Training in progress, step 55, checkpoint
Browse files- checkpoint-55/1_Pooling/config.json +10 -0
- checkpoint-55/README.md +906 -0
- checkpoint-55/added_tokens.json +3 -0
- checkpoint-55/config.json +35 -0
- checkpoint-55/config_sentence_transformers.json +10 -0
- checkpoint-55/modules.json +14 -0
- checkpoint-55/optimizer.pt +3 -0
- checkpoint-55/pytorch_model.bin +3 -0
- checkpoint-55/rng_state.pth +3 -0
- checkpoint-55/scheduler.pt +3 -0
- checkpoint-55/sentence_bert_config.json +4 -0
- checkpoint-55/special_tokens_map.json +15 -0
- checkpoint-55/spm.model +3 -0
- checkpoint-55/tokenizer.json +0 -0
- checkpoint-55/tokenizer_config.json +58 -0
- checkpoint-55/trainer_state.json +1397 -0
- checkpoint-55/training_args.bin +3 -0
checkpoint-55/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-55/README.md
ADDED
@@ -0,0 +1,906 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/deberta-v3-small
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- pearson_cosine
|
8 |
+
- spearman_cosine
|
9 |
+
- pearson_manhattan
|
10 |
+
- spearman_manhattan
|
11 |
+
- pearson_euclidean
|
12 |
+
- spearman_euclidean
|
13 |
+
- pearson_dot
|
14 |
+
- spearman_dot
|
15 |
+
- pearson_max
|
16 |
+
- spearman_max
|
17 |
+
- cosine_accuracy
|
18 |
+
- cosine_accuracy_threshold
|
19 |
+
- cosine_f1
|
20 |
+
- cosine_f1_threshold
|
21 |
+
- cosine_precision
|
22 |
+
- cosine_recall
|
23 |
+
- cosine_ap
|
24 |
+
- dot_accuracy
|
25 |
+
- dot_accuracy_threshold
|
26 |
+
- dot_f1
|
27 |
+
- dot_f1_threshold
|
28 |
+
- dot_precision
|
29 |
+
- dot_recall
|
30 |
+
- dot_ap
|
31 |
+
- manhattan_accuracy
|
32 |
+
- manhattan_accuracy_threshold
|
33 |
+
- manhattan_f1
|
34 |
+
- manhattan_f1_threshold
|
35 |
+
- manhattan_precision
|
36 |
+
- manhattan_recall
|
37 |
+
- manhattan_ap
|
38 |
+
- euclidean_accuracy
|
39 |
+
- euclidean_accuracy_threshold
|
40 |
+
- euclidean_f1
|
41 |
+
- euclidean_f1_threshold
|
42 |
+
- euclidean_precision
|
43 |
+
- euclidean_recall
|
44 |
+
- euclidean_ap
|
45 |
+
- max_accuracy
|
46 |
+
- max_accuracy_threshold
|
47 |
+
- max_f1
|
48 |
+
- max_f1_threshold
|
49 |
+
- max_precision
|
50 |
+
- max_recall
|
51 |
+
- max_ap
|
52 |
+
pipeline_tag: sentence-similarity
|
53 |
+
tags:
|
54 |
+
- sentence-transformers
|
55 |
+
- sentence-similarity
|
56 |
+
- feature-extraction
|
57 |
+
- generated_from_trainer
|
58 |
+
- dataset_size:116445
|
59 |
+
- loss:CachedGISTEmbedLoss
|
60 |
+
widget:
|
61 |
+
- source_sentence: what is the main purpose of the brain
|
62 |
+
sentences:
|
63 |
+
- Brain Physiologically, the function of the brain is to exert centralized control
|
64 |
+
over the other organs of the body. The brain acts on the rest of the body both
|
65 |
+
by generating patterns of muscle activity and by driving the secretion of chemicals
|
66 |
+
called hormones. This centralized control allows rapid and coordinated responses
|
67 |
+
to changes in the environment. Some basic types of responsiveness such as reflexes
|
68 |
+
can be mediated by the spinal cord or peripheral ganglia, but sophisticated purposeful
|
69 |
+
control of behavior based on complex sensory input requires the information integrating
|
70 |
+
capabilities of a centralized brain.
|
71 |
+
- How do scientists know that some mountains were once at the bottom of an ocean?
|
72 |
+
- The Smiths Wiki | Fandom powered by Wikia Share Ad blocker interference detected!
|
73 |
+
Wikia is a free-to-use site that makes money from advertising. We have a modified
|
74 |
+
experience for viewers using ad blockers Wikia is not accessible if you’ve made
|
75 |
+
further modifications. Remove the custom ad blocker rule(s) and the page will
|
76 |
+
load as expected. The Smiths were an English rock band formed in Manchester in
|
77 |
+
1982. Based on the songwriting partnership of Morrissey (vocals) and Johnny Marr
|
78 |
+
(guitar), the band also included Andy Rourke (bass), Mike Joyce (drums) and for
|
79 |
+
a brief time Craig Gannon (rhythm guitar). Critics have called them one of the
|
80 |
+
most important alternative rock bands to emerge from the British independent music
|
81 |
+
scene of the 1980s,and the group has had major influence on subsequent artists.
|
82 |
+
Morrissey's lovelorn tales of alienation found an audience amongst youth culture
|
83 |
+
bored by the ubiquitous synthesiser-pop bands of the early 1980s, while Marr's
|
84 |
+
complex melodies helped return guitar-based music to popularity. The group were
|
85 |
+
signed to the independent record label Rough Trade Records , for whom they released
|
86 |
+
four studio albums and several compilations, as well as numerous non-LP singles.
|
87 |
+
Although they had limited commercial success outside the UK while they were still
|
88 |
+
together, and never released a single that charted higher than number 10 in their
|
89 |
+
home country, The Smiths won a growing following, and they remain cult and commercial
|
90 |
+
favourites. The band broke up in 1987 amid disagreements between Morrissey and
|
91 |
+
Marr and has turned down several offers to reform. Welcome to The Smiths Wiki
|
92 |
+
- source_sentence: There were 29 Muslims fatalities in the Cave of the Patriarchs
|
93 |
+
massacre .
|
94 |
+
sentences:
|
95 |
+
- In August , after the end of the war in June 1902 , Higgins Southampton left the
|
96 |
+
`` SSBavarian '' and returned to Cape Town the following month .
|
97 |
+
- Between 29 and 52 Muslims were killed and more than 100 others wounded . [ Settlers
|
98 |
+
remember gunman Goldstein ; Hebron riots continue ] .
|
99 |
+
- 29 Muslims were killed and more than 100 others wounded . [ Settlers remember
|
100 |
+
gunman Goldstein ; Hebron riots continue ] .
|
101 |
+
- source_sentence: are tabby cats all male?
|
102 |
+
sentences:
|
103 |
+
- Did you know orange tabby cats are typically male? In fact, up to 80 percent of
|
104 |
+
orange tabbies are male, making orange female cats a bit of a rarity. According
|
105 |
+
to the BBC's Focus Magazine, the ginger gene in cats works a little differently
|
106 |
+
compared to humans; it is on the X chromosome.
|
107 |
+
- Shawnee Trails Council was formed from the merger of the Four Rivers Council and
|
108 |
+
the Audubon Council .
|
109 |
+
- 'A picture of a modern looking kitchen area
|
110 |
+
|
111 |
+
'
|
112 |
+
- source_sentence: Aamir Khan agreed to act immediately after reading Mehra 's screenplay
|
113 |
+
in `` Rang De Basanti '' .
|
114 |
+
sentences:
|
115 |
+
- Chris Rea — Free listening, videos, concerts, stats and photos at Last.fm singer-songwriter
|
116 |
+
Christopher Anton Rea (pronounced Ree-ah), born 4 March 1951, is a singer, songwriter,
|
117 |
+
and guitarist from Middlesbrough, England. Rea's recording career began in 1978.
|
118 |
+
Although he almost immediately had a US hit single with "Fool (If You Think It's
|
119 |
+
Over)", Rea's initial focus was on continental Europe, releasing eight albums
|
120 |
+
in the 1980s. It wasn't until 1985's Shamrock Diaries and the songs "Stainsby
|
121 |
+
Girls" and "Josephine," that UK audiences began to take notice of him. Follow
|
122 |
+
up albums… read more
|
123 |
+
- "Healthy Fast Food Meal No. 1. Grilled Chicken Sandwich and Fruit Cup (Chick-fil-A)\
|
124 |
+
\ Several fast food chains offer a grilled chicken sandwich. The trick is ordering\
|
125 |
+
\ it without mayo or creamy sauce, and making sure itâ\x80\x99s served with a\
|
126 |
+
\ whole grain bun."
|
127 |
+
- Aamir Khan agreed to act in `` Rang De Basanti '' immediately after reading Mehra
|
128 |
+
's script .
|
129 |
+
- source_sentence: 'A man wearing a blue bow tie and a fedora hat in a car. '
|
130 |
+
sentences:
|
131 |
+
- A man takes a photo of himself wearing a bowtie and hat
|
132 |
+
- Scientists explain the world based on what?
|
133 |
+
- 'County of Angus - definition of County of Angus by The Free Dictionary County
|
134 |
+
of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus
|
135 |
+
(ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland
|
136 |
+
and are usually black but also occur in a red variety. Also called Black Angus.
|
137 |
+
[After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council
|
138 |
+
area of E Scotland on the North Sea: the historical county of Angus became part
|
139 |
+
of Tayside region in 1975; reinstated as a unitary authority (excluding City of
|
140 |
+
Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area:
|
141 |
+
2181 sq km (842 sq miles) An•gus'
|
142 |
+
model-index:
|
143 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-small
|
144 |
+
results:
|
145 |
+
- task:
|
146 |
+
type: semantic-similarity
|
147 |
+
name: Semantic Similarity
|
148 |
+
dataset:
|
149 |
+
name: sts test
|
150 |
+
type: sts-test
|
151 |
+
metrics:
|
152 |
+
- type: pearson_cosine
|
153 |
+
value: 0.2589065791031549
|
154 |
+
name: Pearson Cosine
|
155 |
+
- type: spearman_cosine
|
156 |
+
value: 0.31323211323674593
|
157 |
+
name: Spearman Cosine
|
158 |
+
- type: pearson_manhattan
|
159 |
+
value: 0.27236487282828553
|
160 |
+
name: Pearson Manhattan
|
161 |
+
- type: spearman_manhattan
|
162 |
+
value: 0.29656486394161036
|
163 |
+
name: Spearman Manhattan
|
164 |
+
- type: pearson_euclidean
|
165 |
+
value: 0.2585939429800171
|
166 |
+
name: Pearson Euclidean
|
167 |
+
- type: spearman_euclidean
|
168 |
+
value: 0.2833925986586202
|
169 |
+
name: Spearman Euclidean
|
170 |
+
- type: pearson_dot
|
171 |
+
value: 0.28511212645281553
|
172 |
+
name: Pearson Dot
|
173 |
+
- type: spearman_dot
|
174 |
+
value: 0.2967423026930272
|
175 |
+
name: Spearman Dot
|
176 |
+
- type: pearson_max
|
177 |
+
value: 0.28511212645281553
|
178 |
+
name: Pearson Max
|
179 |
+
- type: spearman_max
|
180 |
+
value: 0.31323211323674593
|
181 |
+
name: Spearman Max
|
182 |
+
- task:
|
183 |
+
type: binary-classification
|
184 |
+
name: Binary Classification
|
185 |
+
dataset:
|
186 |
+
name: allNLI dev
|
187 |
+
type: allNLI-dev
|
188 |
+
metrics:
|
189 |
+
- type: cosine_accuracy
|
190 |
+
value: 0.66796875
|
191 |
+
name: Cosine Accuracy
|
192 |
+
- type: cosine_accuracy_threshold
|
193 |
+
value: 0.9721465110778809
|
194 |
+
name: Cosine Accuracy Threshold
|
195 |
+
- type: cosine_f1
|
196 |
+
value: 0.5343511450381679
|
197 |
+
name: Cosine F1
|
198 |
+
- type: cosine_f1_threshold
|
199 |
+
value: 0.85741126537323
|
200 |
+
name: Cosine F1 Threshold
|
201 |
+
- type: cosine_precision
|
202 |
+
value: 0.39886039886039887
|
203 |
+
name: Cosine Precision
|
204 |
+
- type: cosine_recall
|
205 |
+
value: 0.8092485549132948
|
206 |
+
name: Cosine Recall
|
207 |
+
- type: cosine_ap
|
208 |
+
value: 0.4140638596370657
|
209 |
+
name: Cosine Ap
|
210 |
+
- type: dot_accuracy
|
211 |
+
value: 0.666015625
|
212 |
+
name: Dot Accuracy
|
213 |
+
- type: dot_accuracy_threshold
|
214 |
+
value: 518.88671875
|
215 |
+
name: Dot Accuracy Threshold
|
216 |
+
- type: dot_f1
|
217 |
+
value: 0.514018691588785
|
218 |
+
name: Dot F1
|
219 |
+
- type: dot_f1_threshold
|
220 |
+
value: 323.9651184082031
|
221 |
+
name: Dot F1 Threshold
|
222 |
+
- type: dot_precision
|
223 |
+
value: 0.35181236673773986
|
224 |
+
name: Dot Precision
|
225 |
+
- type: dot_recall
|
226 |
+
value: 0.953757225433526
|
227 |
+
name: Dot Recall
|
228 |
+
- type: dot_ap
|
229 |
+
value: 0.3781233337023534
|
230 |
+
name: Dot Ap
|
231 |
+
- type: manhattan_accuracy
|
232 |
+
value: 0.671875
|
233 |
+
name: Manhattan Accuracy
|
234 |
+
- type: manhattan_accuracy_threshold
|
235 |
+
value: 114.41839599609375
|
236 |
+
name: Manhattan Accuracy Threshold
|
237 |
+
- type: manhattan_f1
|
238 |
+
value: 0.5384615384615384
|
239 |
+
name: Manhattan F1
|
240 |
+
- type: manhattan_f1_threshold
|
241 |
+
value: 226.82566833496094
|
242 |
+
name: Manhattan F1 Threshold
|
243 |
+
- type: manhattan_precision
|
244 |
+
value: 0.3941018766756032
|
245 |
+
name: Manhattan Precision
|
246 |
+
- type: manhattan_recall
|
247 |
+
value: 0.8497109826589595
|
248 |
+
name: Manhattan Recall
|
249 |
+
- type: manhattan_ap
|
250 |
+
value: 0.4272864144491257
|
251 |
+
name: Manhattan Ap
|
252 |
+
- type: euclidean_accuracy
|
253 |
+
value: 0.671875
|
254 |
+
name: Euclidean Accuracy
|
255 |
+
- type: euclidean_accuracy_threshold
|
256 |
+
value: 5.084325790405273
|
257 |
+
name: Euclidean Accuracy Threshold
|
258 |
+
- type: euclidean_f1
|
259 |
+
value: 0.5404339250493098
|
260 |
+
name: Euclidean F1
|
261 |
+
- type: euclidean_f1_threshold
|
262 |
+
value: 11.333902359008789
|
263 |
+
name: Euclidean F1 Threshold
|
264 |
+
- type: euclidean_precision
|
265 |
+
value: 0.4101796407185629
|
266 |
+
name: Euclidean Precision
|
267 |
+
- type: euclidean_recall
|
268 |
+
value: 0.791907514450867
|
269 |
+
name: Euclidean Recall
|
270 |
+
- type: euclidean_ap
|
271 |
+
value: 0.41769294415599645
|
272 |
+
name: Euclidean Ap
|
273 |
+
- type: max_accuracy
|
274 |
+
value: 0.671875
|
275 |
+
name: Max Accuracy
|
276 |
+
- type: max_accuracy_threshold
|
277 |
+
value: 518.88671875
|
278 |
+
name: Max Accuracy Threshold
|
279 |
+
- type: max_f1
|
280 |
+
value: 0.5404339250493098
|
281 |
+
name: Max F1
|
282 |
+
- type: max_f1_threshold
|
283 |
+
value: 323.9651184082031
|
284 |
+
name: Max F1 Threshold
|
285 |
+
- type: max_precision
|
286 |
+
value: 0.4101796407185629
|
287 |
+
name: Max Precision
|
288 |
+
- type: max_recall
|
289 |
+
value: 0.953757225433526
|
290 |
+
name: Max Recall
|
291 |
+
- type: max_ap
|
292 |
+
value: 0.4272864144491257
|
293 |
+
name: Max Ap
|
294 |
+
- task:
|
295 |
+
type: binary-classification
|
296 |
+
name: Binary Classification
|
297 |
+
dataset:
|
298 |
+
name: Qnli dev
|
299 |
+
type: Qnli-dev
|
300 |
+
metrics:
|
301 |
+
- type: cosine_accuracy
|
302 |
+
value: 0.640625
|
303 |
+
name: Cosine Accuracy
|
304 |
+
- type: cosine_accuracy_threshold
|
305 |
+
value: 0.8695281744003296
|
306 |
+
name: Cosine Accuracy Threshold
|
307 |
+
- type: cosine_f1
|
308 |
+
value: 0.6578512396694215
|
309 |
+
name: Cosine F1
|
310 |
+
- type: cosine_f1_threshold
|
311 |
+
value: 0.7936367988586426
|
312 |
+
name: Cosine F1 Threshold
|
313 |
+
- type: cosine_precision
|
314 |
+
value: 0.5392953929539296
|
315 |
+
name: Cosine Precision
|
316 |
+
- type: cosine_recall
|
317 |
+
value: 0.8432203389830508
|
318 |
+
name: Cosine Recall
|
319 |
+
- type: cosine_ap
|
320 |
+
value: 0.6314640856589909
|
321 |
+
name: Cosine Ap
|
322 |
+
- type: dot_accuracy
|
323 |
+
value: 0.609375
|
324 |
+
name: Dot Accuracy
|
325 |
+
- type: dot_accuracy_threshold
|
326 |
+
value: 351.17626953125
|
327 |
+
name: Dot Accuracy Threshold
|
328 |
+
- type: dot_f1
|
329 |
+
value: 0.6501650165016502
|
330 |
+
name: Dot F1
|
331 |
+
- type: dot_f1_threshold
|
332 |
+
value: 316.48046875
|
333 |
+
name: Dot F1 Threshold
|
334 |
+
- type: dot_precision
|
335 |
+
value: 0.5324324324324324
|
336 |
+
name: Dot Precision
|
337 |
+
- type: dot_recall
|
338 |
+
value: 0.8347457627118644
|
339 |
+
name: Dot Recall
|
340 |
+
- type: dot_ap
|
341 |
+
value: 0.5366456296706419
|
342 |
+
name: Dot Ap
|
343 |
+
- type: manhattan_accuracy
|
344 |
+
value: 0.658203125
|
345 |
+
name: Manhattan Accuracy
|
346 |
+
- type: manhattan_accuracy_threshold
|
347 |
+
value: 206.32894897460938
|
348 |
+
name: Manhattan Accuracy Threshold
|
349 |
+
- type: manhattan_f1
|
350 |
+
value: 0.652373660030628
|
351 |
+
name: Manhattan F1
|
352 |
+
- type: manhattan_f1_threshold
|
353 |
+
value: 261.3590393066406
|
354 |
+
name: Manhattan F1 Threshold
|
355 |
+
- type: manhattan_precision
|
356 |
+
value: 0.5107913669064749
|
357 |
+
name: Manhattan Precision
|
358 |
+
- type: manhattan_recall
|
359 |
+
value: 0.902542372881356
|
360 |
+
name: Manhattan Recall
|
361 |
+
- type: manhattan_ap
|
362 |
+
value: 0.6679289689394285
|
363 |
+
name: Manhattan Ap
|
364 |
+
- type: euclidean_accuracy
|
365 |
+
value: 0.65234375
|
366 |
+
name: Euclidean Accuracy
|
367 |
+
- type: euclidean_accuracy_threshold
|
368 |
+
value: 10.764808654785156
|
369 |
+
name: Euclidean Accuracy Threshold
|
370 |
+
- type: euclidean_f1
|
371 |
+
value: 0.6393210749646393
|
372 |
+
name: Euclidean F1
|
373 |
+
- type: euclidean_f1_threshold
|
374 |
+
value: 15.096710205078125
|
375 |
+
name: Euclidean F1 Threshold
|
376 |
+
- type: euclidean_precision
|
377 |
+
value: 0.47983014861995754
|
378 |
+
name: Euclidean Precision
|
379 |
+
- type: euclidean_recall
|
380 |
+
value: 0.9576271186440678
|
381 |
+
name: Euclidean Recall
|
382 |
+
- type: euclidean_ap
|
383 |
+
value: 0.6460602994393339
|
384 |
+
name: Euclidean Ap
|
385 |
+
- type: max_accuracy
|
386 |
+
value: 0.658203125
|
387 |
+
name: Max Accuracy
|
388 |
+
- type: max_accuracy_threshold
|
389 |
+
value: 351.17626953125
|
390 |
+
name: Max Accuracy Threshold
|
391 |
+
- type: max_f1
|
392 |
+
value: 0.6578512396694215
|
393 |
+
name: Max F1
|
394 |
+
- type: max_f1_threshold
|
395 |
+
value: 316.48046875
|
396 |
+
name: Max F1 Threshold
|
397 |
+
- type: max_precision
|
398 |
+
value: 0.5392953929539296
|
399 |
+
name: Max Precision
|
400 |
+
- type: max_recall
|
401 |
+
value: 0.9576271186440678
|
402 |
+
name: Max Recall
|
403 |
+
- type: max_ap
|
404 |
+
value: 0.6679289689394285
|
405 |
+
name: Max Ap
|
406 |
+
---
|
407 |
+
|
408 |
+
# SentenceTransformer based on microsoft/deberta-v3-small
|
409 |
+
|
410 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
411 |
+
|
412 |
+
## Model Details
|
413 |
+
|
414 |
+
### Model Description
|
415 |
+
- **Model Type:** Sentence Transformer
|
416 |
+
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
|
417 |
+
- **Maximum Sequence Length:** 512 tokens
|
418 |
+
- **Output Dimensionality:** 768 tokens
|
419 |
+
- **Similarity Function:** Cosine Similarity
|
420 |
+
- **Training Dataset:**
|
421 |
+
- bobox/enhanced_nli-50_k
|
422 |
+
<!-- - **Language:** Unknown -->
|
423 |
+
<!-- - **License:** Unknown -->
|
424 |
+
|
425 |
+
### Model Sources
|
426 |
+
|
427 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
428 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
429 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
430 |
+
|
431 |
+
### Full Model Architecture
|
432 |
+
|
433 |
+
```
|
434 |
+
SentenceTransformer(
|
435 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
436 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
437 |
+
)
|
438 |
+
```
|
439 |
+
|
440 |
+
## Usage
|
441 |
+
|
442 |
+
### Direct Usage (Sentence Transformers)
|
443 |
+
|
444 |
+
First install the Sentence Transformers library:
|
445 |
+
|
446 |
+
```bash
|
447 |
+
pip install -U sentence-transformers
|
448 |
+
```
|
449 |
+
|
450 |
+
Then you can load this model and run inference.
|
451 |
+
```python
|
452 |
+
from sentence_transformers import SentenceTransformer
|
453 |
+
|
454 |
+
# Download from the 🤗 Hub
|
455 |
+
model = SentenceTransformer("bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp")
|
456 |
+
# Run inference
|
457 |
+
sentences = [
|
458 |
+
'A man wearing a blue bow tie and a fedora hat in a car. ',
|
459 |
+
'A man takes a photo of himself wearing a bowtie and hat',
|
460 |
+
'County of Angus - definition of County of Angus by The Free Dictionary County of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus \xa0(ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland and are usually black but also occur in a red variety. Also called Black Angus. [After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council area of E Scotland on the North Sea: the historical county of Angus became part of Tayside region in 1975; reinstated as a unitary authority (excluding City of Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area: 2181 sq km (842 sq miles) An•gus',
|
461 |
+
]
|
462 |
+
embeddings = model.encode(sentences)
|
463 |
+
print(embeddings.shape)
|
464 |
+
# [3, 768]
|
465 |
+
|
466 |
+
# Get the similarity scores for the embeddings
|
467 |
+
similarities = model.similarity(embeddings, embeddings)
|
468 |
+
print(similarities.shape)
|
469 |
+
# [3, 3]
|
470 |
+
```
|
471 |
+
|
472 |
+
<!--
|
473 |
+
### Direct Usage (Transformers)
|
474 |
+
|
475 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
476 |
+
|
477 |
+
</details>
|
478 |
+
-->
|
479 |
+
|
480 |
+
<!--
|
481 |
+
### Downstream Usage (Sentence Transformers)
|
482 |
+
|
483 |
+
You can finetune this model on your own dataset.
|
484 |
+
|
485 |
+
<details><summary>Click to expand</summary>
|
486 |
+
|
487 |
+
</details>
|
488 |
+
-->
|
489 |
+
|
490 |
+
<!--
|
491 |
+
### Out-of-Scope Use
|
492 |
+
|
493 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
494 |
+
-->
|
495 |
+
|
496 |
+
## Evaluation
|
497 |
+
|
498 |
+
### Metrics
|
499 |
+
|
500 |
+
#### Semantic Similarity
|
501 |
+
* Dataset: `sts-test`
|
502 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
503 |
+
|
504 |
+
| Metric | Value |
|
505 |
+
|:--------------------|:-----------|
|
506 |
+
| pearson_cosine | 0.2589 |
|
507 |
+
| **spearman_cosine** | **0.3132** |
|
508 |
+
| pearson_manhattan | 0.2724 |
|
509 |
+
| spearman_manhattan | 0.2966 |
|
510 |
+
| pearson_euclidean | 0.2586 |
|
511 |
+
| spearman_euclidean | 0.2834 |
|
512 |
+
| pearson_dot | 0.2851 |
|
513 |
+
| spearman_dot | 0.2967 |
|
514 |
+
| pearson_max | 0.2851 |
|
515 |
+
| spearman_max | 0.3132 |
|
516 |
+
|
517 |
+
#### Binary Classification
|
518 |
+
* Dataset: `allNLI-dev`
|
519 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
520 |
+
|
521 |
+
| Metric | Value |
|
522 |
+
|:-----------------------------|:-----------|
|
523 |
+
| cosine_accuracy | 0.668 |
|
524 |
+
| cosine_accuracy_threshold | 0.9721 |
|
525 |
+
| cosine_f1 | 0.5344 |
|
526 |
+
| cosine_f1_threshold | 0.8574 |
|
527 |
+
| cosine_precision | 0.3989 |
|
528 |
+
| cosine_recall | 0.8092 |
|
529 |
+
| cosine_ap | 0.4141 |
|
530 |
+
| dot_accuracy | 0.666 |
|
531 |
+
| dot_accuracy_threshold | 518.8867 |
|
532 |
+
| dot_f1 | 0.514 |
|
533 |
+
| dot_f1_threshold | 323.9651 |
|
534 |
+
| dot_precision | 0.3518 |
|
535 |
+
| dot_recall | 0.9538 |
|
536 |
+
| dot_ap | 0.3781 |
|
537 |
+
| manhattan_accuracy | 0.6719 |
|
538 |
+
| manhattan_accuracy_threshold | 114.4184 |
|
539 |
+
| manhattan_f1 | 0.5385 |
|
540 |
+
| manhattan_f1_threshold | 226.8257 |
|
541 |
+
| manhattan_precision | 0.3941 |
|
542 |
+
| manhattan_recall | 0.8497 |
|
543 |
+
| manhattan_ap | 0.4273 |
|
544 |
+
| euclidean_accuracy | 0.6719 |
|
545 |
+
| euclidean_accuracy_threshold | 5.0843 |
|
546 |
+
| euclidean_f1 | 0.5404 |
|
547 |
+
| euclidean_f1_threshold | 11.3339 |
|
548 |
+
| euclidean_precision | 0.4102 |
|
549 |
+
| euclidean_recall | 0.7919 |
|
550 |
+
| euclidean_ap | 0.4177 |
|
551 |
+
| max_accuracy | 0.6719 |
|
552 |
+
| max_accuracy_threshold | 518.8867 |
|
553 |
+
| max_f1 | 0.5404 |
|
554 |
+
| max_f1_threshold | 323.9651 |
|
555 |
+
| max_precision | 0.4102 |
|
556 |
+
| max_recall | 0.9538 |
|
557 |
+
| **max_ap** | **0.4273** |
|
558 |
+
|
559 |
+
#### Binary Classification
|
560 |
+
* Dataset: `Qnli-dev`
|
561 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
562 |
+
|
563 |
+
| Metric | Value |
|
564 |
+
|:-----------------------------|:-----------|
|
565 |
+
| cosine_accuracy | 0.6406 |
|
566 |
+
| cosine_accuracy_threshold | 0.8695 |
|
567 |
+
| cosine_f1 | 0.6579 |
|
568 |
+
| cosine_f1_threshold | 0.7936 |
|
569 |
+
| cosine_precision | 0.5393 |
|
570 |
+
| cosine_recall | 0.8432 |
|
571 |
+
| cosine_ap | 0.6315 |
|
572 |
+
| dot_accuracy | 0.6094 |
|
573 |
+
| dot_accuracy_threshold | 351.1763 |
|
574 |
+
| dot_f1 | 0.6502 |
|
575 |
+
| dot_f1_threshold | 316.4805 |
|
576 |
+
| dot_precision | 0.5324 |
|
577 |
+
| dot_recall | 0.8347 |
|
578 |
+
| dot_ap | 0.5366 |
|
579 |
+
| manhattan_accuracy | 0.6582 |
|
580 |
+
| manhattan_accuracy_threshold | 206.3289 |
|
581 |
+
| manhattan_f1 | 0.6524 |
|
582 |
+
| manhattan_f1_threshold | 261.359 |
|
583 |
+
| manhattan_precision | 0.5108 |
|
584 |
+
| manhattan_recall | 0.9025 |
|
585 |
+
| manhattan_ap | 0.6679 |
|
586 |
+
| euclidean_accuracy | 0.6523 |
|
587 |
+
| euclidean_accuracy_threshold | 10.7648 |
|
588 |
+
| euclidean_f1 | 0.6393 |
|
589 |
+
| euclidean_f1_threshold | 15.0967 |
|
590 |
+
| euclidean_precision | 0.4798 |
|
591 |
+
| euclidean_recall | 0.9576 |
|
592 |
+
| euclidean_ap | 0.6461 |
|
593 |
+
| max_accuracy | 0.6582 |
|
594 |
+
| max_accuracy_threshold | 351.1763 |
|
595 |
+
| max_f1 | 0.6579 |
|
596 |
+
| max_f1_threshold | 316.4805 |
|
597 |
+
| max_precision | 0.5393 |
|
598 |
+
| max_recall | 0.9576 |
|
599 |
+
| **max_ap** | **0.6679** |
|
600 |
+
|
601 |
+
<!--
|
602 |
+
## Bias, Risks and Limitations
|
603 |
+
|
604 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
605 |
+
-->
|
606 |
+
|
607 |
+
<!--
|
608 |
+
### Recommendations
|
609 |
+
|
610 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
611 |
+
-->
|
612 |
+
|
613 |
+
## Training Details
|
614 |
+
|
615 |
+
### Training Dataset
|
616 |
+
|
617 |
+
#### bobox/enhanced_nli-50_k
|
618 |
+
|
619 |
+
* Dataset: bobox/enhanced_nli-50_k
|
620 |
+
* Size: 116,445 training samples
|
621 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
622 |
+
* Approximate statistics based on the first 1000 samples:
|
623 |
+
| | sentence1 | sentence2 |
|
624 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
625 |
+
| type | string | string |
|
626 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 33.67 tokens</li><li>max: 338 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 51.48 tokens</li><li>max: 512 tokens</li></ul> |
|
627 |
+
* Samples:
|
628 |
+
| sentence1 | sentence2 |
|
629 |
+
|:---------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
630 |
+
| <code>who is darnell from my name is earl</code> | <code>Eddie Steeples Eddie Steeples (born November 25, 1973)[1] is an American actor known for his roles as the "Rubberband Man" in an advertising campaign for OfficeMax, and as Darnell Turner on the NBC sitcom My Name Is Earl.</code> |
|
631 |
+
| <code>Ferrell and the Chili Peppers toured together in 2013 .</code> | <code>Ferrell and the Chili Peppers wrapped up I 'm With You World Tour in April 2013 .</code> |
|
632 |
+
| <code>Cells have four cycles.</code> | <code>How many cycles do cells have?</code> |
|
633 |
+
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
|
634 |
+
```json
|
635 |
+
{'guide': SentenceTransformer(
|
636 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
637 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
638 |
+
(2): Normalize()
|
639 |
+
), 'temperature': 0.025}
|
640 |
+
```
|
641 |
+
|
642 |
+
### Evaluation Dataset
|
643 |
+
|
644 |
+
#### bobox/enhanced_nli-50_k
|
645 |
+
|
646 |
+
* Dataset: bobox/enhanced_nli-50_k
|
647 |
+
* Size: 1,506 evaluation samples
|
648 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
649 |
+
* Approximate statistics based on the first 1000 samples:
|
650 |
+
| | sentence1 | sentence2 |
|
651 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
652 |
+
| type | string | string |
|
653 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 32.36 tokens</li><li>max: 341 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 61.99 tokens</li><li>max: 431 tokens</li></ul> |
|
654 |
+
* Samples:
|
655 |
+
| sentence1 | sentence2 |
|
656 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
657 |
+
| <code>Interestingly, snakes use their forked tongues to smell.</code> | <code>Snakes use their tongue to smell things.</code> |
|
658 |
+
| <code>Soil is a renewable resource that can take thousand of years to form.</code> | <code>What is a renewable resource that can take thousand of years to form?</code> |
|
659 |
+
| <code>As of March 22 , there were more than 321,000 cases with over 13,600 deaths and more than 96,000 recoveries reported worldwide .</code> | <code>As of 22 March , more than 321,000 cases of COVID-19 have been reported in over 180 countries and territories , resulting in more than 13,600 deaths and 96,000 recoveries .</code> |
|
660 |
+
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
|
661 |
+
```json
|
662 |
+
{'guide': SentenceTransformer(
|
663 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
664 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
665 |
+
(2): Normalize()
|
666 |
+
), 'temperature': 0.025}
|
667 |
+
```
|
668 |
+
|
669 |
+
### Training Hyperparameters
|
670 |
+
#### Non-Default Hyperparameters
|
671 |
+
|
672 |
+
- `eval_strategy`: steps
|
673 |
+
- `per_device_train_batch_size`: 640
|
674 |
+
- `per_device_eval_batch_size`: 128
|
675 |
+
- `learning_rate`: 3.75e-05
|
676 |
+
- `weight_decay`: 0.0005
|
677 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
678 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06}
|
679 |
+
- `warmup_ratio`: 0.33
|
680 |
+
- `save_safetensors`: False
|
681 |
+
- `fp16`: True
|
682 |
+
- `push_to_hub`: True
|
683 |
+
- `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp
|
684 |
+
- `hub_strategy`: all_checkpoints
|
685 |
+
- `batch_sampler`: no_duplicates
|
686 |
+
|
687 |
+
#### All Hyperparameters
|
688 |
+
<details><summary>Click to expand</summary>
|
689 |
+
|
690 |
+
- `overwrite_output_dir`: False
|
691 |
+
- `do_predict`: False
|
692 |
+
- `eval_strategy`: steps
|
693 |
+
- `prediction_loss_only`: True
|
694 |
+
- `per_device_train_batch_size`: 640
|
695 |
+
- `per_device_eval_batch_size`: 128
|
696 |
+
- `per_gpu_train_batch_size`: None
|
697 |
+
- `per_gpu_eval_batch_size`: None
|
698 |
+
- `gradient_accumulation_steps`: 1
|
699 |
+
- `eval_accumulation_steps`: None
|
700 |
+
- `torch_empty_cache_steps`: None
|
701 |
+
- `learning_rate`: 3.75e-05
|
702 |
+
- `weight_decay`: 0.0005
|
703 |
+
- `adam_beta1`: 0.9
|
704 |
+
- `adam_beta2`: 0.999
|
705 |
+
- `adam_epsilon`: 1e-08
|
706 |
+
- `max_grad_norm`: 1.0
|
707 |
+
- `num_train_epochs`: 3
|
708 |
+
- `max_steps`: -1
|
709 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
710 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06}
|
711 |
+
- `warmup_ratio`: 0.33
|
712 |
+
- `warmup_steps`: 0
|
713 |
+
- `log_level`: passive
|
714 |
+
- `log_level_replica`: warning
|
715 |
+
- `log_on_each_node`: True
|
716 |
+
- `logging_nan_inf_filter`: True
|
717 |
+
- `save_safetensors`: False
|
718 |
+
- `save_on_each_node`: False
|
719 |
+
- `save_only_model`: False
|
720 |
+
- `restore_callback_states_from_checkpoint`: False
|
721 |
+
- `no_cuda`: False
|
722 |
+
- `use_cpu`: False
|
723 |
+
- `use_mps_device`: False
|
724 |
+
- `seed`: 42
|
725 |
+
- `data_seed`: None
|
726 |
+
- `jit_mode_eval`: False
|
727 |
+
- `use_ipex`: False
|
728 |
+
- `bf16`: False
|
729 |
+
- `fp16`: True
|
730 |
+
- `fp16_opt_level`: O1
|
731 |
+
- `half_precision_backend`: auto
|
732 |
+
- `bf16_full_eval`: False
|
733 |
+
- `fp16_full_eval`: False
|
734 |
+
- `tf32`: None
|
735 |
+
- `local_rank`: 0
|
736 |
+
- `ddp_backend`: None
|
737 |
+
- `tpu_num_cores`: None
|
738 |
+
- `tpu_metrics_debug`: False
|
739 |
+
- `debug`: []
|
740 |
+
- `dataloader_drop_last`: False
|
741 |
+
- `dataloader_num_workers`: 0
|
742 |
+
- `dataloader_prefetch_factor`: None
|
743 |
+
- `past_index`: -1
|
744 |
+
- `disable_tqdm`: False
|
745 |
+
- `remove_unused_columns`: True
|
746 |
+
- `label_names`: None
|
747 |
+
- `load_best_model_at_end`: False
|
748 |
+
- `ignore_data_skip`: False
|
749 |
+
- `fsdp`: []
|
750 |
+
- `fsdp_min_num_params`: 0
|
751 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
752 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
753 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
754 |
+
- `deepspeed`: None
|
755 |
+
- `label_smoothing_factor`: 0.0
|
756 |
+
- `optim`: adamw_torch
|
757 |
+
- `optim_args`: None
|
758 |
+
- `adafactor`: False
|
759 |
+
- `group_by_length`: False
|
760 |
+
- `length_column_name`: length
|
761 |
+
- `ddp_find_unused_parameters`: None
|
762 |
+
- `ddp_bucket_cap_mb`: None
|
763 |
+
- `ddp_broadcast_buffers`: False
|
764 |
+
- `dataloader_pin_memory`: True
|
765 |
+
- `dataloader_persistent_workers`: False
|
766 |
+
- `skip_memory_metrics`: True
|
767 |
+
- `use_legacy_prediction_loop`: False
|
768 |
+
- `push_to_hub`: True
|
769 |
+
- `resume_from_checkpoint`: None
|
770 |
+
- `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp
|
771 |
+
- `hub_strategy`: all_checkpoints
|
772 |
+
- `hub_private_repo`: False
|
773 |
+
- `hub_always_push`: False
|
774 |
+
- `gradient_checkpointing`: False
|
775 |
+
- `gradient_checkpointing_kwargs`: None
|
776 |
+
- `include_inputs_for_metrics`: False
|
777 |
+
- `eval_do_concat_batches`: True
|
778 |
+
- `fp16_backend`: auto
|
779 |
+
- `push_to_hub_model_id`: None
|
780 |
+
- `push_to_hub_organization`: None
|
781 |
+
- `mp_parameters`:
|
782 |
+
- `auto_find_batch_size`: False
|
783 |
+
- `full_determinism`: False
|
784 |
+
- `torchdynamo`: None
|
785 |
+
- `ray_scope`: last
|
786 |
+
- `ddp_timeout`: 1800
|
787 |
+
- `torch_compile`: False
|
788 |
+
- `torch_compile_backend`: None
|
789 |
+
- `torch_compile_mode`: None
|
790 |
+
- `dispatch_batches`: None
|
791 |
+
- `split_batches`: None
|
792 |
+
- `include_tokens_per_second`: False
|
793 |
+
- `include_num_input_tokens_seen`: False
|
794 |
+
- `neftune_noise_alpha`: None
|
795 |
+
- `optim_target_modules`: None
|
796 |
+
- `batch_eval_metrics`: False
|
797 |
+
- `eval_on_start`: False
|
798 |
+
- `eval_use_gather_object`: False
|
799 |
+
- `batch_sampler`: no_duplicates
|
800 |
+
- `multi_dataset_batch_sampler`: proportional
|
801 |
+
|
802 |
+
</details>
|
803 |
+
|
804 |
+
### Training Logs
|
805 |
+
| Epoch | Step | Training Loss | loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|
806 |
+
|:------:|:----:|:-------------:|:------:|:---------------:|:-----------------:|:------------------------:|
|
807 |
+
| 0.0055 | 1 | 8.8159 | - | - | - | - |
|
808 |
+
| 0.0110 | 2 | 9.1259 | - | - | - | - |
|
809 |
+
| 0.0165 | 3 | 8.9017 | - | - | - | - |
|
810 |
+
| 0.0220 | 4 | 9.1969 | - | - | - | - |
|
811 |
+
| 0.0275 | 5 | 9.3716 | 1.3746 | 0.6067 | 0.3706 | 0.1943 |
|
812 |
+
| 0.0330 | 6 | 9.0425 | - | - | - | - |
|
813 |
+
| 0.0385 | 7 | 8.7309 | - | - | - | - |
|
814 |
+
| 0.0440 | 8 | 9.0123 | - | - | - | - |
|
815 |
+
| 0.0495 | 9 | 8.8095 | - | - | - | - |
|
816 |
+
| 0.0549 | 10 | 9.3194 | 1.3227 | 0.6089 | 0.3721 | 0.1976 |
|
817 |
+
| 0.0604 | 11 | 8.9873 | - | - | - | - |
|
818 |
+
| 0.0659 | 12 | 8.5575 | - | - | - | - |
|
819 |
+
| 0.0714 | 13 | 8.8096 | - | - | - | - |
|
820 |
+
| 0.0769 | 14 | 8.0996 | - | - | - | - |
|
821 |
+
| 0.0824 | 15 | 8.1942 | 1.2244 | 0.6140 | 0.3743 | 0.2085 |
|
822 |
+
| 0.0879 | 16 | 8.1654 | - | - | - | - |
|
823 |
+
| 0.0934 | 17 | 7.7336 | - | - | - | - |
|
824 |
+
| 0.0989 | 18 | 7.9535 | - | - | - | - |
|
825 |
+
| 0.1044 | 19 | 7.9322 | - | - | - | - |
|
826 |
+
| 0.1099 | 20 | 7.6812 | 1.1301 | 0.6199 | 0.3790 | 0.2233 |
|
827 |
+
| 0.1154 | 21 | 7.551 | - | - | - | - |
|
828 |
+
| 0.1209 | 22 | 7.3788 | - | - | - | - |
|
829 |
+
| 0.1264 | 23 | 7.1746 | - | - | - | - |
|
830 |
+
| 0.1319 | 24 | 7.1849 | - | - | - | - |
|
831 |
+
| 0.1374 | 25 | 7.1085 | 1.0723 | 0.6195 | 0.3852 | 0.2357 |
|
832 |
+
| 0.1429 | 26 | 7.3926 | - | - | - | - |
|
833 |
+
| 0.1484 | 27 | 7.1817 | - | - | - | - |
|
834 |
+
| 0.1538 | 28 | 7.239 | - | - | - | - |
|
835 |
+
| 0.1593 | 29 | 7.0023 | - | - | - | - |
|
836 |
+
| 0.1648 | 30 | 6.9898 | 1.0282 | 0.6215 | 0.3898 | 0.2477 |
|
837 |
+
| 0.1703 | 31 | 6.9776 | - | - | - | - |
|
838 |
+
| 0.1758 | 32 | 6.8088 | - | - | - | - |
|
839 |
+
| 0.1813 | 33 | 6.8916 | - | - | - | - |
|
840 |
+
| 0.1868 | 34 | 6.6931 | - | - | - | - |
|
841 |
+
| 0.1923 | 35 | 6.5707 | 0.9846 | 0.6253 | 0.3952 | 0.2608 |
|
842 |
+
| 0.1978 | 36 | 6.6231 | - | - | - | - |
|
843 |
+
| 0.2033 | 37 | 6.4951 | - | - | - | - |
|
844 |
+
| 0.2088 | 38 | 6.4607 | - | - | - | - |
|
845 |
+
| 0.2143 | 39 | 6.4504 | - | - | - | - |
|
846 |
+
| 0.2198 | 40 | 6.3649 | 0.9314 | 0.6299 | 0.4041 | 0.2738 |
|
847 |
+
| 0.2253 | 41 | 6.2244 | - | - | - | - |
|
848 |
+
| 0.2308 | 42 | 6.007 | - | - | - | - |
|
849 |
+
| 0.2363 | 43 | 5.977 | - | - | - | - |
|
850 |
+
| 0.2418 | 44 | 6.0748 | - | - | - | - |
|
851 |
+
| 0.2473 | 45 | 5.7946 | 0.8549 | 0.6404 | 0.4116 | 0.2847 |
|
852 |
+
| 0.2527 | 46 | 5.8751 | - | - | - | - |
|
853 |
+
| 0.2582 | 47 | 5.543 | - | - | - | - |
|
854 |
+
| 0.2637 | 48 | 5.5511 | - | - | - | - |
|
855 |
+
| 0.2692 | 49 | 5.411 | - | - | - | - |
|
856 |
+
| 0.2747 | 50 | 5.378 | 0.7943 | 0.6557 | 0.4159 | 0.2866 |
|
857 |
+
| 0.2802 | 51 | 5.3831 | - | - | - | - |
|
858 |
+
| 0.2857 | 52 | 4.9729 | - | - | - | - |
|
859 |
+
| 0.2912 | 53 | 5.0425 | - | - | - | - |
|
860 |
+
| 0.2967 | 54 | 4.9446 | - | - | - | - |
|
861 |
+
| 0.3022 | 55 | 4.9288 | 0.7178 | 0.6679 | 0.4273 | 0.3132 |
|
862 |
+
|
863 |
+
|
864 |
+
### Framework Versions
|
865 |
+
- Python: 3.10.14
|
866 |
+
- Sentence Transformers: 3.0.1
|
867 |
+
- Transformers: 4.44.0
|
868 |
+
- PyTorch: 2.4.0
|
869 |
+
- Accelerate: 0.33.0
|
870 |
+
- Datasets: 2.21.0
|
871 |
+
- Tokenizers: 0.19.1
|
872 |
+
|
873 |
+
## Citation
|
874 |
+
|
875 |
+
### BibTeX
|
876 |
+
|
877 |
+
#### Sentence Transformers
|
878 |
+
```bibtex
|
879 |
+
@inproceedings{reimers-2019-sentence-bert,
|
880 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
881 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
882 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
883 |
+
month = "11",
|
884 |
+
year = "2019",
|
885 |
+
publisher = "Association for Computational Linguistics",
|
886 |
+
url = "https://arxiv.org/abs/1908.10084",
|
887 |
+
}
|
888 |
+
```
|
889 |
+
|
890 |
+
<!--
|
891 |
+
## Glossary
|
892 |
+
|
893 |
+
*Clearly define terms in order to be accessible across audiences.*
|
894 |
+
-->
|
895 |
+
|
896 |
+
<!--
|
897 |
+
## Model Card Authors
|
898 |
+
|
899 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
900 |
+
-->
|
901 |
+
|
902 |
+
<!--
|
903 |
+
## Model Card Contact
|
904 |
+
|
905 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
906 |
+
-->
|
checkpoint-55/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
checkpoint-55/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-small",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.44.0",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
checkpoint-55/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.0",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-55/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
checkpoint-55/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff739ea1aebd41763f78ab4fbd3e69fd3499c134215c3442f121e2eb09d7e5e2
|
3 |
+
size 1130520122
|
checkpoint-55/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cac081e343e82b05447bdbf9eba69a8392f074ac4c145f047269de4849479ac
|
3 |
+
size 565251810
|
checkpoint-55/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb18977cba831ef16b5b9ff397991d6bc68979d68a5301ff774c20dbd315171f
|
3 |
+
size 14244
|
checkpoint-55/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb0d2459c53df9954d756297e82f27d2632da6c4b10b0ba4d4a016ae5c356b6a
|
3 |
+
size 1064
|
checkpoint-55/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-55/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
checkpoint-55/spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
checkpoint-55/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-55/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|
checkpoint-55/trainer_state.json
ADDED
@@ -0,0 +1,1397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.3021978021978022,
|
5 |
+
"eval_steps": 5,
|
6 |
+
"global_step": 55,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.005494505494505495,
|
13 |
+
"grad_norm": 38.56446075439453,
|
14 |
+
"learning_rate": 2.0718232044198892e-07,
|
15 |
+
"loss": 8.8159,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01098901098901099,
|
20 |
+
"grad_norm": 42.89330291748047,
|
21 |
+
"learning_rate": 4.1436464088397783e-07,
|
22 |
+
"loss": 9.1259,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.016483516483516484,
|
27 |
+
"grad_norm": 40.88720703125,
|
28 |
+
"learning_rate": 6.215469613259668e-07,
|
29 |
+
"loss": 8.9017,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.02197802197802198,
|
34 |
+
"grad_norm": 43.001651763916016,
|
35 |
+
"learning_rate": 8.287292817679557e-07,
|
36 |
+
"loss": 9.1969,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.027472527472527472,
|
41 |
+
"grad_norm": 47.374000549316406,
|
42 |
+
"learning_rate": 1.0359116022099446e-06,
|
43 |
+
"loss": 9.3716,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.027472527472527472,
|
48 |
+
"eval_Qnli-dev_cosine_accuracy": 0.599609375,
|
49 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9149316549301147,
|
50 |
+
"eval_Qnli-dev_cosine_ap": 0.5535936772329058,
|
51 |
+
"eval_Qnli-dev_cosine_f1": 0.6315789473684211,
|
52 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.6663029193878174,
|
53 |
+
"eval_Qnli-dev_cosine_precision": 0.4633663366336634,
|
54 |
+
"eval_Qnli-dev_cosine_recall": 0.9915254237288136,
|
55 |
+
"eval_Qnli-dev_dot_accuracy": 0.576171875,
|
56 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 376.8692321777344,
|
57 |
+
"eval_Qnli-dev_dot_ap": 0.49386849366879665,
|
58 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
59 |
+
"eval_Qnli-dev_dot_f1_threshold": 237.3916015625,
|
60 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
61 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
62 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.603515625,
|
63 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 8.217397689819336,
|
64 |
+
"eval_Qnli-dev_euclidean_ap": 0.5622359472661989,
|
65 |
+
"eval_Qnli-dev_euclidean_f1": 0.6307277628032345,
|
66 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 17.456497192382812,
|
67 |
+
"eval_Qnli-dev_euclidean_precision": 0.4624505928853755,
|
68 |
+
"eval_Qnli-dev_euclidean_recall": 0.9915254237288136,
|
69 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.6171875,
|
70 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 170.3812255859375,
|
71 |
+
"eval_Qnli-dev_manhattan_ap": 0.6067473143476283,
|
72 |
+
"eval_Qnli-dev_manhattan_f1": 0.629878869448183,
|
73 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 251.22586059570312,
|
74 |
+
"eval_Qnli-dev_manhattan_precision": 0.46153846153846156,
|
75 |
+
"eval_Qnli-dev_manhattan_recall": 0.9915254237288136,
|
76 |
+
"eval_Qnli-dev_max_accuracy": 0.6171875,
|
77 |
+
"eval_Qnli-dev_max_accuracy_threshold": 376.8692321777344,
|
78 |
+
"eval_Qnli-dev_max_ap": 0.6067473143476283,
|
79 |
+
"eval_Qnli-dev_max_f1": 0.6315789473684211,
|
80 |
+
"eval_Qnli-dev_max_f1_threshold": 251.22586059570312,
|
81 |
+
"eval_Qnli-dev_max_precision": 0.4633663366336634,
|
82 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
83 |
+
"eval_allNLI-dev_cosine_accuracy": 0.6640625,
|
84 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.984787106513977,
|
85 |
+
"eval_allNLI-dev_cosine_ap": 0.34628735123984455,
|
86 |
+
"eval_allNLI-dev_cosine_f1": 0.5105105105105106,
|
87 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7257537841796875,
|
88 |
+
"eval_allNLI-dev_cosine_precision": 0.3448275862068966,
|
89 |
+
"eval_allNLI-dev_cosine_recall": 0.9826589595375722,
|
90 |
+
"eval_allNLI-dev_dot_accuracy": 0.66015625,
|
91 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 510.50128173828125,
|
92 |
+
"eval_allNLI-dev_dot_ap": 0.3331728171237445,
|
93 |
+
"eval_allNLI-dev_dot_f1": 0.5073746312684366,
|
94 |
+
"eval_allNLI-dev_dot_f1_threshold": 320.4217834472656,
|
95 |
+
"eval_allNLI-dev_dot_precision": 0.3405940594059406,
|
96 |
+
"eval_allNLI-dev_dot_recall": 0.9942196531791907,
|
97 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.6640625,
|
98 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 3.554497241973877,
|
99 |
+
"eval_allNLI-dev_euclidean_ap": 0.3510566487009116,
|
100 |
+
"eval_allNLI-dev_euclidean_f1": 0.5120481927710844,
|
101 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 16.369325637817383,
|
102 |
+
"eval_allNLI-dev_euclidean_precision": 0.34623217922606925,
|
103 |
+
"eval_allNLI-dev_euclidean_recall": 0.9826589595375722,
|
104 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.6640625,
|
105 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 59.6655387878418,
|
106 |
+
"eval_allNLI-dev_manhattan_ap": 0.3706224646404015,
|
107 |
+
"eval_allNLI-dev_manhattan_f1": 0.5096870342771982,
|
108 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 247.54861450195312,
|
109 |
+
"eval_allNLI-dev_manhattan_precision": 0.3433734939759036,
|
110 |
+
"eval_allNLI-dev_manhattan_recall": 0.9884393063583815,
|
111 |
+
"eval_allNLI-dev_max_accuracy": 0.6640625,
|
112 |
+
"eval_allNLI-dev_max_accuracy_threshold": 510.50128173828125,
|
113 |
+
"eval_allNLI-dev_max_ap": 0.3706224646404015,
|
114 |
+
"eval_allNLI-dev_max_f1": 0.5120481927710844,
|
115 |
+
"eval_allNLI-dev_max_f1_threshold": 320.4217834472656,
|
116 |
+
"eval_allNLI-dev_max_precision": 0.34623217922606925,
|
117 |
+
"eval_allNLI-dev_max_recall": 0.9942196531791907,
|
118 |
+
"eval_loss": 1.3745524883270264,
|
119 |
+
"eval_runtime": 56.8233,
|
120 |
+
"eval_samples_per_second": 26.503,
|
121 |
+
"eval_sequential_score": 0.6067473143476283,
|
122 |
+
"eval_steps_per_second": 0.211,
|
123 |
+
"eval_sts-test_pearson_cosine": 0.1514570156735535,
|
124 |
+
"eval_sts-test_pearson_dot": 0.28408663830954645,
|
125 |
+
"eval_sts-test_pearson_euclidean": 0.14094815932702276,
|
126 |
+
"eval_sts-test_pearson_manhattan": 0.18757962873571718,
|
127 |
+
"eval_sts-test_pearson_max": 0.28408663830954645,
|
128 |
+
"eval_sts-test_spearman_cosine": 0.19430208270682803,
|
129 |
+
"eval_sts-test_spearman_dot": 0.29861509823099586,
|
130 |
+
"eval_sts-test_spearman_euclidean": 0.16253371729283397,
|
131 |
+
"eval_sts-test_spearman_manhattan": 0.20774542441268956,
|
132 |
+
"eval_sts-test_spearman_max": 0.29861509823099586,
|
133 |
+
"step": 5
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 0.03296703296703297,
|
137 |
+
"grad_norm": 41.89334487915039,
|
138 |
+
"learning_rate": 1.2430939226519335e-06,
|
139 |
+
"loss": 9.0425,
|
140 |
+
"step": 6
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.038461538461538464,
|
144 |
+
"grad_norm": 38.501129150390625,
|
145 |
+
"learning_rate": 1.4502762430939224e-06,
|
146 |
+
"loss": 8.7309,
|
147 |
+
"step": 7
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.04395604395604396,
|
151 |
+
"grad_norm": 42.019371032714844,
|
152 |
+
"learning_rate": 1.6574585635359113e-06,
|
153 |
+
"loss": 9.0123,
|
154 |
+
"step": 8
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.04945054945054945,
|
158 |
+
"grad_norm": 41.45735168457031,
|
159 |
+
"learning_rate": 1.8646408839779003e-06,
|
160 |
+
"loss": 8.8095,
|
161 |
+
"step": 9
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.054945054945054944,
|
165 |
+
"grad_norm": 45.60405731201172,
|
166 |
+
"learning_rate": 2.071823204419889e-06,
|
167 |
+
"loss": 9.3194,
|
168 |
+
"step": 10
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.054945054945054944,
|
172 |
+
"eval_Qnli-dev_cosine_accuracy": 0.6015625,
|
173 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.915002703666687,
|
174 |
+
"eval_Qnli-dev_cosine_ap": 0.5561367291733588,
|
175 |
+
"eval_Qnli-dev_cosine_f1": 0.6315789473684211,
|
176 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.6884599328041077,
|
177 |
+
"eval_Qnli-dev_cosine_precision": 0.4633663366336634,
|
178 |
+
"eval_Qnli-dev_cosine_recall": 0.9915254237288136,
|
179 |
+
"eval_Qnli-dev_dot_accuracy": 0.580078125,
|
180 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 375.57147216796875,
|
181 |
+
"eval_Qnli-dev_dot_ap": 0.49566240556276475,
|
182 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
183 |
+
"eval_Qnli-dev_dot_f1_threshold": 236.90142822265625,
|
184 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
185 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
186 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.599609375,
|
187 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 8.115190505981445,
|
188 |
+
"eval_Qnli-dev_euclidean_ap": 0.5639171158048,
|
189 |
+
"eval_Qnli-dev_euclidean_f1": 0.6307277628032345,
|
190 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 16.781246185302734,
|
191 |
+
"eval_Qnli-dev_euclidean_precision": 0.4624505928853755,
|
192 |
+
"eval_Qnli-dev_euclidean_recall": 0.9915254237288136,
|
193 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.6171875,
|
194 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 169.50537109375,
|
195 |
+
"eval_Qnli-dev_manhattan_ap": 0.608914651260932,
|
196 |
+
"eval_Qnli-dev_manhattan_f1": 0.629878869448183,
|
197 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 245.56036376953125,
|
198 |
+
"eval_Qnli-dev_manhattan_precision": 0.46153846153846156,
|
199 |
+
"eval_Qnli-dev_manhattan_recall": 0.9915254237288136,
|
200 |
+
"eval_Qnli-dev_max_accuracy": 0.6171875,
|
201 |
+
"eval_Qnli-dev_max_accuracy_threshold": 375.57147216796875,
|
202 |
+
"eval_Qnli-dev_max_ap": 0.608914651260932,
|
203 |
+
"eval_Qnli-dev_max_f1": 0.6315789473684211,
|
204 |
+
"eval_Qnli-dev_max_f1_threshold": 245.56036376953125,
|
205 |
+
"eval_Qnli-dev_max_precision": 0.4633663366336634,
|
206 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
207 |
+
"eval_allNLI-dev_cosine_accuracy": 0.6640625,
|
208 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.985245406627655,
|
209 |
+
"eval_allNLI-dev_cosine_ap": 0.34847362780632896,
|
210 |
+
"eval_allNLI-dev_cosine_f1": 0.5097451274362819,
|
211 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7295986413955688,
|
212 |
+
"eval_allNLI-dev_cosine_precision": 0.3441295546558704,
|
213 |
+
"eval_allNLI-dev_cosine_recall": 0.9826589595375722,
|
214 |
+
"eval_allNLI-dev_dot_accuracy": 0.66015625,
|
215 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 511.2210693359375,
|
216 |
+
"eval_allNLI-dev_dot_ap": 0.3336754845077054,
|
217 |
+
"eval_allNLI-dev_dot_f1": 0.5066273932253312,
|
218 |
+
"eval_allNLI-dev_dot_f1_threshold": 324.83251953125,
|
219 |
+
"eval_allNLI-dev_dot_precision": 0.33992094861660077,
|
220 |
+
"eval_allNLI-dev_dot_recall": 0.9942196531791907,
|
221 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.666015625,
|
222 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 4.795613765716553,
|
223 |
+
"eval_allNLI-dev_euclidean_ap": 0.3551307012605588,
|
224 |
+
"eval_allNLI-dev_euclidean_f1": 0.5121212121212121,
|
225 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 15.640409469604492,
|
226 |
+
"eval_allNLI-dev_euclidean_precision": 0.3470225872689938,
|
227 |
+
"eval_allNLI-dev_euclidean_recall": 0.976878612716763,
|
228 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.6640625,
|
229 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 59.08678436279297,
|
230 |
+
"eval_allNLI-dev_manhattan_ap": 0.37214209846872026,
|
231 |
+
"eval_allNLI-dev_manhattan_f1": 0.5096870342771982,
|
232 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 243.08975219726562,
|
233 |
+
"eval_allNLI-dev_manhattan_precision": 0.3433734939759036,
|
234 |
+
"eval_allNLI-dev_manhattan_recall": 0.9884393063583815,
|
235 |
+
"eval_allNLI-dev_max_accuracy": 0.666015625,
|
236 |
+
"eval_allNLI-dev_max_accuracy_threshold": 511.2210693359375,
|
237 |
+
"eval_allNLI-dev_max_ap": 0.37214209846872026,
|
238 |
+
"eval_allNLI-dev_max_f1": 0.5121212121212121,
|
239 |
+
"eval_allNLI-dev_max_f1_threshold": 324.83251953125,
|
240 |
+
"eval_allNLI-dev_max_precision": 0.3470225872689938,
|
241 |
+
"eval_allNLI-dev_max_recall": 0.9942196531791907,
|
242 |
+
"eval_loss": 1.3227455615997314,
|
243 |
+
"eval_runtime": 56.8227,
|
244 |
+
"eval_samples_per_second": 26.503,
|
245 |
+
"eval_sequential_score": 0.608914651260932,
|
246 |
+
"eval_steps_per_second": 0.211,
|
247 |
+
"eval_sts-test_pearson_cosine": 0.15490047433594056,
|
248 |
+
"eval_sts-test_pearson_dot": 0.2911984188989889,
|
249 |
+
"eval_sts-test_pearson_euclidean": 0.14360669882703436,
|
250 |
+
"eval_sts-test_pearson_manhattan": 0.1892258838489897,
|
251 |
+
"eval_sts-test_pearson_max": 0.2911984188989889,
|
252 |
+
"eval_sts-test_spearman_cosine": 0.19757270192698087,
|
253 |
+
"eval_sts-test_spearman_dot": 0.3042365279306765,
|
254 |
+
"eval_sts-test_spearman_euclidean": 0.16524958184415522,
|
255 |
+
"eval_sts-test_spearman_manhattan": 0.21029544078929435,
|
256 |
+
"eval_sts-test_spearman_max": 0.3042365279306765,
|
257 |
+
"step": 10
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.06043956043956044,
|
261 |
+
"grad_norm": 39.49834442138672,
|
262 |
+
"learning_rate": 2.2790055248618783e-06,
|
263 |
+
"loss": 8.9873,
|
264 |
+
"step": 11
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.06593406593406594,
|
268 |
+
"grad_norm": 35.96696853637695,
|
269 |
+
"learning_rate": 2.486187845303867e-06,
|
270 |
+
"loss": 8.5575,
|
271 |
+
"step": 12
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.07142857142857142,
|
275 |
+
"grad_norm": 37.535030364990234,
|
276 |
+
"learning_rate": 2.693370165745856e-06,
|
277 |
+
"loss": 8.8096,
|
278 |
+
"step": 13
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.07692307692307693,
|
282 |
+
"grad_norm": 27.989038467407227,
|
283 |
+
"learning_rate": 2.900552486187845e-06,
|
284 |
+
"loss": 8.0996,
|
285 |
+
"step": 14
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.08241758241758242,
|
289 |
+
"grad_norm": 27.93619728088379,
|
290 |
+
"learning_rate": 3.107734806629834e-06,
|
291 |
+
"loss": 8.1942,
|
292 |
+
"step": 15
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.08241758241758242,
|
296 |
+
"eval_Qnli-dev_cosine_accuracy": 0.59765625,
|
297 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9154062867164612,
|
298 |
+
"eval_Qnli-dev_cosine_ap": 0.5603803949927255,
|
299 |
+
"eval_Qnli-dev_cosine_f1": 0.6315789473684211,
|
300 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.7283656597137451,
|
301 |
+
"eval_Qnli-dev_cosine_precision": 0.4633663366336634,
|
302 |
+
"eval_Qnli-dev_cosine_recall": 0.9915254237288136,
|
303 |
+
"eval_Qnli-dev_dot_accuracy": 0.58203125,
|
304 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 388.41607666015625,
|
305 |
+
"eval_Qnli-dev_dot_ap": 0.497501149468079,
|
306 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
307 |
+
"eval_Qnli-dev_dot_f1_threshold": 236.0553741455078,
|
308 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
309 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
310 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.58984375,
|
311 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 8.941183090209961,
|
312 |
+
"eval_Qnli-dev_euclidean_ap": 0.5662645897099401,
|
313 |
+
"eval_Qnli-dev_euclidean_f1": 0.6307277628032345,
|
314 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 15.756710052490234,
|
315 |
+
"eval_Qnli-dev_euclidean_precision": 0.4624505928853755,
|
316 |
+
"eval_Qnli-dev_euclidean_recall": 0.9915254237288136,
|
317 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.615234375,
|
318 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 163.0137939453125,
|
319 |
+
"eval_Qnli-dev_manhattan_ap": 0.6139853178845948,
|
320 |
+
"eval_Qnli-dev_manhattan_f1": 0.6291834002677376,
|
321 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 285.00634765625,
|
322 |
+
"eval_Qnli-dev_manhattan_precision": 0.4598825831702544,
|
323 |
+
"eval_Qnli-dev_manhattan_recall": 0.9957627118644068,
|
324 |
+
"eval_Qnli-dev_max_accuracy": 0.615234375,
|
325 |
+
"eval_Qnli-dev_max_accuracy_threshold": 388.41607666015625,
|
326 |
+
"eval_Qnli-dev_max_ap": 0.6139853178845948,
|
327 |
+
"eval_Qnli-dev_max_f1": 0.6315789473684211,
|
328 |
+
"eval_Qnli-dev_max_f1_threshold": 285.00634765625,
|
329 |
+
"eval_Qnli-dev_max_precision": 0.4633663366336634,
|
330 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
331 |
+
"eval_allNLI-dev_cosine_accuracy": 0.6640625,
|
332 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9861629009246826,
|
333 |
+
"eval_allNLI-dev_cosine_ap": 0.35265879982526854,
|
334 |
+
"eval_allNLI-dev_cosine_f1": 0.5096296296296297,
|
335 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7308962941169739,
|
336 |
+
"eval_allNLI-dev_cosine_precision": 0.3426294820717131,
|
337 |
+
"eval_allNLI-dev_cosine_recall": 0.9942196531791907,
|
338 |
+
"eval_allNLI-dev_dot_accuracy": 0.662109375,
|
339 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 498.35491943359375,
|
340 |
+
"eval_allNLI-dev_dot_ap": 0.33242433107393726,
|
341 |
+
"eval_allNLI-dev_dot_f1": 0.5058823529411766,
|
342 |
+
"eval_allNLI-dev_dot_f1_threshold": 329.3536376953125,
|
343 |
+
"eval_allNLI-dev_dot_precision": 0.33925049309664695,
|
344 |
+
"eval_allNLI-dev_dot_recall": 0.9942196531791907,
|
345 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.666015625,
|
346 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 4.617646217346191,
|
347 |
+
"eval_allNLI-dev_euclidean_ap": 0.3596931915774687,
|
348 |
+
"eval_allNLI-dev_euclidean_f1": 0.5104477611940298,
|
349 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 15.696537971496582,
|
350 |
+
"eval_allNLI-dev_euclidean_precision": 0.3440643863179074,
|
351 |
+
"eval_allNLI-dev_euclidean_recall": 0.9884393063583815,
|
352 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.6640625,
|
353 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 57.86843490600586,
|
354 |
+
"eval_allNLI-dev_manhattan_ap": 0.37425821741092197,
|
355 |
+
"eval_allNLI-dev_manhattan_f1": 0.5089285714285714,
|
356 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 239.49026489257812,
|
357 |
+
"eval_allNLI-dev_manhattan_precision": 0.342685370741483,
|
358 |
+
"eval_allNLI-dev_manhattan_recall": 0.9884393063583815,
|
359 |
+
"eval_allNLI-dev_max_accuracy": 0.666015625,
|
360 |
+
"eval_allNLI-dev_max_accuracy_threshold": 498.35491943359375,
|
361 |
+
"eval_allNLI-dev_max_ap": 0.37425821741092197,
|
362 |
+
"eval_allNLI-dev_max_f1": 0.5104477611940298,
|
363 |
+
"eval_allNLI-dev_max_f1_threshold": 329.3536376953125,
|
364 |
+
"eval_allNLI-dev_max_precision": 0.3440643863179074,
|
365 |
+
"eval_allNLI-dev_max_recall": 0.9942196531791907,
|
366 |
+
"eval_loss": 1.224420189857483,
|
367 |
+
"eval_runtime": 56.895,
|
368 |
+
"eval_samples_per_second": 26.47,
|
369 |
+
"eval_sequential_score": 0.6139853178845948,
|
370 |
+
"eval_steps_per_second": 0.211,
|
371 |
+
"eval_sts-test_pearson_cosine": 0.16376006142638552,
|
372 |
+
"eval_sts-test_pearson_dot": 0.30438012531511927,
|
373 |
+
"eval_sts-test_pearson_euclidean": 0.1505780981176037,
|
374 |
+
"eval_sts-test_pearson_manhattan": 0.19362843879381605,
|
375 |
+
"eval_sts-test_pearson_max": 0.30438012531511927,
|
376 |
+
"eval_sts-test_spearman_cosine": 0.20852655768027648,
|
377 |
+
"eval_sts-test_spearman_dot": 0.3147068910558995,
|
378 |
+
"eval_sts-test_spearman_euclidean": 0.17318335397119086,
|
379 |
+
"eval_sts-test_spearman_manhattan": 0.21532141020490103,
|
380 |
+
"eval_sts-test_spearman_max": 0.3147068910558995,
|
381 |
+
"step": 15
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.08791208791208792,
|
385 |
+
"grad_norm": 28.57341766357422,
|
386 |
+
"learning_rate": 3.3149171270718227e-06,
|
387 |
+
"loss": 8.1654,
|
388 |
+
"step": 16
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.09340659340659341,
|
392 |
+
"grad_norm": 21.84433364868164,
|
393 |
+
"learning_rate": 3.522099447513812e-06,
|
394 |
+
"loss": 7.7336,
|
395 |
+
"step": 17
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.0989010989010989,
|
399 |
+
"grad_norm": 23.60162353515625,
|
400 |
+
"learning_rate": 3.7292817679558005e-06,
|
401 |
+
"loss": 7.9535,
|
402 |
+
"step": 18
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.1043956043956044,
|
406 |
+
"grad_norm": 22.785541534423828,
|
407 |
+
"learning_rate": 3.936464088397789e-06,
|
408 |
+
"loss": 7.9322,
|
409 |
+
"step": 19
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.10989010989010989,
|
413 |
+
"grad_norm": 18.464128494262695,
|
414 |
+
"learning_rate": 4.143646408839778e-06,
|
415 |
+
"loss": 7.6812,
|
416 |
+
"step": 20
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.10989010989010989,
|
420 |
+
"eval_Qnli-dev_cosine_accuracy": 0.583984375,
|
421 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9213418960571289,
|
422 |
+
"eval_Qnli-dev_cosine_ap": 0.5636458261475978,
|
423 |
+
"eval_Qnli-dev_cosine_f1": 0.6328767123287672,
|
424 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.7996987700462341,
|
425 |
+
"eval_Qnli-dev_cosine_precision": 0.4676113360323887,
|
426 |
+
"eval_Qnli-dev_cosine_recall": 0.9788135593220338,
|
427 |
+
"eval_Qnli-dev_dot_accuracy": 0.578125,
|
428 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 391.3887939453125,
|
429 |
+
"eval_Qnli-dev_dot_ap": 0.49946111380185365,
|
430 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
431 |
+
"eval_Qnli-dev_dot_f1_threshold": 237.4534149169922,
|
432 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
433 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
434 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.59375,
|
435 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 7.3581438064575195,
|
436 |
+
"eval_Qnli-dev_euclidean_ap": 0.5724385046320207,
|
437 |
+
"eval_Qnli-dev_euclidean_f1": 0.6321525885558583,
|
438 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 13.227872848510742,
|
439 |
+
"eval_Qnli-dev_euclidean_precision": 0.46586345381526106,
|
440 |
+
"eval_Qnli-dev_euclidean_recall": 0.9830508474576272,
|
441 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.62109375,
|
442 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 162.46531677246094,
|
443 |
+
"eval_Qnli-dev_manhattan_ap": 0.6199265668268106,
|
444 |
+
"eval_Qnli-dev_manhattan_f1": 0.6332794830371568,
|
445 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 181.62945556640625,
|
446 |
+
"eval_Qnli-dev_manhattan_precision": 0.5117493472584856,
|
447 |
+
"eval_Qnli-dev_manhattan_recall": 0.8305084745762712,
|
448 |
+
"eval_Qnli-dev_max_accuracy": 0.62109375,
|
449 |
+
"eval_Qnli-dev_max_accuracy_threshold": 391.3887939453125,
|
450 |
+
"eval_Qnli-dev_max_ap": 0.6199265668268106,
|
451 |
+
"eval_Qnli-dev_max_f1": 0.6332794830371568,
|
452 |
+
"eval_Qnli-dev_max_f1_threshold": 237.4534149169922,
|
453 |
+
"eval_Qnli-dev_max_precision": 0.5117493472584856,
|
454 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
455 |
+
"eval_allNLI-dev_cosine_accuracy": 0.6640625,
|
456 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.987220287322998,
|
457 |
+
"eval_allNLI-dev_cosine_ap": 0.3616430753144169,
|
458 |
+
"eval_allNLI-dev_cosine_f1": 0.5103857566765578,
|
459 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7597876787185669,
|
460 |
+
"eval_allNLI-dev_cosine_precision": 0.34331337325349304,
|
461 |
+
"eval_allNLI-dev_cosine_recall": 0.9942196531791907,
|
462 |
+
"eval_allNLI-dev_dot_accuracy": 0.662109375,
|
463 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 499.94134521484375,
|
464 |
+
"eval_allNLI-dev_dot_ap": 0.32968058746925677,
|
465 |
+
"eval_allNLI-dev_dot_f1": 0.5065885797950219,
|
466 |
+
"eval_allNLI-dev_dot_f1_threshold": 326.2508850097656,
|
467 |
+
"eval_allNLI-dev_dot_precision": 0.3392156862745098,
|
468 |
+
"eval_allNLI-dev_dot_recall": 1.0,
|
469 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.66796875,
|
470 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 4.4667768478393555,
|
471 |
+
"eval_allNLI-dev_euclidean_ap": 0.36738456823550303,
|
472 |
+
"eval_allNLI-dev_euclidean_f1": 0.5081723625557207,
|
473 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 15.153694152832031,
|
474 |
+
"eval_allNLI-dev_euclidean_precision": 0.342,
|
475 |
+
"eval_allNLI-dev_euclidean_recall": 0.9884393063583815,
|
476 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.6640625,
|
477 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 56.36178970336914,
|
478 |
+
"eval_allNLI-dev_manhattan_ap": 0.37895381964253766,
|
479 |
+
"eval_allNLI-dev_manhattan_f1": 0.5074183976261127,
|
480 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 235.34033203125,
|
481 |
+
"eval_allNLI-dev_manhattan_precision": 0.3413173652694611,
|
482 |
+
"eval_allNLI-dev_manhattan_recall": 0.9884393063583815,
|
483 |
+
"eval_allNLI-dev_max_accuracy": 0.66796875,
|
484 |
+
"eval_allNLI-dev_max_accuracy_threshold": 499.94134521484375,
|
485 |
+
"eval_allNLI-dev_max_ap": 0.37895381964253766,
|
486 |
+
"eval_allNLI-dev_max_f1": 0.5103857566765578,
|
487 |
+
"eval_allNLI-dev_max_f1_threshold": 326.2508850097656,
|
488 |
+
"eval_allNLI-dev_max_precision": 0.34331337325349304,
|
489 |
+
"eval_allNLI-dev_max_recall": 1.0,
|
490 |
+
"eval_loss": 1.1300753355026245,
|
491 |
+
"eval_runtime": 56.883,
|
492 |
+
"eval_samples_per_second": 26.475,
|
493 |
+
"eval_sequential_score": 0.6199265668268106,
|
494 |
+
"eval_steps_per_second": 0.211,
|
495 |
+
"eval_sts-test_pearson_cosine": 0.1779758357593114,
|
496 |
+
"eval_sts-test_pearson_dot": 0.3143294512111131,
|
497 |
+
"eval_sts-test_pearson_euclidean": 0.16236578525254278,
|
498 |
+
"eval_sts-test_pearson_manhattan": 0.20112989669839879,
|
499 |
+
"eval_sts-test_pearson_max": 0.3143294512111131,
|
500 |
+
"eval_sts-test_spearman_cosine": 0.22331353797679107,
|
501 |
+
"eval_sts-test_spearman_dot": 0.32041258738078016,
|
502 |
+
"eval_sts-test_spearman_euclidean": 0.18499862675500958,
|
503 |
+
"eval_sts-test_spearman_manhattan": 0.22244513974949096,
|
504 |
+
"eval_sts-test_spearman_max": 0.32041258738078016,
|
505 |
+
"step": 20
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 0.11538461538461539,
|
509 |
+
"grad_norm": 16.04839324951172,
|
510 |
+
"learning_rate": 4.3508287292817675e-06,
|
511 |
+
"loss": 7.551,
|
512 |
+
"step": 21
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.12087912087912088,
|
516 |
+
"grad_norm": 13.244675636291504,
|
517 |
+
"learning_rate": 4.558011049723757e-06,
|
518 |
+
"loss": 7.3788,
|
519 |
+
"step": 22
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.12637362637362637,
|
523 |
+
"grad_norm": 10.887700080871582,
|
524 |
+
"learning_rate": 4.765193370165746e-06,
|
525 |
+
"loss": 7.1746,
|
526 |
+
"step": 23
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 0.13186813186813187,
|
530 |
+
"grad_norm": 11.019057273864746,
|
531 |
+
"learning_rate": 4.972375690607734e-06,
|
532 |
+
"loss": 7.1849,
|
533 |
+
"step": 24
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.13736263736263737,
|
537 |
+
"grad_norm": 10.919517517089844,
|
538 |
+
"learning_rate": 5.179558011049724e-06,
|
539 |
+
"loss": 7.1085,
|
540 |
+
"step": 25
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 0.13736263736263737,
|
544 |
+
"eval_Qnli-dev_cosine_accuracy": 0.58984375,
|
545 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9257529973983765,
|
546 |
+
"eval_Qnli-dev_cosine_ap": 0.5652038241773732,
|
547 |
+
"eval_Qnli-dev_cosine_f1": 0.6346153846153846,
|
548 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.8198822140693665,
|
549 |
+
"eval_Qnli-dev_cosine_precision": 0.4695121951219512,
|
550 |
+
"eval_Qnli-dev_cosine_recall": 0.9788135593220338,
|
551 |
+
"eval_Qnli-dev_dot_accuracy": 0.57421875,
|
552 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 398.296875,
|
553 |
+
"eval_Qnli-dev_dot_ap": 0.5000550252228433,
|
554 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
555 |
+
"eval_Qnli-dev_dot_f1_threshold": 245.24951171875,
|
556 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
557 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
558 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.587890625,
|
559 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 7.207454681396484,
|
560 |
+
"eval_Qnli-dev_euclidean_ap": 0.5720947339439485,
|
561 |
+
"eval_Qnli-dev_euclidean_f1": 0.631424375917768,
|
562 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 11.139533996582031,
|
563 |
+
"eval_Qnli-dev_euclidean_precision": 0.48314606741573035,
|
564 |
+
"eval_Qnli-dev_euclidean_recall": 0.9110169491525424,
|
565 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.630859375,
|
566 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 159.41851806640625,
|
567 |
+
"eval_Qnli-dev_manhattan_ap": 0.6195419467022242,
|
568 |
+
"eval_Qnli-dev_manhattan_f1": 0.6365007541478129,
|
569 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 184.75155639648438,
|
570 |
+
"eval_Qnli-dev_manhattan_precision": 0.49414519906323184,
|
571 |
+
"eval_Qnli-dev_manhattan_recall": 0.8940677966101694,
|
572 |
+
"eval_Qnli-dev_max_accuracy": 0.630859375,
|
573 |
+
"eval_Qnli-dev_max_accuracy_threshold": 398.296875,
|
574 |
+
"eval_Qnli-dev_max_ap": 0.6195419467022242,
|
575 |
+
"eval_Qnli-dev_max_f1": 0.6365007541478129,
|
576 |
+
"eval_Qnli-dev_max_f1_threshold": 245.24951171875,
|
577 |
+
"eval_Qnli-dev_max_precision": 0.49414519906323184,
|
578 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
579 |
+
"eval_allNLI-dev_cosine_accuracy": 0.666015625,
|
580 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9775335788726807,
|
581 |
+
"eval_allNLI-dev_cosine_ap": 0.37066068068308244,
|
582 |
+
"eval_allNLI-dev_cosine_f1": 0.5066666666666666,
|
583 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7791957855224609,
|
584 |
+
"eval_allNLI-dev_cosine_precision": 0.34063745019920316,
|
585 |
+
"eval_allNLI-dev_cosine_recall": 0.9884393063583815,
|
586 |
+
"eval_allNLI-dev_dot_accuracy": 0.66015625,
|
587 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 524.8079223632812,
|
588 |
+
"eval_allNLI-dev_dot_ap": 0.3301995657806253,
|
589 |
+
"eval_allNLI-dev_dot_f1": 0.5058479532163743,
|
590 |
+
"eval_allNLI-dev_dot_f1_threshold": 326.4276428222656,
|
591 |
+
"eval_allNLI-dev_dot_precision": 0.3385518590998043,
|
592 |
+
"eval_allNLI-dev_dot_recall": 1.0,
|
593 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.66796875,
|
594 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 4.273993492126465,
|
595 |
+
"eval_allNLI-dev_euclidean_ap": 0.3729474782349314,
|
596 |
+
"eval_allNLI-dev_euclidean_f1": 0.5075075075075075,
|
597 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 13.357471466064453,
|
598 |
+
"eval_allNLI-dev_euclidean_precision": 0.34279918864097364,
|
599 |
+
"eval_allNLI-dev_euclidean_recall": 0.976878612716763,
|
600 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.666015625,
|
601 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 87.52474975585938,
|
602 |
+
"eval_allNLI-dev_manhattan_ap": 0.3851618671264259,
|
603 |
+
"eval_allNLI-dev_manhattan_f1": 0.5066273932253312,
|
604 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 237.66885375976562,
|
605 |
+
"eval_allNLI-dev_manhattan_precision": 0.33992094861660077,
|
606 |
+
"eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
|
607 |
+
"eval_allNLI-dev_max_accuracy": 0.66796875,
|
608 |
+
"eval_allNLI-dev_max_accuracy_threshold": 524.8079223632812,
|
609 |
+
"eval_allNLI-dev_max_ap": 0.3851618671264259,
|
610 |
+
"eval_allNLI-dev_max_f1": 0.5075075075075075,
|
611 |
+
"eval_allNLI-dev_max_f1_threshold": 326.4276428222656,
|
612 |
+
"eval_allNLI-dev_max_precision": 0.34279918864097364,
|
613 |
+
"eval_allNLI-dev_max_recall": 1.0,
|
614 |
+
"eval_loss": 1.0723015069961548,
|
615 |
+
"eval_runtime": 56.965,
|
616 |
+
"eval_samples_per_second": 26.437,
|
617 |
+
"eval_sequential_score": 0.6195419467022242,
|
618 |
+
"eval_steps_per_second": 0.211,
|
619 |
+
"eval_sts-test_pearson_cosine": 0.19236546870487506,
|
620 |
+
"eval_sts-test_pearson_dot": 0.31683240996339884,
|
621 |
+
"eval_sts-test_pearson_euclidean": 0.17509975514192921,
|
622 |
+
"eval_sts-test_pearson_manhattan": 0.2091062445542419,
|
623 |
+
"eval_sts-test_pearson_max": 0.31683240996339884,
|
624 |
+
"eval_sts-test_spearman_cosine": 0.23571321748312007,
|
625 |
+
"eval_sts-test_spearman_dot": 0.3217659550277789,
|
626 |
+
"eval_sts-test_spearman_euclidean": 0.1966071039599386,
|
627 |
+
"eval_sts-test_spearman_manhattan": 0.23094926670295998,
|
628 |
+
"eval_sts-test_spearman_max": 0.3217659550277789,
|
629 |
+
"step": 25
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.14285714285714285,
|
633 |
+
"grad_norm": 11.845592498779297,
|
634 |
+
"learning_rate": 5.386740331491712e-06,
|
635 |
+
"loss": 7.3926,
|
636 |
+
"step": 26
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.14835164835164835,
|
640 |
+
"grad_norm": 11.545681953430176,
|
641 |
+
"learning_rate": 5.593922651933701e-06,
|
642 |
+
"loss": 7.1817,
|
643 |
+
"step": 27
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.15384615384615385,
|
647 |
+
"grad_norm": 11.321039199829102,
|
648 |
+
"learning_rate": 5.80110497237569e-06,
|
649 |
+
"loss": 7.239,
|
650 |
+
"step": 28
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.15934065934065933,
|
654 |
+
"grad_norm": 9.933686256408691,
|
655 |
+
"learning_rate": 6.00828729281768e-06,
|
656 |
+
"loss": 7.0023,
|
657 |
+
"step": 29
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.16483516483516483,
|
661 |
+
"grad_norm": 10.041378021240234,
|
662 |
+
"learning_rate": 6.215469613259668e-06,
|
663 |
+
"loss": 6.9898,
|
664 |
+
"step": 30
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 0.16483516483516483,
|
668 |
+
"eval_Qnli-dev_cosine_accuracy": 0.59375,
|
669 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9396011233329773,
|
670 |
+
"eval_Qnli-dev_cosine_ap": 0.57014985501852,
|
671 |
+
"eval_Qnli-dev_cosine_f1": 0.6318681318681318,
|
672 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.8371821045875549,
|
673 |
+
"eval_Qnli-dev_cosine_precision": 0.46747967479674796,
|
674 |
+
"eval_Qnli-dev_cosine_recall": 0.9745762711864406,
|
675 |
+
"eval_Qnli-dev_dot_accuracy": 0.57421875,
|
676 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 411.27325439453125,
|
677 |
+
"eval_Qnli-dev_dot_ap": 0.49761647661900815,
|
678 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
679 |
+
"eval_Qnli-dev_dot_f1_threshold": 262.31964111328125,
|
680 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
681 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
682 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.595703125,
|
683 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 7.126171112060547,
|
684 |
+
"eval_Qnli-dev_euclidean_ap": 0.5771748855905092,
|
685 |
+
"eval_Qnli-dev_euclidean_f1": 0.6312925170068028,
|
686 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 12.285415649414062,
|
687 |
+
"eval_Qnli-dev_euclidean_precision": 0.4649298597194389,
|
688 |
+
"eval_Qnli-dev_euclidean_recall": 0.9830508474576272,
|
689 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.62890625,
|
690 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 153.70269775390625,
|
691 |
+
"eval_Qnli-dev_manhattan_ap": 0.621529978717656,
|
692 |
+
"eval_Qnli-dev_manhattan_f1": 0.6396255850234009,
|
693 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 176.74929809570312,
|
694 |
+
"eval_Qnli-dev_manhattan_precision": 0.5061728395061729,
|
695 |
+
"eval_Qnli-dev_manhattan_recall": 0.8686440677966102,
|
696 |
+
"eval_Qnli-dev_max_accuracy": 0.62890625,
|
697 |
+
"eval_Qnli-dev_max_accuracy_threshold": 411.27325439453125,
|
698 |
+
"eval_Qnli-dev_max_ap": 0.621529978717656,
|
699 |
+
"eval_Qnli-dev_max_f1": 0.6396255850234009,
|
700 |
+
"eval_Qnli-dev_max_f1_threshold": 262.31964111328125,
|
701 |
+
"eval_Qnli-dev_max_precision": 0.5061728395061729,
|
702 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
703 |
+
"eval_allNLI-dev_cosine_accuracy": 0.66796875,
|
704 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9714565277099609,
|
705 |
+
"eval_allNLI-dev_cosine_ap": 0.3762859388623787,
|
706 |
+
"eval_allNLI-dev_cosine_f1": 0.5060606060606061,
|
707 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.8386883735656738,
|
708 |
+
"eval_allNLI-dev_cosine_precision": 0.34291581108829566,
|
709 |
+
"eval_allNLI-dev_cosine_recall": 0.9653179190751445,
|
710 |
+
"eval_allNLI-dev_dot_accuracy": 0.66015625,
|
711 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 532.74462890625,
|
712 |
+
"eval_allNLI-dev_dot_ap": 0.3295831980167142,
|
713 |
+
"eval_allNLI-dev_dot_f1": 0.5036603221083455,
|
714 |
+
"eval_allNLI-dev_dot_f1_threshold": 337.565185546875,
|
715 |
+
"eval_allNLI-dev_dot_precision": 0.33725490196078434,
|
716 |
+
"eval_allNLI-dev_dot_recall": 0.9942196531791907,
|
717 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.66796875,
|
718 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 4.119659423828125,
|
719 |
+
"eval_allNLI-dev_euclidean_ap": 0.3787739041503637,
|
720 |
+
"eval_allNLI-dev_euclidean_f1": 0.5098634294385432,
|
721 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 12.496034622192383,
|
722 |
+
"eval_allNLI-dev_euclidean_precision": 0.345679012345679,
|
723 |
+
"eval_allNLI-dev_euclidean_recall": 0.9710982658959537,
|
724 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.666015625,
|
725 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 80.58773803710938,
|
726 |
+
"eval_allNLI-dev_manhattan_ap": 0.3898279315596962,
|
727 |
+
"eval_allNLI-dev_manhattan_f1": 0.5066273932253312,
|
728 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 231.53036499023438,
|
729 |
+
"eval_allNLI-dev_manhattan_precision": 0.33992094861660077,
|
730 |
+
"eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
|
731 |
+
"eval_allNLI-dev_max_accuracy": 0.66796875,
|
732 |
+
"eval_allNLI-dev_max_accuracy_threshold": 532.74462890625,
|
733 |
+
"eval_allNLI-dev_max_ap": 0.3898279315596962,
|
734 |
+
"eval_allNLI-dev_max_f1": 0.5098634294385432,
|
735 |
+
"eval_allNLI-dev_max_f1_threshold": 337.565185546875,
|
736 |
+
"eval_allNLI-dev_max_precision": 0.345679012345679,
|
737 |
+
"eval_allNLI-dev_max_recall": 0.9942196531791907,
|
738 |
+
"eval_loss": 1.0282095670700073,
|
739 |
+
"eval_runtime": 57.0236,
|
740 |
+
"eval_samples_per_second": 26.41,
|
741 |
+
"eval_sequential_score": 0.621529978717656,
|
742 |
+
"eval_steps_per_second": 0.21,
|
743 |
+
"eval_sts-test_pearson_cosine": 0.2061136669654613,
|
744 |
+
"eval_sts-test_pearson_dot": 0.31343978856163146,
|
745 |
+
"eval_sts-test_pearson_euclidean": 0.18904663819220255,
|
746 |
+
"eval_sts-test_pearson_manhattan": 0.21785478120910598,
|
747 |
+
"eval_sts-test_pearson_max": 0.31343978856163146,
|
748 |
+
"eval_sts-test_spearman_cosine": 0.24768503017928584,
|
749 |
+
"eval_sts-test_spearman_dot": 0.31740404957995916,
|
750 |
+
"eval_sts-test_spearman_euclidean": 0.20965200715300875,
|
751 |
+
"eval_sts-test_spearman_manhattan": 0.2394205014793063,
|
752 |
+
"eval_sts-test_spearman_max": 0.31740404957995916,
|
753 |
+
"step": 30
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.17032967032967034,
|
757 |
+
"grad_norm": 9.322327613830566,
|
758 |
+
"learning_rate": 6.422651933701657e-06,
|
759 |
+
"loss": 6.9776,
|
760 |
+
"step": 31
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.17582417582417584,
|
764 |
+
"grad_norm": 8.770292282104492,
|
765 |
+
"learning_rate": 6.629834254143645e-06,
|
766 |
+
"loss": 6.8088,
|
767 |
+
"step": 32
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.1813186813186813,
|
771 |
+
"grad_norm": 10.2041654586792,
|
772 |
+
"learning_rate": 6.837016574585635e-06,
|
773 |
+
"loss": 6.8916,
|
774 |
+
"step": 33
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.18681318681318682,
|
778 |
+
"grad_norm": 8.867596626281738,
|
779 |
+
"learning_rate": 7.044198895027624e-06,
|
780 |
+
"loss": 6.6931,
|
781 |
+
"step": 34
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.19230769230769232,
|
785 |
+
"grad_norm": 9.029094696044922,
|
786 |
+
"learning_rate": 7.251381215469613e-06,
|
787 |
+
"loss": 6.5707,
|
788 |
+
"step": 35
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.19230769230769232,
|
792 |
+
"eval_Qnli-dev_cosine_accuracy": 0.609375,
|
793 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9358766078948975,
|
794 |
+
"eval_Qnli-dev_cosine_ap": 0.5800406926662295,
|
795 |
+
"eval_Qnli-dev_cosine_f1": 0.6291834002677376,
|
796 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.6559731960296631,
|
797 |
+
"eval_Qnli-dev_cosine_precision": 0.4598825831702544,
|
798 |
+
"eval_Qnli-dev_cosine_recall": 0.9957627118644068,
|
799 |
+
"eval_Qnli-dev_dot_accuracy": 0.572265625,
|
800 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 415.3104248046875,
|
801 |
+
"eval_Qnli-dev_dot_ap": 0.49721213365007333,
|
802 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
803 |
+
"eval_Qnli-dev_dot_f1_threshold": 280.5462951660156,
|
804 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
805 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
806 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.59765625,
|
807 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 7.095188140869141,
|
808 |
+
"eval_Qnli-dev_euclidean_ap": 0.5853229647222131,
|
809 |
+
"eval_Qnli-dev_euclidean_f1": 0.6291834002677376,
|
810 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 17.898162841796875,
|
811 |
+
"eval_Qnli-dev_euclidean_precision": 0.4598825831702544,
|
812 |
+
"eval_Qnli-dev_euclidean_recall": 0.9957627118644068,
|
813 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.62890625,
|
814 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 154.3598175048828,
|
815 |
+
"eval_Qnli-dev_manhattan_ap": 0.6252613860599432,
|
816 |
+
"eval_Qnli-dev_manhattan_f1": 0.6388888888888888,
|
817 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 178.0916748046875,
|
818 |
+
"eval_Qnli-dev_manhattan_precision": 0.5024271844660194,
|
819 |
+
"eval_Qnli-dev_manhattan_recall": 0.8771186440677966,
|
820 |
+
"eval_Qnli-dev_max_accuracy": 0.62890625,
|
821 |
+
"eval_Qnli-dev_max_accuracy_threshold": 415.3104248046875,
|
822 |
+
"eval_Qnli-dev_max_ap": 0.6252613860599432,
|
823 |
+
"eval_Qnli-dev_max_f1": 0.6388888888888888,
|
824 |
+
"eval_Qnli-dev_max_f1_threshold": 280.5462951660156,
|
825 |
+
"eval_Qnli-dev_max_precision": 0.5024271844660194,
|
826 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
827 |
+
"eval_allNLI-dev_cosine_accuracy": 0.673828125,
|
828 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9733000993728638,
|
829 |
+
"eval_allNLI-dev_cosine_ap": 0.383380605789286,
|
830 |
+
"eval_allNLI-dev_cosine_f1": 0.5067466266866567,
|
831 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.8367289900779724,
|
832 |
+
"eval_allNLI-dev_cosine_precision": 0.34210526315789475,
|
833 |
+
"eval_allNLI-dev_cosine_recall": 0.976878612716763,
|
834 |
+
"eval_allNLI-dev_dot_accuracy": 0.66015625,
|
835 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 538.5443115234375,
|
836 |
+
"eval_allNLI-dev_dot_ap": 0.33316876894590236,
|
837 |
+
"eval_allNLI-dev_dot_f1": 0.5037037037037037,
|
838 |
+
"eval_allNLI-dev_dot_f1_threshold": 373.13201904296875,
|
839 |
+
"eval_allNLI-dev_dot_precision": 0.3386454183266932,
|
840 |
+
"eval_allNLI-dev_dot_recall": 0.9826589595375722,
|
841 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.669921875,
|
842 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 5.027232646942139,
|
843 |
+
"eval_allNLI-dev_euclidean_ap": 0.38454616945711223,
|
844 |
+
"eval_allNLI-dev_euclidean_f1": 0.5075987841945289,
|
845 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 12.088457107543945,
|
846 |
+
"eval_allNLI-dev_euclidean_precision": 0.3443298969072165,
|
847 |
+
"eval_allNLI-dev_euclidean_recall": 0.9653179190751445,
|
848 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.66796875,
|
849 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 79.79684448242188,
|
850 |
+
"eval_allNLI-dev_manhattan_ap": 0.39522701729473053,
|
851 |
+
"eval_allNLI-dev_manhattan_f1": 0.5073746312684366,
|
852 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 228.69581604003906,
|
853 |
+
"eval_allNLI-dev_manhattan_precision": 0.3405940594059406,
|
854 |
+
"eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
|
855 |
+
"eval_allNLI-dev_max_accuracy": 0.673828125,
|
856 |
+
"eval_allNLI-dev_max_accuracy_threshold": 538.5443115234375,
|
857 |
+
"eval_allNLI-dev_max_ap": 0.39522701729473053,
|
858 |
+
"eval_allNLI-dev_max_f1": 0.5075987841945289,
|
859 |
+
"eval_allNLI-dev_max_f1_threshold": 373.13201904296875,
|
860 |
+
"eval_allNLI-dev_max_precision": 0.3443298969072165,
|
861 |
+
"eval_allNLI-dev_max_recall": 0.9942196531791907,
|
862 |
+
"eval_loss": 0.9846486449241638,
|
863 |
+
"eval_runtime": 56.9294,
|
864 |
+
"eval_samples_per_second": 26.454,
|
865 |
+
"eval_sequential_score": 0.6252613860599432,
|
866 |
+
"eval_steps_per_second": 0.211,
|
867 |
+
"eval_sts-test_pearson_cosine": 0.22023788463370408,
|
868 |
+
"eval_sts-test_pearson_dot": 0.30789406379111994,
|
869 |
+
"eval_sts-test_pearson_euclidean": 0.20441439700667358,
|
870 |
+
"eval_sts-test_pearson_manhattan": 0.22863465206140024,
|
871 |
+
"eval_sts-test_pearson_max": 0.30789406379111994,
|
872 |
+
"eval_sts-test_spearman_cosine": 0.2607946884475894,
|
873 |
+
"eval_sts-test_spearman_dot": 0.3140236287969756,
|
874 |
+
"eval_sts-test_spearman_euclidean": 0.2252769995703387,
|
875 |
+
"eval_sts-test_spearman_manhattan": 0.2514165246078849,
|
876 |
+
"eval_sts-test_spearman_max": 0.3140236287969756,
|
877 |
+
"step": 35
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.1978021978021978,
|
881 |
+
"grad_norm": 8.10656452178955,
|
882 |
+
"learning_rate": 7.458563535911601e-06,
|
883 |
+
"loss": 6.6231,
|
884 |
+
"step": 36
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.2032967032967033,
|
888 |
+
"grad_norm": 8.79859733581543,
|
889 |
+
"learning_rate": 7.665745856353591e-06,
|
890 |
+
"loss": 6.4951,
|
891 |
+
"step": 37
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.2087912087912088,
|
895 |
+
"grad_norm": 8.37302303314209,
|
896 |
+
"learning_rate": 7.872928176795578e-06,
|
897 |
+
"loss": 6.4607,
|
898 |
+
"step": 38
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.21428571428571427,
|
902 |
+
"grad_norm": 9.559539794921875,
|
903 |
+
"learning_rate": 8.08011049723757e-06,
|
904 |
+
"loss": 6.4504,
|
905 |
+
"step": 39
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.21978021978021978,
|
909 |
+
"grad_norm": 9.13284683227539,
|
910 |
+
"learning_rate": 8.287292817679557e-06,
|
911 |
+
"loss": 6.3649,
|
912 |
+
"step": 40
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.21978021978021978,
|
916 |
+
"eval_Qnli-dev_cosine_accuracy": 0.609375,
|
917 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9314916133880615,
|
918 |
+
"eval_Qnli-dev_cosine_ap": 0.585206574495468,
|
919 |
+
"eval_Qnli-dev_cosine_f1": 0.6291834002677376,
|
920 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.6699934005737305,
|
921 |
+
"eval_Qnli-dev_cosine_precision": 0.4598825831702544,
|
922 |
+
"eval_Qnli-dev_cosine_recall": 0.9957627118644068,
|
923 |
+
"eval_Qnli-dev_dot_accuracy": 0.568359375,
|
924 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 410.2371826171875,
|
925 |
+
"eval_Qnli-dev_dot_ap": 0.4994333901484545,
|
926 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
927 |
+
"eval_Qnli-dev_dot_f1_threshold": 284.4015808105469,
|
928 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
929 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
930 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.607421875,
|
931 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 7.864487171173096,
|
932 |
+
"eval_Qnli-dev_euclidean_ap": 0.594681744506572,
|
933 |
+
"eval_Qnli-dev_euclidean_f1": 0.6291834002677376,
|
934 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 17.5451717376709,
|
935 |
+
"eval_Qnli-dev_euclidean_precision": 0.4598825831702544,
|
936 |
+
"eval_Qnli-dev_euclidean_recall": 0.9957627118644068,
|
937 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.626953125,
|
938 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 160.8733367919922,
|
939 |
+
"eval_Qnli-dev_manhattan_ap": 0.629870060597291,
|
940 |
+
"eval_Qnli-dev_manhattan_f1": 0.6411149825783973,
|
941 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 176.17674255371094,
|
942 |
+
"eval_Qnli-dev_manhattan_precision": 0.5443786982248521,
|
943 |
+
"eval_Qnli-dev_manhattan_recall": 0.7796610169491526,
|
944 |
+
"eval_Qnli-dev_max_accuracy": 0.626953125,
|
945 |
+
"eval_Qnli-dev_max_accuracy_threshold": 410.2371826171875,
|
946 |
+
"eval_Qnli-dev_max_ap": 0.629870060597291,
|
947 |
+
"eval_Qnli-dev_max_f1": 0.6411149825783973,
|
948 |
+
"eval_Qnli-dev_max_f1_threshold": 284.4015808105469,
|
949 |
+
"eval_Qnli-dev_max_precision": 0.5443786982248521,
|
950 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
951 |
+
"eval_allNLI-dev_cosine_accuracy": 0.671875,
|
952 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9736817479133606,
|
953 |
+
"eval_allNLI-dev_cosine_ap": 0.3931696251670499,
|
954 |
+
"eval_allNLI-dev_cosine_f1": 0.5082212257100149,
|
955 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.8241816759109497,
|
956 |
+
"eval_allNLI-dev_cosine_precision": 0.34274193548387094,
|
957 |
+
"eval_allNLI-dev_cosine_recall": 0.9826589595375722,
|
958 |
+
"eval_allNLI-dev_dot_accuracy": 0.66015625,
|
959 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 535.3334350585938,
|
960 |
+
"eval_allNLI-dev_dot_ap": 0.3396037265960903,
|
961 |
+
"eval_allNLI-dev_dot_f1": 0.5065885797950219,
|
962 |
+
"eval_allNLI-dev_dot_f1_threshold": 339.2867431640625,
|
963 |
+
"eval_allNLI-dev_dot_precision": 0.3392156862745098,
|
964 |
+
"eval_allNLI-dev_dot_recall": 1.0,
|
965 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.671875,
|
966 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 5.143446922302246,
|
967 |
+
"eval_allNLI-dev_euclidean_ap": 0.39265337020239105,
|
968 |
+
"eval_allNLI-dev_euclidean_f1": 0.5096870342771982,
|
969 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 13.402521133422852,
|
970 |
+
"eval_allNLI-dev_euclidean_precision": 0.3433734939759036,
|
971 |
+
"eval_allNLI-dev_euclidean_recall": 0.9884393063583815,
|
972 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.669921875,
|
973 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 84.37629699707031,
|
974 |
+
"eval_allNLI-dev_manhattan_ap": 0.4041341581180743,
|
975 |
+
"eval_allNLI-dev_manhattan_f1": 0.5081240768094535,
|
976 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 237.8282012939453,
|
977 |
+
"eval_allNLI-dev_manhattan_precision": 0.3412698412698413,
|
978 |
+
"eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
|
979 |
+
"eval_allNLI-dev_max_accuracy": 0.671875,
|
980 |
+
"eval_allNLI-dev_max_accuracy_threshold": 535.3334350585938,
|
981 |
+
"eval_allNLI-dev_max_ap": 0.4041341581180743,
|
982 |
+
"eval_allNLI-dev_max_f1": 0.5096870342771982,
|
983 |
+
"eval_allNLI-dev_max_f1_threshold": 339.2867431640625,
|
984 |
+
"eval_allNLI-dev_max_precision": 0.3433734939759036,
|
985 |
+
"eval_allNLI-dev_max_recall": 1.0,
|
986 |
+
"eval_loss": 0.9314436912536621,
|
987 |
+
"eval_runtime": 56.8956,
|
988 |
+
"eval_samples_per_second": 26.47,
|
989 |
+
"eval_sequential_score": 0.629870060597291,
|
990 |
+
"eval_steps_per_second": 0.211,
|
991 |
+
"eval_sts-test_pearson_cosine": 0.2343040951892625,
|
992 |
+
"eval_sts-test_pearson_dot": 0.30372753804498825,
|
993 |
+
"eval_sts-test_pearson_euclidean": 0.21952614769670548,
|
994 |
+
"eval_sts-test_pearson_manhattan": 0.24089043440705574,
|
995 |
+
"eval_sts-test_pearson_max": 0.30372753804498825,
|
996 |
+
"eval_sts-test_spearman_cosine": 0.2738163657359974,
|
997 |
+
"eval_sts-test_spearman_dot": 0.3138135663760044,
|
998 |
+
"eval_sts-test_spearman_euclidean": 0.2414264767711758,
|
999 |
+
"eval_sts-test_spearman_manhattan": 0.26426890787444923,
|
1000 |
+
"eval_sts-test_spearman_max": 0.3138135663760044,
|
1001 |
+
"step": 40
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 0.22527472527472528,
|
1005 |
+
"grad_norm": 10.145929336547852,
|
1006 |
+
"learning_rate": 8.494475138121546e-06,
|
1007 |
+
"loss": 6.2244,
|
1008 |
+
"step": 41
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 0.23076923076923078,
|
1012 |
+
"grad_norm": 11.5704345703125,
|
1013 |
+
"learning_rate": 8.701657458563535e-06,
|
1014 |
+
"loss": 6.007,
|
1015 |
+
"step": 42
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 0.23626373626373626,
|
1019 |
+
"grad_norm": 12.0188627243042,
|
1020 |
+
"learning_rate": 8.908839779005524e-06,
|
1021 |
+
"loss": 5.977,
|
1022 |
+
"step": 43
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.24175824175824176,
|
1026 |
+
"grad_norm": 10.774896621704102,
|
1027 |
+
"learning_rate": 9.116022099447513e-06,
|
1028 |
+
"loss": 6.0748,
|
1029 |
+
"step": 44
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.24725274725274726,
|
1033 |
+
"grad_norm": 10.21664810180664,
|
1034 |
+
"learning_rate": 9.323204419889502e-06,
|
1035 |
+
"loss": 5.7946,
|
1036 |
+
"step": 45
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 0.24725274725274726,
|
1040 |
+
"eval_Qnli-dev_cosine_accuracy": 0.626953125,
|
1041 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9162209033966064,
|
1042 |
+
"eval_Qnli-dev_cosine_ap": 0.5960506092402249,
|
1043 |
+
"eval_Qnli-dev_cosine_f1": 0.6291834002677376,
|
1044 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.6565881967544556,
|
1045 |
+
"eval_Qnli-dev_cosine_precision": 0.4598825831702544,
|
1046 |
+
"eval_Qnli-dev_cosine_recall": 0.9957627118644068,
|
1047 |
+
"eval_Qnli-dev_dot_accuracy": 0.580078125,
|
1048 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 380.0188293457031,
|
1049 |
+
"eval_Qnli-dev_dot_ap": 0.5101751614495642,
|
1050 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
1051 |
+
"eval_Qnli-dev_dot_f1_threshold": 259.723876953125,
|
1052 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
1053 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
1054 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.6171875,
|
1055 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 8.577693939208984,
|
1056 |
+
"eval_Qnli-dev_euclidean_ap": 0.6056069399590038,
|
1057 |
+
"eval_Qnli-dev_euclidean_f1": 0.6297297297297297,
|
1058 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 13.569040298461914,
|
1059 |
+
"eval_Qnli-dev_euclidean_precision": 0.4623015873015873,
|
1060 |
+
"eval_Qnli-dev_euclidean_recall": 0.9872881355932204,
|
1061 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.634765625,
|
1062 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 177.60205078125,
|
1063 |
+
"eval_Qnli-dev_manhattan_ap": 0.6403997437330724,
|
1064 |
+
"eval_Qnli-dev_manhattan_f1": 0.6466165413533835,
|
1065 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 206.83108520507812,
|
1066 |
+
"eval_Qnli-dev_manhattan_precision": 0.5011655011655012,
|
1067 |
+
"eval_Qnli-dev_manhattan_recall": 0.9110169491525424,
|
1068 |
+
"eval_Qnli-dev_max_accuracy": 0.634765625,
|
1069 |
+
"eval_Qnli-dev_max_accuracy_threshold": 380.0188293457031,
|
1070 |
+
"eval_Qnli-dev_max_ap": 0.6403997437330724,
|
1071 |
+
"eval_Qnli-dev_max_f1": 0.6466165413533835,
|
1072 |
+
"eval_Qnli-dev_max_f1_threshold": 259.723876953125,
|
1073 |
+
"eval_Qnli-dev_max_precision": 0.5011655011655012,
|
1074 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
1075 |
+
"eval_allNLI-dev_cosine_accuracy": 0.669921875,
|
1076 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9787822961807251,
|
1077 |
+
"eval_allNLI-dev_cosine_ap": 0.40222842666723646,
|
1078 |
+
"eval_allNLI-dev_cosine_f1": 0.5096870342771982,
|
1079 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7735908031463623,
|
1080 |
+
"eval_allNLI-dev_cosine_precision": 0.3433734939759036,
|
1081 |
+
"eval_allNLI-dev_cosine_recall": 0.9884393063583815,
|
1082 |
+
"eval_allNLI-dev_dot_accuracy": 0.662109375,
|
1083 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 506.13720703125,
|
1084 |
+
"eval_allNLI-dev_dot_ap": 0.3502405242734096,
|
1085 |
+
"eval_allNLI-dev_dot_f1": 0.5065885797950219,
|
1086 |
+
"eval_allNLI-dev_dot_f1_threshold": 313.13623046875,
|
1087 |
+
"eval_allNLI-dev_dot_precision": 0.3392156862745098,
|
1088 |
+
"eval_allNLI-dev_dot_recall": 1.0,
|
1089 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.669921875,
|
1090 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 4.530505180358887,
|
1091 |
+
"eval_allNLI-dev_euclidean_ap": 0.40012968794878784,
|
1092 |
+
"eval_allNLI-dev_euclidean_f1": 0.5105105105105106,
|
1093 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 13.752574920654297,
|
1094 |
+
"eval_allNLI-dev_euclidean_precision": 0.3448275862068966,
|
1095 |
+
"eval_allNLI-dev_euclidean_recall": 0.9826589595375722,
|
1096 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.669921875,
|
1097 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 84.84814453125,
|
1098 |
+
"eval_allNLI-dev_manhattan_ap": 0.411550187432712,
|
1099 |
+
"eval_allNLI-dev_manhattan_f1": 0.5152671755725191,
|
1100 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 184.89407348632812,
|
1101 |
+
"eval_allNLI-dev_manhattan_precision": 0.38461538461538464,
|
1102 |
+
"eval_allNLI-dev_manhattan_recall": 0.7803468208092486,
|
1103 |
+
"eval_allNLI-dev_max_accuracy": 0.669921875,
|
1104 |
+
"eval_allNLI-dev_max_accuracy_threshold": 506.13720703125,
|
1105 |
+
"eval_allNLI-dev_max_ap": 0.411550187432712,
|
1106 |
+
"eval_allNLI-dev_max_f1": 0.5152671755725191,
|
1107 |
+
"eval_allNLI-dev_max_f1_threshold": 313.13623046875,
|
1108 |
+
"eval_allNLI-dev_max_precision": 0.38461538461538464,
|
1109 |
+
"eval_allNLI-dev_max_recall": 1.0,
|
1110 |
+
"eval_loss": 0.8549203276634216,
|
1111 |
+
"eval_runtime": 56.9038,
|
1112 |
+
"eval_samples_per_second": 26.466,
|
1113 |
+
"eval_sequential_score": 0.6403997437330724,
|
1114 |
+
"eval_steps_per_second": 0.211,
|
1115 |
+
"eval_sts-test_pearson_cosine": 0.24573194235606088,
|
1116 |
+
"eval_sts-test_pearson_dot": 0.30146061611878155,
|
1117 |
+
"eval_sts-test_pearson_euclidean": 0.2321150570038752,
|
1118 |
+
"eval_sts-test_pearson_manhattan": 0.25210046027138755,
|
1119 |
+
"eval_sts-test_pearson_max": 0.30146061611878155,
|
1120 |
+
"eval_sts-test_spearman_cosine": 0.2847268127657434,
|
1121 |
+
"eval_sts-test_spearman_dot": 0.31326692971810843,
|
1122 |
+
"eval_sts-test_spearman_euclidean": 0.2512167997282951,
|
1123 |
+
"eval_sts-test_spearman_manhattan": 0.27196800438674845,
|
1124 |
+
"eval_sts-test_spearman_max": 0.31326692971810843,
|
1125 |
+
"step": 45
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.25274725274725274,
|
1129 |
+
"grad_norm": 9.914789199829102,
|
1130 |
+
"learning_rate": 9.530386740331491e-06,
|
1131 |
+
"loss": 5.8751,
|
1132 |
+
"step": 46
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.25824175824175827,
|
1136 |
+
"grad_norm": 10.506736755371094,
|
1137 |
+
"learning_rate": 9.73756906077348e-06,
|
1138 |
+
"loss": 5.543,
|
1139 |
+
"step": 47
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 0.26373626373626374,
|
1143 |
+
"grad_norm": 8.838153839111328,
|
1144 |
+
"learning_rate": 9.944751381215468e-06,
|
1145 |
+
"loss": 5.5511,
|
1146 |
+
"step": 48
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.2692307692307692,
|
1150 |
+
"grad_norm": 9.893248558044434,
|
1151 |
+
"learning_rate": 1.0151933701657457e-05,
|
1152 |
+
"loss": 5.411,
|
1153 |
+
"step": 49
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.27472527472527475,
|
1157 |
+
"grad_norm": 9.514713287353516,
|
1158 |
+
"learning_rate": 1.0359116022099448e-05,
|
1159 |
+
"loss": 5.378,
|
1160 |
+
"step": 50
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.27472527472527475,
|
1164 |
+
"eval_Qnli-dev_cosine_accuracy": 0.6328125,
|
1165 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.8978130221366882,
|
1166 |
+
"eval_Qnli-dev_cosine_ap": 0.6213005329057975,
|
1167 |
+
"eval_Qnli-dev_cosine_f1": 0.6384266263237518,
|
1168 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.8041039705276489,
|
1169 |
+
"eval_Qnli-dev_cosine_precision": 0.4964705882352941,
|
1170 |
+
"eval_Qnli-dev_cosine_recall": 0.8940677966101694,
|
1171 |
+
"eval_Qnli-dev_dot_accuracy": 0.58984375,
|
1172 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 356.9898681640625,
|
1173 |
+
"eval_Qnli-dev_dot_ap": 0.5268541601927336,
|
1174 |
+
"eval_Qnli-dev_dot_f1": 0.6318758815232722,
|
1175 |
+
"eval_Qnli-dev_dot_f1_threshold": 291.1335754394531,
|
1176 |
+
"eval_Qnli-dev_dot_precision": 0.47357293868921774,
|
1177 |
+
"eval_Qnli-dev_dot_recall": 0.9491525423728814,
|
1178 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.638671875,
|
1179 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 10.523520469665527,
|
1180 |
+
"eval_Qnli-dev_euclidean_ap": 0.6291519886215534,
|
1181 |
+
"eval_Qnli-dev_euclidean_f1": 0.6337448559670782,
|
1182 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 14.391512870788574,
|
1183 |
+
"eval_Qnli-dev_euclidean_precision": 0.4685598377281947,
|
1184 |
+
"eval_Qnli-dev_euclidean_recall": 0.9788135593220338,
|
1185 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.650390625,
|
1186 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 189.05128479003906,
|
1187 |
+
"eval_Qnli-dev_manhattan_ap": 0.6556822594753774,
|
1188 |
+
"eval_Qnli-dev_manhattan_f1": 0.6430769230769231,
|
1189 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 233.51510620117188,
|
1190 |
+
"eval_Qnli-dev_manhattan_precision": 0.5048309178743962,
|
1191 |
+
"eval_Qnli-dev_manhattan_recall": 0.885593220338983,
|
1192 |
+
"eval_Qnli-dev_max_accuracy": 0.650390625,
|
1193 |
+
"eval_Qnli-dev_max_accuracy_threshold": 356.9898681640625,
|
1194 |
+
"eval_Qnli-dev_max_ap": 0.6556822594753774,
|
1195 |
+
"eval_Qnli-dev_max_f1": 0.6430769230769231,
|
1196 |
+
"eval_Qnli-dev_max_f1_threshold": 291.1335754394531,
|
1197 |
+
"eval_Qnli-dev_max_precision": 0.5048309178743962,
|
1198 |
+
"eval_Qnli-dev_max_recall": 0.9788135593220338,
|
1199 |
+
"eval_allNLI-dev_cosine_accuracy": 0.66796875,
|
1200 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9755356907844543,
|
1201 |
+
"eval_allNLI-dev_cosine_ap": 0.4066962429964717,
|
1202 |
+
"eval_allNLI-dev_cosine_f1": 0.5179856115107913,
|
1203 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.8535807132720947,
|
1204 |
+
"eval_allNLI-dev_cosine_precision": 0.37597911227154046,
|
1205 |
+
"eval_allNLI-dev_cosine_recall": 0.8323699421965318,
|
1206 |
+
"eval_allNLI-dev_dot_accuracy": 0.666015625,
|
1207 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 476.64141845703125,
|
1208 |
+
"eval_allNLI-dev_dot_ap": 0.3666780883869565,
|
1209 |
+
"eval_allNLI-dev_dot_f1": 0.5111821086261982,
|
1210 |
+
"eval_allNLI-dev_dot_f1_threshold": 348.523193359375,
|
1211 |
+
"eval_allNLI-dev_dot_precision": 0.35320088300220753,
|
1212 |
+
"eval_allNLI-dev_dot_recall": 0.9248554913294798,
|
1213 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.669921875,
|
1214 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 4.862855911254883,
|
1215 |
+
"eval_allNLI-dev_euclidean_ap": 0.405432241017242,
|
1216 |
+
"eval_allNLI-dev_euclidean_f1": 0.5186567164179104,
|
1217 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 11.256525039672852,
|
1218 |
+
"eval_allNLI-dev_euclidean_precision": 0.38292011019283745,
|
1219 |
+
"eval_allNLI-dev_euclidean_recall": 0.8034682080924855,
|
1220 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.66796875,
|
1221 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 83.92739868164062,
|
1222 |
+
"eval_allNLI-dev_manhattan_ap": 0.41593074876648894,
|
1223 |
+
"eval_allNLI-dev_manhattan_f1": 0.5261194029850746,
|
1224 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 210.06704711914062,
|
1225 |
+
"eval_allNLI-dev_manhattan_precision": 0.3884297520661157,
|
1226 |
+
"eval_allNLI-dev_manhattan_recall": 0.815028901734104,
|
1227 |
+
"eval_allNLI-dev_max_accuracy": 0.669921875,
|
1228 |
+
"eval_allNLI-dev_max_accuracy_threshold": 476.64141845703125,
|
1229 |
+
"eval_allNLI-dev_max_ap": 0.41593074876648894,
|
1230 |
+
"eval_allNLI-dev_max_f1": 0.5261194029850746,
|
1231 |
+
"eval_allNLI-dev_max_f1_threshold": 348.523193359375,
|
1232 |
+
"eval_allNLI-dev_max_precision": 0.3884297520661157,
|
1233 |
+
"eval_allNLI-dev_max_recall": 0.9248554913294798,
|
1234 |
+
"eval_loss": 0.794283390045166,
|
1235 |
+
"eval_runtime": 56.8695,
|
1236 |
+
"eval_samples_per_second": 26.482,
|
1237 |
+
"eval_sequential_score": 0.6556822594753774,
|
1238 |
+
"eval_steps_per_second": 0.211,
|
1239 |
+
"eval_sts-test_pearson_cosine": 0.24584625215267258,
|
1240 |
+
"eval_sts-test_pearson_dot": 0.2940464136694855,
|
1241 |
+
"eval_sts-test_pearson_euclidean": 0.2382635480850375,
|
1242 |
+
"eval_sts-test_pearson_manhattan": 0.2536304588799789,
|
1243 |
+
"eval_sts-test_pearson_max": 0.2940464136694855,
|
1244 |
+
"eval_sts-test_spearman_cosine": 0.28663621483553026,
|
1245 |
+
"eval_sts-test_spearman_dot": 0.3088057212212612,
|
1246 |
+
"eval_sts-test_spearman_euclidean": 0.2572386189636446,
|
1247 |
+
"eval_sts-test_spearman_manhattan": 0.27229562837139487,
|
1248 |
+
"eval_sts-test_spearman_max": 0.3088057212212612,
|
1249 |
+
"step": 50
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.2802197802197802,
|
1253 |
+
"grad_norm": 9.770188331604004,
|
1254 |
+
"learning_rate": 1.0566298342541435e-05,
|
1255 |
+
"loss": 5.3831,
|
1256 |
+
"step": 51
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.2857142857142857,
|
1260 |
+
"grad_norm": 9.599061965942383,
|
1261 |
+
"learning_rate": 1.0773480662983425e-05,
|
1262 |
+
"loss": 4.9729,
|
1263 |
+
"step": 52
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.29120879120879123,
|
1267 |
+
"grad_norm": 10.340251922607422,
|
1268 |
+
"learning_rate": 1.0980662983425412e-05,
|
1269 |
+
"loss": 5.0425,
|
1270 |
+
"step": 53
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.2967032967032967,
|
1274 |
+
"grad_norm": 9.890629768371582,
|
1275 |
+
"learning_rate": 1.1187845303867403e-05,
|
1276 |
+
"loss": 4.9446,
|
1277 |
+
"step": 54
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.3021978021978022,
|
1281 |
+
"grad_norm": 10.401249885559082,
|
1282 |
+
"learning_rate": 1.1395027624309392e-05,
|
1283 |
+
"loss": 4.9288,
|
1284 |
+
"step": 55
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.3021978021978022,
|
1288 |
+
"eval_Qnli-dev_cosine_accuracy": 0.640625,
|
1289 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.8695281744003296,
|
1290 |
+
"eval_Qnli-dev_cosine_ap": 0.6314640856589909,
|
1291 |
+
"eval_Qnli-dev_cosine_f1": 0.6578512396694215,
|
1292 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.7936367988586426,
|
1293 |
+
"eval_Qnli-dev_cosine_precision": 0.5392953929539296,
|
1294 |
+
"eval_Qnli-dev_cosine_recall": 0.8432203389830508,
|
1295 |
+
"eval_Qnli-dev_dot_accuracy": 0.609375,
|
1296 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 351.17626953125,
|
1297 |
+
"eval_Qnli-dev_dot_ap": 0.5366456296706419,
|
1298 |
+
"eval_Qnli-dev_dot_f1": 0.6501650165016502,
|
1299 |
+
"eval_Qnli-dev_dot_f1_threshold": 316.48046875,
|
1300 |
+
"eval_Qnli-dev_dot_precision": 0.5324324324324324,
|
1301 |
+
"eval_Qnli-dev_dot_recall": 0.8347457627118644,
|
1302 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.65234375,
|
1303 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 10.764808654785156,
|
1304 |
+
"eval_Qnli-dev_euclidean_ap": 0.6460602994393339,
|
1305 |
+
"eval_Qnli-dev_euclidean_f1": 0.6393210749646393,
|
1306 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 15.096710205078125,
|
1307 |
+
"eval_Qnli-dev_euclidean_precision": 0.47983014861995754,
|
1308 |
+
"eval_Qnli-dev_euclidean_recall": 0.9576271186440678,
|
1309 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.658203125,
|
1310 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 206.32894897460938,
|
1311 |
+
"eval_Qnli-dev_manhattan_ap": 0.6679289689394285,
|
1312 |
+
"eval_Qnli-dev_manhattan_f1": 0.652373660030628,
|
1313 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 261.3590393066406,
|
1314 |
+
"eval_Qnli-dev_manhattan_precision": 0.5107913669064749,
|
1315 |
+
"eval_Qnli-dev_manhattan_recall": 0.902542372881356,
|
1316 |
+
"eval_Qnli-dev_max_accuracy": 0.658203125,
|
1317 |
+
"eval_Qnli-dev_max_accuracy_threshold": 351.17626953125,
|
1318 |
+
"eval_Qnli-dev_max_ap": 0.6679289689394285,
|
1319 |
+
"eval_Qnli-dev_max_f1": 0.6578512396694215,
|
1320 |
+
"eval_Qnli-dev_max_f1_threshold": 316.48046875,
|
1321 |
+
"eval_Qnli-dev_max_precision": 0.5392953929539296,
|
1322 |
+
"eval_Qnli-dev_max_recall": 0.9576271186440678,
|
1323 |
+
"eval_allNLI-dev_cosine_accuracy": 0.66796875,
|
1324 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9721465110778809,
|
1325 |
+
"eval_allNLI-dev_cosine_ap": 0.4140638596370657,
|
1326 |
+
"eval_allNLI-dev_cosine_f1": 0.5343511450381679,
|
1327 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.85741126537323,
|
1328 |
+
"eval_allNLI-dev_cosine_precision": 0.39886039886039887,
|
1329 |
+
"eval_allNLI-dev_cosine_recall": 0.8092485549132948,
|
1330 |
+
"eval_allNLI-dev_dot_accuracy": 0.666015625,
|
1331 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 518.88671875,
|
1332 |
+
"eval_allNLI-dev_dot_ap": 0.3781233337023534,
|
1333 |
+
"eval_allNLI-dev_dot_f1": 0.514018691588785,
|
1334 |
+
"eval_allNLI-dev_dot_f1_threshold": 323.9651184082031,
|
1335 |
+
"eval_allNLI-dev_dot_precision": 0.35181236673773986,
|
1336 |
+
"eval_allNLI-dev_dot_recall": 0.953757225433526,
|
1337 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.671875,
|
1338 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 5.084325790405273,
|
1339 |
+
"eval_allNLI-dev_euclidean_ap": 0.41769294415599645,
|
1340 |
+
"eval_allNLI-dev_euclidean_f1": 0.5404339250493098,
|
1341 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 11.333902359008789,
|
1342 |
+
"eval_allNLI-dev_euclidean_precision": 0.4101796407185629,
|
1343 |
+
"eval_allNLI-dev_euclidean_recall": 0.791907514450867,
|
1344 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.671875,
|
1345 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 114.41839599609375,
|
1346 |
+
"eval_allNLI-dev_manhattan_ap": 0.4272864144491257,
|
1347 |
+
"eval_allNLI-dev_manhattan_f1": 0.5384615384615384,
|
1348 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 226.82566833496094,
|
1349 |
+
"eval_allNLI-dev_manhattan_precision": 0.3941018766756032,
|
1350 |
+
"eval_allNLI-dev_manhattan_recall": 0.8497109826589595,
|
1351 |
+
"eval_allNLI-dev_max_accuracy": 0.671875,
|
1352 |
+
"eval_allNLI-dev_max_accuracy_threshold": 518.88671875,
|
1353 |
+
"eval_allNLI-dev_max_ap": 0.4272864144491257,
|
1354 |
+
"eval_allNLI-dev_max_f1": 0.5404339250493098,
|
1355 |
+
"eval_allNLI-dev_max_f1_threshold": 323.9651184082031,
|
1356 |
+
"eval_allNLI-dev_max_precision": 0.4101796407185629,
|
1357 |
+
"eval_allNLI-dev_max_recall": 0.953757225433526,
|
1358 |
+
"eval_loss": 0.7178329229354858,
|
1359 |
+
"eval_runtime": 56.8366,
|
1360 |
+
"eval_samples_per_second": 26.497,
|
1361 |
+
"eval_sequential_score": 0.6679289689394285,
|
1362 |
+
"eval_steps_per_second": 0.211,
|
1363 |
+
"eval_sts-test_pearson_cosine": 0.2589065791031549,
|
1364 |
+
"eval_sts-test_pearson_dot": 0.28511212645281553,
|
1365 |
+
"eval_sts-test_pearson_euclidean": 0.2585939429800171,
|
1366 |
+
"eval_sts-test_pearson_manhattan": 0.27236487282828553,
|
1367 |
+
"eval_sts-test_pearson_max": 0.28511212645281553,
|
1368 |
+
"eval_sts-test_spearman_cosine": 0.31323211323674593,
|
1369 |
+
"eval_sts-test_spearman_dot": 0.2967423026930272,
|
1370 |
+
"eval_sts-test_spearman_euclidean": 0.2833925986586202,
|
1371 |
+
"eval_sts-test_spearman_manhattan": 0.29656486394161036,
|
1372 |
+
"eval_sts-test_spearman_max": 0.31323211323674593,
|
1373 |
+
"step": 55
|
1374 |
+
}
|
1375 |
+
],
|
1376 |
+
"logging_steps": 1,
|
1377 |
+
"max_steps": 546,
|
1378 |
+
"num_input_tokens_seen": 0,
|
1379 |
+
"num_train_epochs": 3,
|
1380 |
+
"save_steps": 55,
|
1381 |
+
"stateful_callbacks": {
|
1382 |
+
"TrainerControl": {
|
1383 |
+
"args": {
|
1384 |
+
"should_epoch_stop": false,
|
1385 |
+
"should_evaluate": false,
|
1386 |
+
"should_log": false,
|
1387 |
+
"should_save": true,
|
1388 |
+
"should_training_stop": false
|
1389 |
+
},
|
1390 |
+
"attributes": {}
|
1391 |
+
}
|
1392 |
+
},
|
1393 |
+
"total_flos": 0.0,
|
1394 |
+
"train_batch_size": 640,
|
1395 |
+
"trial_name": null,
|
1396 |
+
"trial_params": null
|
1397 |
+
}
|
checkpoint-55/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b50a4a92b5eb29f5d9b19f9e1060fdd6af0a02268cb16ba6bb85ab82bb7ddd6b
|
3 |
+
size 5752
|