot": 0.2940464136694855,
1241
+ "eval_sts-test_pearson_euclidean": 0.2382635480850375,
1242
+ "eval_sts-test_pearson_manhattan": 0.2536304588799789,
1243
+ "eval_sts-test_pearson_max": 0.2940464136694855,
1244
+ "eval_sts-test_spearman_cosine": 0.28663621483553026,
1245
+ "eval_sts-test_spearman_dot": 0.3088057212212612,
1246
+ "eval_sts-test_spearman_euclidean": 0.2572386189636446,
1247
+ "eval_sts-test_spearman_manhattan": 0.27229562837139487,
1248
+ "eval_sts-test_spearman_max": 0.3088057212212612,
1249
+ "step": 50
1250
+ },
1251
+ {
1252
+ "epoch": 0.2802197802197802,
1253
+ "grad_norm": 9.770188331604004,
1254
+ "learning_rate": 1.0566298342541435e-05,
1255
+ "loss": 5.3831,
1256
+ "step": 51
1257
+ },
1258
+ {
1259
+ "epoch": 0.2857142857142857,
1260
+ "grad_norm": 9.599061965942383,
1261
+ "learning_rate": 1.0773480662983425e-05,
1262
+ "loss": 4.9729,
1263
+ "step": 52
1264
+ },
1265
+ {
1266
+ "epoch": 0.29120879120879123,
1267
+ "grad_norm": 10.340251922607422,
1268
+ "learning_rate": 1.0980662983425412e-05,
1269
+ "loss": 5.0425,
1270
+ "step": 53
1271
+ },
1272
+ {
1273
+ "epoch": 0.2967032967032967,
1274
+ "grad_norm": 9.890629768371582,
1275
+ "learning_rate": 1.1187845303867403e-05,
1276
+ "loss": 4.9446,
1277
+ "step": 54
1278
+ },
1279
+ {
1280
+ "epoch": 0.3021978021978022,
1281
+ "grad_norm": 10.401249885559082,
1282
+ "learning_rate": 1.1395027624309392e-05,
1283
+ "loss": 4.9288,
1284
+ "step": 55
1285
+ },
1286
+ {
1287
+ "epoch": 0.3021978021978022,
1288
+ "eval_Qnli-dev_cosine_accuracy": 0.640625,
1289
+ "eval_Qnli-dev_cosine_accuracy_threshold": 0.8695281744003296,
1290
+ "eval_Qnli-dev_cosine_ap": 0.6314640856589909,
1291
+ "eval_Qnli-dev_cosine_f1": 0.6578512396694215,
1292
+ "eval_Qnli-dev_cosine_f1_threshold": 0.7936367988586426,
1293
+ "eval_Qnli-dev_cosine_precision": 0.5392953929539296,
1294
+ "eval_Qnli-dev_cosine_recall": 0.8432203389830508,
1295
+ "eval_Qnli-dev_dot_accuracy": 0.609375,
1296
+ "eval_Qnli-dev_dot_accuracy_threshold": 351.17626953125,
1297
+ "eval_Qnli-dev_dot_ap": 0.5366456296706419,
1298
+ "eval_Qnli-dev_dot_f1": 0.6501650165016502,
1299
+ "eval_Qnli-dev_dot_f1_threshold": 316.48046875,
1300
+ "eval_Qnli-dev_dot_precision": 0.5324324324324324,
1301
+ "eval_Qnli-dev_dot_recall": 0.8347457627118644,
1302
+ "eval_Qnli-dev_euclidean_accuracy": 0.65234375,
1303
+ "eval_Qnli-dev_euclidean_accuracy_threshold": 10.764808654785156,
1304
+ "eval_Qnli-dev_euclidean_ap": 0.6460602994393339,
1305
+ "eval_Qnli-dev_euclidean_f1": 0.6393210749646393,
1306
+ "eval_Qnli-dev_euclidean_f1_threshold": 15.096710205078125,
1307
+ "eval_Qnli-dev_euclidean_precision": 0.47983014861995754,
1308
+ "eval_Qnli-dev_euclidean_recall": 0.9576271186440678,
1309
+ "eval_Qnli-dev_manhattan_accuracy": 0.658203125,
1310
+ "eval_Qnli-dev_manhattan_accuracy_threshold": 206.32894897460938,
1311
+ "eval_Qnli-dev_manhattan_ap": 0.6679289689394285,
1312
+ "eval_Qnli-dev_manhattan_f1": 0.652373660030628,
1313
+ "eval_Qnli-dev_manhattan_f1_threshold": 261.3590393066406,
1314
+ "eval_Qnli-dev_manhattan_precision": 0.5107913669064749,
1315
+ "eval_Qnli-dev_manhattan_recall": 0.902542372881356,
1316
+ "eval_Qnli-dev_max_accuracy": 0.658203125,
1317
+ "eval_Qnli-dev_max_accuracy_threshold": 351.17626953125,
1318
+ "eval_Qnli-dev_max_ap": 0.6679289689394285,
1319
+ "eval_Qnli-dev_max_f1": 0.6578512396694215,
1320
+ "eval_Qnli-dev_max_f1_threshold": 316.48046875,
1321
+ "eval_Qnli-dev_max_precision": 0.5392953929539296,
1322
+ "eval_Qnli-dev_max_recall": 0.9576271186440678,
1323
+ "eval_allNLI-dev_cosine_accuracy": 0.66796875,
1324
+ "eval_allNLI-dev_cosine_accuracy_threshold": 0.9721465110778809,
1325
+ "eval_allNLI-dev_cosine_ap": 0.4140638596370657,
1326
+ "eval_allNLI-dev_cosine_f1": 0.5343511450381679,
1327
+ "eval_allNLI-dev_cosine_f1_threshold": 0.85741126537323,
1328
+ "eval_allNLI-dev_cosine_precision": 0.39886039886039887,
1329
+ "eval_allNLI-dev_cosine_recall": 0.8092485549132948,
1330
+ "eval_allNLI-dev_dot_accuracy": 0.666015625,
1331
+ "eval_allNLI-dev_dot_accuracy_threshold": 518.88671875,
1332
+ "eval_allNLI-dev_dot_ap": 0.3781233337023534,
1333
+ "eval_allNLI-dev_dot_f1": 0.514018691588785,
1334
+ "eval_allNLI-dev_dot_f1_threshold": 323.9651184082031,
1335
+ "eval_allNLI-dev_dot_precision": 0.35181236673773986,
1336
+ "eval_allNLI-dev_dot_recall": 0.953757225433526,
1337
+ "eval_allNLI-dev_euclidean_accuracy": 0.671875,
1338
+ "eval_allNLI-dev_euclidean_accuracy_threshold": 5.084325790405273,
1339
+ "eval_allNLI-dev_euclidean_ap": 0.41769294415599645,
1340
+ "eval_allNLI-dev_euclidean_f1": 0.5404339250493098,
1341
+ "eval_allNLI-dev_euclidean_f1_threshold": 11.333902359008789,
1342
+ "eval_allNLI-dev_euclidean_precision": 0.4101796407185629,
1343
+ "eval_allNLI-dev_euclidean_recall": 0.791907514450867,
1344
+ "eval_allNLI-dev_manhattan_accuracy": 0.671875,
1345
+ "eval_allNLI-dev_manhattan_accuracy_threshold": 114.41839599609375,
1346
+ "eval_allNLI-dev_manhattan_ap": 0.4272864144491257,
1347
+ "eval_allNLI-dev_manhattan_f1": 0.5384615384615384,
1348
+ "eval_allNLI-dev_manhattan_f1_threshold": 226.82566833496094,
1349
+ "eval_allNLI-dev_manhattan_precision": 0.3941018766756032,
1350
+ "eval_allNLI-dev_manhattan_recall": 0.8497109826589595,
1351
+ "eval_allNLI-dev_max_accuracy": 0.671875,
1352
+ "eval_allNLI-dev_max_accuracy_threshold": 518.88671875,
1353
+ "eval_allNLI-dev_max_ap": 0.4272864144491257,
1354
+ "eval_allNLI-dev_max_f1": 0.5404339250493098,
1355
+ "eval_allNLI-dev_max_f1_threshold": 323.9651184082031,
1356
+ "eval_allNLI-dev_max_precision": 0.4101796407185629,
1357
+ "eval_allNLI-dev_max_recall": 0.953757225433526,
1358
+ "eval_loss": 0.7178329229354858,
1359
+ "eval_runtime": 56.8366,
1360
+ "eval_samples_per_second": 26.497,
1361
+ "eval_sequential_score": 0.6679289689394285,
1362
+ "eval_steps_per_second": 0.211,
1363
+ "eval_sts-test_pearson_cosine": 0.2589065791031549,
1364
+ "eval_sts-test_pearson_dot": 0.28511212645281553,
1365
+ "eval_sts-test_pearson_euclidean": 0.2585939429800171,
1366
+ "eval_sts-test_pearson_manhattan": 0.27236487282828553,
1367
+ "eval_sts-test_pearson_max": 0.28511212645281553,
1368
+ "eval_sts-test_spearman_cosine": 0.31323211323674593,
1369
+ "eval_sts-test_spearman_dot": 0.2967423026930272,
1370
+ "eval_sts-test_spearman_euclidean": 0.2833925986586202,
1371
+ "eval_sts-test_spearman_manhattan": 0.29656486394161036,
1372
+ "eval_sts-test_spearman_max": 0.31323211323674593,
1373
+ "step": 55
1374
+ }
1375
+ ],
1376
+ "logging_steps": 1,
1377
+ "max_steps": 546,
1378
+ "num_input_tokens_seen": 0,
1379
+ "num_train_epochs": 3,
1380
+ "save_steps": 55,
1381
+ "stateful_callbacks": {
1382
+ "TrainerControl": {
1383
+ "args": {
1384
+ "should_epoch_stop": false,
1385
+ "should_evaluate": false,
1386
+ "should_log": false,
1387
+ "should_save": true,
1388
+ "should_training_stop": false
1389
+ },
1390
+ "attributes": {}
1391
+ }
1392
+ },
1393
+ "total_flos": 0.0,
1394
+ "train_batch_size": 640,
1395
+ "trial_name": null,
1396
+ "trial_params": null
1397
+ }
checkpoint-55/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b50a4a92b5eb29f5d9b19f9e1060fdd6af0a02268cb16ba6bb85ab82bb7ddd6b
3
+ size 5752