Training in progress, step 110, checkpoint
Browse files- checkpoint-110/1_Pooling/config.json +10 -0
- checkpoint-110/README.md +964 -0
- checkpoint-110/added_tokens.json +3 -0
- checkpoint-110/config.json +35 -0
- checkpoint-110/config_sentence_transformers.json +10 -0
- checkpoint-110/modules.json +14 -0
- checkpoint-110/optimizer.pt +3 -0
- checkpoint-110/pytorch_model.bin +3 -0
- checkpoint-110/rng_state.pth +3 -0
- checkpoint-110/scheduler.pt +3 -0
- checkpoint-110/sentence_bert_config.json +4 -0
- checkpoint-110/special_tokens_map.json +15 -0
- checkpoint-110/spm.model +3 -0
- checkpoint-110/tokenizer.json +0 -0
- checkpoint-110/tokenizer_config.json +58 -0
- checkpoint-110/trainer_state.json +0 -0
- checkpoint-110/training_args.bin +3 -0
checkpoint-110/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-110/README.md
ADDED
@@ -0,0 +1,964 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/deberta-v3-small
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- pearson_cosine
|
8 |
+
- spearman_cosine
|
9 |
+
- pearson_manhattan
|
10 |
+
- spearman_manhattan
|
11 |
+
- pearson_euclidean
|
12 |
+
- spearman_euclidean
|
13 |
+
- pearson_dot
|
14 |
+
- spearman_dot
|
15 |
+
- pearson_max
|
16 |
+
- spearman_max
|
17 |
+
- cosine_accuracy
|
18 |
+
- cosine_accuracy_threshold
|
19 |
+
- cosine_f1
|
20 |
+
- cosine_f1_threshold
|
21 |
+
- cosine_precision
|
22 |
+
- cosine_recall
|
23 |
+
- cosine_ap
|
24 |
+
- dot_accuracy
|
25 |
+
- dot_accuracy_threshold
|
26 |
+
- dot_f1
|
27 |
+
- dot_f1_threshold
|
28 |
+
- dot_precision
|
29 |
+
- dot_recall
|
30 |
+
- dot_ap
|
31 |
+
- manhattan_accuracy
|
32 |
+
- manhattan_accuracy_threshold
|
33 |
+
- manhattan_f1
|
34 |
+
- manhattan_f1_threshold
|
35 |
+
- manhattan_precision
|
36 |
+
- manhattan_recall
|
37 |
+
- manhattan_ap
|
38 |
+
- euclidean_accuracy
|
39 |
+
- euclidean_accuracy_threshold
|
40 |
+
- euclidean_f1
|
41 |
+
- euclidean_f1_threshold
|
42 |
+
- euclidean_precision
|
43 |
+
- euclidean_recall
|
44 |
+
- euclidean_ap
|
45 |
+
- max_accuracy
|
46 |
+
- max_accuracy_threshold
|
47 |
+
- max_f1
|
48 |
+
- max_f1_threshold
|
49 |
+
- max_precision
|
50 |
+
- max_recall
|
51 |
+
- max_ap
|
52 |
+
pipeline_tag: sentence-similarity
|
53 |
+
tags:
|
54 |
+
- sentence-transformers
|
55 |
+
- sentence-similarity
|
56 |
+
- feature-extraction
|
57 |
+
- generated_from_trainer
|
58 |
+
- dataset_size:116445
|
59 |
+
- loss:CachedGISTEmbedLoss
|
60 |
+
widget:
|
61 |
+
- source_sentence: what is the main purpose of the brain
|
62 |
+
sentences:
|
63 |
+
- Brain Physiologically, the function of the brain is to exert centralized control
|
64 |
+
over the other organs of the body. The brain acts on the rest of the body both
|
65 |
+
by generating patterns of muscle activity and by driving the secretion of chemicals
|
66 |
+
called hormones. This centralized control allows rapid and coordinated responses
|
67 |
+
to changes in the environment. Some basic types of responsiveness such as reflexes
|
68 |
+
can be mediated by the spinal cord or peripheral ganglia, but sophisticated purposeful
|
69 |
+
control of behavior based on complex sensory input requires the information integrating
|
70 |
+
capabilities of a centralized brain.
|
71 |
+
- How do scientists know that some mountains were once at the bottom of an ocean?
|
72 |
+
- The Smiths Wiki | Fandom powered by Wikia Share Ad blocker interference detected!
|
73 |
+
Wikia is a free-to-use site that makes money from advertising. We have a modified
|
74 |
+
experience for viewers using ad blockers Wikia is not accessible if you’ve made
|
75 |
+
further modifications. Remove the custom ad blocker rule(s) and the page will
|
76 |
+
load as expected. The Smiths were an English rock band formed in Manchester in
|
77 |
+
1982. Based on the songwriting partnership of Morrissey (vocals) and Johnny Marr
|
78 |
+
(guitar), the band also included Andy Rourke (bass), Mike Joyce (drums) and for
|
79 |
+
a brief time Craig Gannon (rhythm guitar). Critics have called them one of the
|
80 |
+
most important alternative rock bands to emerge from the British independent music
|
81 |
+
scene of the 1980s,and the group has had major influence on subsequent artists.
|
82 |
+
Morrissey's lovelorn tales of alienation found an audience amongst youth culture
|
83 |
+
bored by the ubiquitous synthesiser-pop bands of the early 1980s, while Marr's
|
84 |
+
complex melodies helped return guitar-based music to popularity. The group were
|
85 |
+
signed to the independent record label Rough Trade Records , for whom they released
|
86 |
+
four studio albums and several compilations, as well as numerous non-LP singles.
|
87 |
+
Although they had limited commercial success outside the UK while they were still
|
88 |
+
together, and never released a single that charted higher than number 10 in their
|
89 |
+
home country, The Smiths won a growing following, and they remain cult and commercial
|
90 |
+
favourites. The band broke up in 1987 amid disagreements between Morrissey and
|
91 |
+
Marr and has turned down several offers to reform. Welcome to The Smiths Wiki
|
92 |
+
- source_sentence: There were 29 Muslims fatalities in the Cave of the Patriarchs
|
93 |
+
massacre .
|
94 |
+
sentences:
|
95 |
+
- In August , after the end of the war in June 1902 , Higgins Southampton left the
|
96 |
+
`` SSBavarian '' and returned to Cape Town the following month .
|
97 |
+
- Between 29 and 52 Muslims were killed and more than 100 others wounded . [ Settlers
|
98 |
+
remember gunman Goldstein ; Hebron riots continue ] .
|
99 |
+
- 29 Muslims were killed and more than 100 others wounded . [ Settlers remember
|
100 |
+
gunman Goldstein ; Hebron riots continue ] .
|
101 |
+
- source_sentence: are tabby cats all male?
|
102 |
+
sentences:
|
103 |
+
- Did you know orange tabby cats are typically male? In fact, up to 80 percent of
|
104 |
+
orange tabbies are male, making orange female cats a bit of a rarity. According
|
105 |
+
to the BBC's Focus Magazine, the ginger gene in cats works a little differently
|
106 |
+
compared to humans; it is on the X chromosome.
|
107 |
+
- Shawnee Trails Council was formed from the merger of the Four Rivers Council and
|
108 |
+
the Audubon Council .
|
109 |
+
- 'A picture of a modern looking kitchen area
|
110 |
+
|
111 |
+
'
|
112 |
+
- source_sentence: Aamir Khan agreed to act immediately after reading Mehra 's screenplay
|
113 |
+
in `` Rang De Basanti '' .
|
114 |
+
sentences:
|
115 |
+
- Chris Rea — Free listening, videos, concerts, stats and photos at Last.fm singer-songwriter
|
116 |
+
Christopher Anton Rea (pronounced Ree-ah), born 4 March 1951, is a singer, songwriter,
|
117 |
+
and guitarist from Middlesbrough, England. Rea's recording career began in 1978.
|
118 |
+
Although he almost immediately had a US hit single with "Fool (If You Think It's
|
119 |
+
Over)", Rea's initial focus was on continental Europe, releasing eight albums
|
120 |
+
in the 1980s. It wasn't until 1985's Shamrock Diaries and the songs "Stainsby
|
121 |
+
Girls" and "Josephine," that UK audiences began to take notice of him. Follow
|
122 |
+
up albums… read more
|
123 |
+
- "Healthy Fast Food Meal No. 1. Grilled Chicken Sandwich and Fruit Cup (Chick-fil-A)\
|
124 |
+
\ Several fast food chains offer a grilled chicken sandwich. The trick is ordering\
|
125 |
+
\ it without mayo or creamy sauce, and making sure itâ\x80\x99s served with a\
|
126 |
+
\ whole grain bun."
|
127 |
+
- Aamir Khan agreed to act in `` Rang De Basanti '' immediately after reading Mehra
|
128 |
+
's script .
|
129 |
+
- source_sentence: 'A man wearing a blue bow tie and a fedora hat in a car. '
|
130 |
+
sentences:
|
131 |
+
- A man takes a photo of himself wearing a bowtie and hat
|
132 |
+
- Scientists explain the world based on what?
|
133 |
+
- 'County of Angus - definition of County of Angus by The Free Dictionary County
|
134 |
+
of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus
|
135 |
+
(ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland
|
136 |
+
and are usually black but also occur in a red variety. Also called Black Angus.
|
137 |
+
[After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council
|
138 |
+
area of E Scotland on the North Sea: the historical county of Angus became part
|
139 |
+
of Tayside region in 1975; reinstated as a unitary authority (excluding City of
|
140 |
+
Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area:
|
141 |
+
2181 sq km (842 sq miles) An•gus'
|
142 |
+
model-index:
|
143 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-small
|
144 |
+
results:
|
145 |
+
- task:
|
146 |
+
type: semantic-similarity
|
147 |
+
name: Semantic Similarity
|
148 |
+
dataset:
|
149 |
+
name: sts test
|
150 |
+
type: sts-test
|
151 |
+
metrics:
|
152 |
+
- type: pearson_cosine
|
153 |
+
value: 0.7489263204555723
|
154 |
+
name: Pearson Cosine
|
155 |
+
- type: spearman_cosine
|
156 |
+
value: 0.7626005619606424
|
157 |
+
name: Spearman Cosine
|
158 |
+
- type: pearson_manhattan
|
159 |
+
value: 0.7591990025704353
|
160 |
+
name: Pearson Manhattan
|
161 |
+
- type: spearman_manhattan
|
162 |
+
value: 0.7477882076989188
|
163 |
+
name: Spearman Manhattan
|
164 |
+
- type: pearson_euclidean
|
165 |
+
value: 0.7622787611500085
|
166 |
+
name: Pearson Euclidean
|
167 |
+
- type: spearman_euclidean
|
168 |
+
value: 0.7539243664071233
|
169 |
+
name: Spearman Euclidean
|
170 |
+
- type: pearson_dot
|
171 |
+
value: 0.6493790443582248
|
172 |
+
name: Pearson Dot
|
173 |
+
- type: spearman_dot
|
174 |
+
value: 0.6306412644605037
|
175 |
+
name: Spearman Dot
|
176 |
+
- type: pearson_max
|
177 |
+
value: 0.7622787611500085
|
178 |
+
name: Pearson Max
|
179 |
+
- type: spearman_max
|
180 |
+
value: 0.7626005619606424
|
181 |
+
name: Spearman Max
|
182 |
+
- task:
|
183 |
+
type: binary-classification
|
184 |
+
name: Binary Classification
|
185 |
+
dataset:
|
186 |
+
name: allNLI dev
|
187 |
+
type: allNLI-dev
|
188 |
+
metrics:
|
189 |
+
- type: cosine_accuracy
|
190 |
+
value: 0.7109375
|
191 |
+
name: Cosine Accuracy
|
192 |
+
- type: cosine_accuracy_threshold
|
193 |
+
value: 0.916961669921875
|
194 |
+
name: Cosine Accuracy Threshold
|
195 |
+
- type: cosine_f1
|
196 |
+
value: 0.5853658536585366
|
197 |
+
name: Cosine F1
|
198 |
+
- type: cosine_f1_threshold
|
199 |
+
value: 0.8279993534088135
|
200 |
+
name: Cosine F1 Threshold
|
201 |
+
- type: cosine_precision
|
202 |
+
value: 0.4748201438848921
|
203 |
+
name: Cosine Precision
|
204 |
+
- type: cosine_recall
|
205 |
+
value: 0.7630057803468208
|
206 |
+
name: Cosine Recall
|
207 |
+
- type: cosine_ap
|
208 |
+
value: 0.5495769497490841
|
209 |
+
name: Cosine Ap
|
210 |
+
- type: dot_accuracy
|
211 |
+
value: 0.671875
|
212 |
+
name: Dot Accuracy
|
213 |
+
- type: dot_accuracy_threshold
|
214 |
+
value: 481.2850646972656
|
215 |
+
name: Dot Accuracy Threshold
|
216 |
+
- type: dot_f1
|
217 |
+
value: 0.549165120593692
|
218 |
+
name: Dot F1
|
219 |
+
- type: dot_f1_threshold
|
220 |
+
value: 381.15167236328125
|
221 |
+
name: Dot F1 Threshold
|
222 |
+
- type: dot_precision
|
223 |
+
value: 0.40437158469945356
|
224 |
+
name: Dot Precision
|
225 |
+
- type: dot_recall
|
226 |
+
value: 0.8554913294797688
|
227 |
+
name: Dot Recall
|
228 |
+
- type: dot_ap
|
229 |
+
value: 0.45293867777170244
|
230 |
+
name: Dot Ap
|
231 |
+
- type: manhattan_accuracy
|
232 |
+
value: 0.71484375
|
233 |
+
name: Manhattan Accuracy
|
234 |
+
- type: manhattan_accuracy_threshold
|
235 |
+
value: 186.7671356201172
|
236 |
+
name: Manhattan Accuracy Threshold
|
237 |
+
- type: manhattan_f1
|
238 |
+
value: 0.5696465696465696
|
239 |
+
name: Manhattan F1
|
240 |
+
- type: manhattan_f1_threshold
|
241 |
+
value: 268.783935546875
|
242 |
+
name: Manhattan F1 Threshold
|
243 |
+
- type: manhattan_precision
|
244 |
+
value: 0.4448051948051948
|
245 |
+
name: Manhattan Precision
|
246 |
+
- type: manhattan_recall
|
247 |
+
value: 0.791907514450867
|
248 |
+
name: Manhattan Recall
|
249 |
+
- type: manhattan_ap
|
250 |
+
value: 0.5511647333663136
|
251 |
+
name: Manhattan Ap
|
252 |
+
- type: euclidean_accuracy
|
253 |
+
value: 0.71484375
|
254 |
+
name: Euclidean Accuracy
|
255 |
+
- type: euclidean_accuracy_threshold
|
256 |
+
value: 8.915003776550293
|
257 |
+
name: Euclidean Accuracy Threshold
|
258 |
+
- type: euclidean_f1
|
259 |
+
value: 0.574074074074074
|
260 |
+
name: Euclidean F1
|
261 |
+
- type: euclidean_f1_threshold
|
262 |
+
value: 12.812746047973633
|
263 |
+
name: Euclidean F1 Threshold
|
264 |
+
- type: euclidean_precision
|
265 |
+
value: 0.47876447876447875
|
266 |
+
name: Euclidean Precision
|
267 |
+
- type: euclidean_recall
|
268 |
+
value: 0.7167630057803468
|
269 |
+
name: Euclidean Recall
|
270 |
+
- type: euclidean_ap
|
271 |
+
value: 0.5535962824434967
|
272 |
+
name: Euclidean Ap
|
273 |
+
- type: max_accuracy
|
274 |
+
value: 0.71484375
|
275 |
+
name: Max Accuracy
|
276 |
+
- type: max_accuracy_threshold
|
277 |
+
value: 481.2850646972656
|
278 |
+
name: Max Accuracy Threshold
|
279 |
+
- type: max_f1
|
280 |
+
value: 0.5853658536585366
|
281 |
+
name: Max F1
|
282 |
+
- type: max_f1_threshold
|
283 |
+
value: 381.15167236328125
|
284 |
+
name: Max F1 Threshold
|
285 |
+
- type: max_precision
|
286 |
+
value: 0.47876447876447875
|
287 |
+
name: Max Precision
|
288 |
+
- type: max_recall
|
289 |
+
value: 0.8554913294797688
|
290 |
+
name: Max Recall
|
291 |
+
- type: max_ap
|
292 |
+
value: 0.5535962824434967
|
293 |
+
name: Max Ap
|
294 |
+
- task:
|
295 |
+
type: binary-classification
|
296 |
+
name: Binary Classification
|
297 |
+
dataset:
|
298 |
+
name: Qnli dev
|
299 |
+
type: Qnli-dev
|
300 |
+
metrics:
|
301 |
+
- type: cosine_accuracy
|
302 |
+
value: 0.681640625
|
303 |
+
name: Cosine Accuracy
|
304 |
+
- type: cosine_accuracy_threshold
|
305 |
+
value: 0.8160840272903442
|
306 |
+
name: Cosine Accuracy Threshold
|
307 |
+
- type: cosine_f1
|
308 |
+
value: 0.6917562724014337
|
309 |
+
name: Cosine F1
|
310 |
+
- type: cosine_f1_threshold
|
311 |
+
value: 0.7854001522064209
|
312 |
+
name: Cosine F1 Threshold
|
313 |
+
- type: cosine_precision
|
314 |
+
value: 0.5993788819875776
|
315 |
+
name: Cosine Precision
|
316 |
+
- type: cosine_recall
|
317 |
+
value: 0.8177966101694916
|
318 |
+
name: Cosine Recall
|
319 |
+
- type: cosine_ap
|
320 |
+
value: 0.7109982147608755
|
321 |
+
name: Cosine Ap
|
322 |
+
- type: dot_accuracy
|
323 |
+
value: 0.6484375
|
324 |
+
name: Dot Accuracy
|
325 |
+
- type: dot_accuracy_threshold
|
326 |
+
value: 392.5464782714844
|
327 |
+
name: Dot Accuracy Threshold
|
328 |
+
- type: dot_f1
|
329 |
+
value: 0.6688311688311689
|
330 |
+
name: Dot F1
|
331 |
+
- type: dot_f1_threshold
|
332 |
+
value: 368.7878723144531
|
333 |
+
name: Dot F1 Threshold
|
334 |
+
- type: dot_precision
|
335 |
+
value: 0.5421052631578948
|
336 |
+
name: Dot Precision
|
337 |
+
- type: dot_recall
|
338 |
+
value: 0.8728813559322034
|
339 |
+
name: Dot Recall
|
340 |
+
- type: dot_ap
|
341 |
+
value: 0.6053421534358263
|
342 |
+
name: Dot Ap
|
343 |
+
- type: manhattan_accuracy
|
344 |
+
value: 0.685546875
|
345 |
+
name: Manhattan Accuracy
|
346 |
+
- type: manhattan_accuracy_threshold
|
347 |
+
value: 244.63809204101562
|
348 |
+
name: Manhattan Accuracy Threshold
|
349 |
+
- type: manhattan_f1
|
350 |
+
value: 0.6938053097345133
|
351 |
+
name: Manhattan F1
|
352 |
+
- type: manhattan_f1_threshold
|
353 |
+
value: 295.4796142578125
|
354 |
+
name: Manhattan F1 Threshold
|
355 |
+
- type: manhattan_precision
|
356 |
+
value: 0.5957446808510638
|
357 |
+
name: Manhattan Precision
|
358 |
+
- type: manhattan_recall
|
359 |
+
value: 0.8305084745762712
|
360 |
+
name: Manhattan Recall
|
361 |
+
- type: manhattan_ap
|
362 |
+
value: 0.7216536349653324
|
363 |
+
name: Manhattan Ap
|
364 |
+
- type: euclidean_accuracy
|
365 |
+
value: 0.6875
|
366 |
+
name: Euclidean Accuracy
|
367 |
+
- type: euclidean_accuracy_threshold
|
368 |
+
value: 13.026724815368652
|
369 |
+
name: Euclidean Accuracy Threshold
|
370 |
+
- type: euclidean_f1
|
371 |
+
value: 0.689407540394973
|
372 |
+
name: Euclidean F1
|
373 |
+
- type: euclidean_f1_threshold
|
374 |
+
value: 14.538017272949219
|
375 |
+
name: Euclidean F1 Threshold
|
376 |
+
- type: euclidean_precision
|
377 |
+
value: 0.5981308411214953
|
378 |
+
name: Euclidean Precision
|
379 |
+
- type: euclidean_recall
|
380 |
+
value: 0.8135593220338984
|
381 |
+
name: Euclidean Recall
|
382 |
+
- type: euclidean_ap
|
383 |
+
value: 0.7181091181717016
|
384 |
+
name: Euclidean Ap
|
385 |
+
- type: max_accuracy
|
386 |
+
value: 0.6875
|
387 |
+
name: Max Accuracy
|
388 |
+
- type: max_accuracy_threshold
|
389 |
+
value: 392.5464782714844
|
390 |
+
name: Max Accuracy Threshold
|
391 |
+
- type: max_f1
|
392 |
+
value: 0.6938053097345133
|
393 |
+
name: Max F1
|
394 |
+
- type: max_f1_threshold
|
395 |
+
value: 368.7878723144531
|
396 |
+
name: Max F1 Threshold
|
397 |
+
- type: max_precision
|
398 |
+
value: 0.5993788819875776
|
399 |
+
name: Max Precision
|
400 |
+
- type: max_recall
|
401 |
+
value: 0.8728813559322034
|
402 |
+
name: Max Recall
|
403 |
+
- type: max_ap
|
404 |
+
value: 0.7216536349653324
|
405 |
+
name: Max Ap
|
406 |
+
---
|
407 |
+
|
408 |
+
# SentenceTransformer based on microsoft/deberta-v3-small
|
409 |
+
|
410 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
411 |
+
|
412 |
+
## Model Details
|
413 |
+
|
414 |
+
### Model Description
|
415 |
+
- **Model Type:** Sentence Transformer
|
416 |
+
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
|
417 |
+
- **Maximum Sequence Length:** 512 tokens
|
418 |
+
- **Output Dimensionality:** 768 tokens
|
419 |
+
- **Similarity Function:** Cosine Similarity
|
420 |
+
- **Training Dataset:**
|
421 |
+
- bobox/enhanced_nli-50_k
|
422 |
+
<!-- - **Language:** Unknown -->
|
423 |
+
<!-- - **License:** Unknown -->
|
424 |
+
|
425 |
+
### Model Sources
|
426 |
+
|
427 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
428 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
429 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
430 |
+
|
431 |
+
### Full Model Architecture
|
432 |
+
|
433 |
+
```
|
434 |
+
SentenceTransformer(
|
435 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
436 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
437 |
+
)
|
438 |
+
```
|
439 |
+
|
440 |
+
## Usage
|
441 |
+
|
442 |
+
### Direct Usage (Sentence Transformers)
|
443 |
+
|
444 |
+
First install the Sentence Transformers library:
|
445 |
+
|
446 |
+
```bash
|
447 |
+
pip install -U sentence-transformers
|
448 |
+
```
|
449 |
+
|
450 |
+
Then you can load this model and run inference.
|
451 |
+
```python
|
452 |
+
from sentence_transformers import SentenceTransformer
|
453 |
+
|
454 |
+
# Download from the 🤗 Hub
|
455 |
+
model = SentenceTransformer("bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp")
|
456 |
+
# Run inference
|
457 |
+
sentences = [
|
458 |
+
'A man wearing a blue bow tie and a fedora hat in a car. ',
|
459 |
+
'A man takes a photo of himself wearing a bowtie and hat',
|
460 |
+
'County of Angus - definition of County of Angus by The Free Dictionary County of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus \xa0(ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland and are usually black but also occur in a red variety. Also called Black Angus. [After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council area of E Scotland on the North Sea: the historical county of Angus became part of Tayside region in 1975; reinstated as a unitary authority (excluding City of Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area: 2181 sq km (842 sq miles) An•gus',
|
461 |
+
]
|
462 |
+
embeddings = model.encode(sentences)
|
463 |
+
print(embeddings.shape)
|
464 |
+
# [3, 768]
|
465 |
+
|
466 |
+
# Get the similarity scores for the embeddings
|
467 |
+
similarities = model.similarity(embeddings, embeddings)
|
468 |
+
print(similarities.shape)
|
469 |
+
# [3, 3]
|
470 |
+
```
|
471 |
+
|
472 |
+
<!--
|
473 |
+
### Direct Usage (Transformers)
|
474 |
+
|
475 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
476 |
+
|
477 |
+
</details>
|
478 |
+
-->
|
479 |
+
|
480 |
+
<!--
|
481 |
+
### Downstream Usage (Sentence Transformers)
|
482 |
+
|
483 |
+
You can finetune this model on your own dataset.
|
484 |
+
|
485 |
+
<details><summary>Click to expand</summary>
|
486 |
+
|
487 |
+
</details>
|
488 |
+
-->
|
489 |
+
|
490 |
+
<!--
|
491 |
+
### Out-of-Scope Use
|
492 |
+
|
493 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
494 |
+
-->
|
495 |
+
|
496 |
+
## Evaluation
|
497 |
+
|
498 |
+
### Metrics
|
499 |
+
|
500 |
+
#### Semantic Similarity
|
501 |
+
* Dataset: `sts-test`
|
502 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
503 |
+
|
504 |
+
| Metric | Value |
|
505 |
+
|:--------------------|:-----------|
|
506 |
+
| pearson_cosine | 0.7489 |
|
507 |
+
| **spearman_cosine** | **0.7626** |
|
508 |
+
| pearson_manhattan | 0.7592 |
|
509 |
+
| spearman_manhattan | 0.7478 |
|
510 |
+
| pearson_euclidean | 0.7623 |
|
511 |
+
| spearman_euclidean | 0.7539 |
|
512 |
+
| pearson_dot | 0.6494 |
|
513 |
+
| spearman_dot | 0.6306 |
|
514 |
+
| pearson_max | 0.7623 |
|
515 |
+
| spearman_max | 0.7626 |
|
516 |
+
|
517 |
+
#### Binary Classification
|
518 |
+
* Dataset: `allNLI-dev`
|
519 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
520 |
+
|
521 |
+
| Metric | Value |
|
522 |
+
|:-----------------------------|:-----------|
|
523 |
+
| cosine_accuracy | 0.7109 |
|
524 |
+
| cosine_accuracy_threshold | 0.917 |
|
525 |
+
| cosine_f1 | 0.5854 |
|
526 |
+
| cosine_f1_threshold | 0.828 |
|
527 |
+
| cosine_precision | 0.4748 |
|
528 |
+
| cosine_recall | 0.763 |
|
529 |
+
| cosine_ap | 0.5496 |
|
530 |
+
| dot_accuracy | 0.6719 |
|
531 |
+
| dot_accuracy_threshold | 481.2851 |
|
532 |
+
| dot_f1 | 0.5492 |
|
533 |
+
| dot_f1_threshold | 381.1517 |
|
534 |
+
| dot_precision | 0.4044 |
|
535 |
+
| dot_recall | 0.8555 |
|
536 |
+
| dot_ap | 0.4529 |
|
537 |
+
| manhattan_accuracy | 0.7148 |
|
538 |
+
| manhattan_accuracy_threshold | 186.7671 |
|
539 |
+
| manhattan_f1 | 0.5696 |
|
540 |
+
| manhattan_f1_threshold | 268.7839 |
|
541 |
+
| manhattan_precision | 0.4448 |
|
542 |
+
| manhattan_recall | 0.7919 |
|
543 |
+
| manhattan_ap | 0.5512 |
|
544 |
+
| euclidean_accuracy | 0.7148 |
|
545 |
+
| euclidean_accuracy_threshold | 8.915 |
|
546 |
+
| euclidean_f1 | 0.5741 |
|
547 |
+
| euclidean_f1_threshold | 12.8127 |
|
548 |
+
| euclidean_precision | 0.4788 |
|
549 |
+
| euclidean_recall | 0.7168 |
|
550 |
+
| euclidean_ap | 0.5536 |
|
551 |
+
| max_accuracy | 0.7148 |
|
552 |
+
| max_accuracy_threshold | 481.2851 |
|
553 |
+
| max_f1 | 0.5854 |
|
554 |
+
| max_f1_threshold | 381.1517 |
|
555 |
+
| max_precision | 0.4788 |
|
556 |
+
| max_recall | 0.8555 |
|
557 |
+
| **max_ap** | **0.5536** |
|
558 |
+
|
559 |
+
#### Binary Classification
|
560 |
+
* Dataset: `Qnli-dev`
|
561 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
562 |
+
|
563 |
+
| Metric | Value |
|
564 |
+
|:-----------------------------|:-----------|
|
565 |
+
| cosine_accuracy | 0.6816 |
|
566 |
+
| cosine_accuracy_threshold | 0.8161 |
|
567 |
+
| cosine_f1 | 0.6918 |
|
568 |
+
| cosine_f1_threshold | 0.7854 |
|
569 |
+
| cosine_precision | 0.5994 |
|
570 |
+
| cosine_recall | 0.8178 |
|
571 |
+
| cosine_ap | 0.711 |
|
572 |
+
| dot_accuracy | 0.6484 |
|
573 |
+
| dot_accuracy_threshold | 392.5465 |
|
574 |
+
| dot_f1 | 0.6688 |
|
575 |
+
| dot_f1_threshold | 368.7879 |
|
576 |
+
| dot_precision | 0.5421 |
|
577 |
+
| dot_recall | 0.8729 |
|
578 |
+
| dot_ap | 0.6053 |
|
579 |
+
| manhattan_accuracy | 0.6855 |
|
580 |
+
| manhattan_accuracy_threshold | 244.6381 |
|
581 |
+
| manhattan_f1 | 0.6938 |
|
582 |
+
| manhattan_f1_threshold | 295.4796 |
|
583 |
+
| manhattan_precision | 0.5957 |
|
584 |
+
| manhattan_recall | 0.8305 |
|
585 |
+
| manhattan_ap | 0.7217 |
|
586 |
+
| euclidean_accuracy | 0.6875 |
|
587 |
+
| euclidean_accuracy_threshold | 13.0267 |
|
588 |
+
| euclidean_f1 | 0.6894 |
|
589 |
+
| euclidean_f1_threshold | 14.538 |
|
590 |
+
| euclidean_precision | 0.5981 |
|
591 |
+
| euclidean_recall | 0.8136 |
|
592 |
+
| euclidean_ap | 0.7181 |
|
593 |
+
| max_accuracy | 0.6875 |
|
594 |
+
| max_accuracy_threshold | 392.5465 |
|
595 |
+
| max_f1 | 0.6938 |
|
596 |
+
| max_f1_threshold | 368.7879 |
|
597 |
+
| max_precision | 0.5994 |
|
598 |
+
| max_recall | 0.8729 |
|
599 |
+
| **max_ap** | **0.7217** |
|
600 |
+
|
601 |
+
<!--
|
602 |
+
## Bias, Risks and Limitations
|
603 |
+
|
604 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
605 |
+
-->
|
606 |
+
|
607 |
+
<!--
|
608 |
+
### Recommendations
|
609 |
+
|
610 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
611 |
+
-->
|
612 |
+
|
613 |
+
## Training Details
|
614 |
+
|
615 |
+
### Training Dataset
|
616 |
+
|
617 |
+
#### bobox/enhanced_nli-50_k
|
618 |
+
|
619 |
+
* Dataset: bobox/enhanced_nli-50_k
|
620 |
+
* Size: 116,445 training samples
|
621 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
622 |
+
* Approximate statistics based on the first 1000 samples:
|
623 |
+
| | sentence1 | sentence2 |
|
624 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
625 |
+
| type | string | string |
|
626 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 33.67 tokens</li><li>max: 338 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 51.48 tokens</li><li>max: 512 tokens</li></ul> |
|
627 |
+
* Samples:
|
628 |
+
| sentence1 | sentence2 |
|
629 |
+
|:---------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
630 |
+
| <code>who is darnell from my name is earl</code> | <code>Eddie Steeples Eddie Steeples (born November 25, 1973)[1] is an American actor known for his roles as the "Rubberband Man" in an advertising campaign for OfficeMax, and as Darnell Turner on the NBC sitcom My Name Is Earl.</code> |
|
631 |
+
| <code>Ferrell and the Chili Peppers toured together in 2013 .</code> | <code>Ferrell and the Chili Peppers wrapped up I 'm With You World Tour in April 2013 .</code> |
|
632 |
+
| <code>Cells have four cycles.</code> | <code>How many cycles do cells have?</code> |
|
633 |
+
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
|
634 |
+
```json
|
635 |
+
{'guide': SentenceTransformer(
|
636 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
637 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
638 |
+
(2): Normalize()
|
639 |
+
), 'temperature': 0.025}
|
640 |
+
```
|
641 |
+
|
642 |
+
### Evaluation Dataset
|
643 |
+
|
644 |
+
#### bobox/enhanced_nli-50_k
|
645 |
+
|
646 |
+
* Dataset: bobox/enhanced_nli-50_k
|
647 |
+
* Size: 1,506 evaluation samples
|
648 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
649 |
+
* Approximate statistics based on the first 1000 samples:
|
650 |
+
| | sentence1 | sentence2 |
|
651 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
652 |
+
| type | string | string |
|
653 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 32.36 tokens</li><li>max: 341 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 61.99 tokens</li><li>max: 431 tokens</li></ul> |
|
654 |
+
* Samples:
|
655 |
+
| sentence1 | sentence2 |
|
656 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
657 |
+
| <code>Interestingly, snakes use their forked tongues to smell.</code> | <code>Snakes use their tongue to smell things.</code> |
|
658 |
+
| <code>Soil is a renewable resource that can take thousand of years to form.</code> | <code>What is a renewable resource that can take thousand of years to form?</code> |
|
659 |
+
| <code>As of March 22 , there were more than 321,000 cases with over 13,600 deaths and more than 96,000 recoveries reported worldwide .</code> | <code>As of 22 March , more than 321,000 cases of COVID-19 have been reported in over 180 countries and territories , resulting in more than 13,600 deaths and 96,000 recoveries .</code> |
|
660 |
+
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
|
661 |
+
```json
|
662 |
+
{'guide': SentenceTransformer(
|
663 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
664 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
665 |
+
(2): Normalize()
|
666 |
+
), 'temperature': 0.025}
|
667 |
+
```
|
668 |
+
|
669 |
+
### Training Hyperparameters
|
670 |
+
#### Non-Default Hyperparameters
|
671 |
+
|
672 |
+
- `eval_strategy`: steps
|
673 |
+
- `per_device_train_batch_size`: 640
|
674 |
+
- `per_device_eval_batch_size`: 128
|
675 |
+
- `learning_rate`: 3.75e-05
|
676 |
+
- `weight_decay`: 0.0005
|
677 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
678 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06}
|
679 |
+
- `warmup_ratio`: 0.33
|
680 |
+
- `save_safetensors`: False
|
681 |
+
- `fp16`: True
|
682 |
+
- `push_to_hub`: True
|
683 |
+
- `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp
|
684 |
+
- `hub_strategy`: all_checkpoints
|
685 |
+
- `batch_sampler`: no_duplicates
|
686 |
+
|
687 |
+
#### All Hyperparameters
|
688 |
+
<details><summary>Click to expand</summary>
|
689 |
+
|
690 |
+
- `overwrite_output_dir`: False
|
691 |
+
- `do_predict`: False
|
692 |
+
- `eval_strategy`: steps
|
693 |
+
- `prediction_loss_only`: True
|
694 |
+
- `per_device_train_batch_size`: 640
|
695 |
+
- `per_device_eval_batch_size`: 128
|
696 |
+
- `per_gpu_train_batch_size`: None
|
697 |
+
- `per_gpu_eval_batch_size`: None
|
698 |
+
- `gradient_accumulation_steps`: 1
|
699 |
+
- `eval_accumulation_steps`: None
|
700 |
+
- `torch_empty_cache_steps`: None
|
701 |
+
- `learning_rate`: 3.75e-05
|
702 |
+
- `weight_decay`: 0.0005
|
703 |
+
- `adam_beta1`: 0.9
|
704 |
+
- `adam_beta2`: 0.999
|
705 |
+
- `adam_epsilon`: 1e-08
|
706 |
+
- `max_grad_norm`: 1.0
|
707 |
+
- `num_train_epochs`: 3
|
708 |
+
- `max_steps`: -1
|
709 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
710 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06}
|
711 |
+
- `warmup_ratio`: 0.33
|
712 |
+
- `warmup_steps`: 0
|
713 |
+
- `log_level`: passive
|
714 |
+
- `log_level_replica`: warning
|
715 |
+
- `log_on_each_node`: True
|
716 |
+
- `logging_nan_inf_filter`: True
|
717 |
+
- `save_safetensors`: False
|
718 |
+
- `save_on_each_node`: False
|
719 |
+
- `save_only_model`: False
|
720 |
+
- `restore_callback_states_from_checkpoint`: False
|
721 |
+
- `no_cuda`: False
|
722 |
+
- `use_cpu`: False
|
723 |
+
- `use_mps_device`: False
|
724 |
+
- `seed`: 42
|
725 |
+
- `data_seed`: None
|
726 |
+
- `jit_mode_eval`: False
|
727 |
+
- `use_ipex`: False
|
728 |
+
- `bf16`: False
|
729 |
+
- `fp16`: True
|
730 |
+
- `fp16_opt_level`: O1
|
731 |
+
- `half_precision_backend`: auto
|
732 |
+
- `bf16_full_eval`: False
|
733 |
+
- `fp16_full_eval`: False
|
734 |
+
- `tf32`: None
|
735 |
+
- `local_rank`: 0
|
736 |
+
- `ddp_backend`: None
|
737 |
+
- `tpu_num_cores`: None
|
738 |
+
- `tpu_metrics_debug`: False
|
739 |
+
- `debug`: []
|
740 |
+
- `dataloader_drop_last`: False
|
741 |
+
- `dataloader_num_workers`: 0
|
742 |
+
- `dataloader_prefetch_factor`: None
|
743 |
+
- `past_index`: -1
|
744 |
+
- `disable_tqdm`: False
|
745 |
+
- `remove_unused_columns`: True
|
746 |
+
- `label_names`: None
|
747 |
+
- `load_best_model_at_end`: False
|
748 |
+
- `ignore_data_skip`: False
|
749 |
+
- `fsdp`: []
|
750 |
+
- `fsdp_min_num_params`: 0
|
751 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
752 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
753 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
754 |
+
- `deepspeed`: None
|
755 |
+
- `label_smoothing_factor`: 0.0
|
756 |
+
- `optim`: adamw_torch
|
757 |
+
- `optim_args`: None
|
758 |
+
- `adafactor`: False
|
759 |
+
- `group_by_length`: False
|
760 |
+
- `length_column_name`: length
|
761 |
+
- `ddp_find_unused_parameters`: None
|
762 |
+
- `ddp_bucket_cap_mb`: None
|
763 |
+
- `ddp_broadcast_buffers`: False
|
764 |
+
- `dataloader_pin_memory`: True
|
765 |
+
- `dataloader_persistent_workers`: False
|
766 |
+
- `skip_memory_metrics`: True
|
767 |
+
- `use_legacy_prediction_loop`: False
|
768 |
+
- `push_to_hub`: True
|
769 |
+
- `resume_from_checkpoint`: None
|
770 |
+
- `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp
|
771 |
+
- `hub_strategy`: all_checkpoints
|
772 |
+
- `hub_private_repo`: False
|
773 |
+
- `hub_always_push`: False
|
774 |
+
- `gradient_checkpointing`: False
|
775 |
+
- `gradient_checkpointing_kwargs`: None
|
776 |
+
- `include_inputs_for_metrics`: False
|
777 |
+
- `eval_do_concat_batches`: True
|
778 |
+
- `fp16_backend`: auto
|
779 |
+
- `push_to_hub_model_id`: None
|
780 |
+
- `push_to_hub_organization`: None
|
781 |
+
- `mp_parameters`:
|
782 |
+
- `auto_find_batch_size`: False
|
783 |
+
- `full_determinism`: False
|
784 |
+
- `torchdynamo`: None
|
785 |
+
- `ray_scope`: last
|
786 |
+
- `ddp_timeout`: 1800
|
787 |
+
- `torch_compile`: False
|
788 |
+
- `torch_compile_backend`: None
|
789 |
+
- `torch_compile_mode`: None
|
790 |
+
- `dispatch_batches`: None
|
791 |
+
- `split_batches`: None
|
792 |
+
- `include_tokens_per_second`: False
|
793 |
+
- `include_num_input_tokens_seen`: False
|
794 |
+
- `neftune_noise_alpha`: None
|
795 |
+
- `optim_target_modules`: None
|
796 |
+
- `batch_eval_metrics`: False
|
797 |
+
- `eval_on_start`: False
|
798 |
+
- `eval_use_gather_object`: False
|
799 |
+
- `batch_sampler`: no_duplicates
|
800 |
+
- `multi_dataset_batch_sampler`: proportional
|
801 |
+
|
802 |
+
</details>
|
803 |
+
|
804 |
+
### Training Logs
|
805 |
+
<details><summary>Click to expand</summary>
|
806 |
+
|
807 |
+
| Epoch | Step | Training Loss | loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|
808 |
+
|:------:|:----:|:-------------:|:------:|:---------------:|:-----------------:|:------------------------:|
|
809 |
+
| 0.0055 | 1 | 8.8159 | - | - | - | - |
|
810 |
+
| 0.0110 | 2 | 9.1259 | - | - | - | - |
|
811 |
+
| 0.0165 | 3 | 8.9017 | - | - | - | - |
|
812 |
+
| 0.0220 | 4 | 9.1969 | - | - | - | - |
|
813 |
+
| 0.0275 | 5 | 9.3716 | 1.3746 | 0.6067 | 0.3706 | 0.1943 |
|
814 |
+
| 0.0330 | 6 | 9.0425 | - | - | - | - |
|
815 |
+
| 0.0385 | 7 | 8.7309 | - | - | - | - |
|
816 |
+
| 0.0440 | 8 | 9.0123 | - | - | - | - |
|
817 |
+
| 0.0495 | 9 | 8.8095 | - | - | - | - |
|
818 |
+
| 0.0549 | 10 | 9.3194 | 1.3227 | 0.6089 | 0.3721 | 0.1976 |
|
819 |
+
| 0.0604 | 11 | 8.9873 | - | - | - | - |
|
820 |
+
| 0.0659 | 12 | 8.5575 | - | - | - | - |
|
821 |
+
| 0.0714 | 13 | 8.8096 | - | - | - | - |
|
822 |
+
| 0.0769 | 14 | 8.0996 | - | - | - | - |
|
823 |
+
| 0.0824 | 15 | 8.1942 | 1.2244 | 0.6140 | 0.3743 | 0.2085 |
|
824 |
+
| 0.0879 | 16 | 8.1654 | - | - | - | - |
|
825 |
+
| 0.0934 | 17 | 7.7336 | - | - | - | - |
|
826 |
+
| 0.0989 | 18 | 7.9535 | - | - | - | - |
|
827 |
+
| 0.1044 | 19 | 7.9322 | - | - | - | - |
|
828 |
+
| 0.1099 | 20 | 7.6812 | 1.1301 | 0.6199 | 0.3790 | 0.2233 |
|
829 |
+
| 0.1154 | 21 | 7.551 | - | - | - | - |
|
830 |
+
| 0.1209 | 22 | 7.3788 | - | - | - | - |
|
831 |
+
| 0.1264 | 23 | 7.1746 | - | - | - | - |
|
832 |
+
| 0.1319 | 24 | 7.1849 | - | - | - | - |
|
833 |
+
| 0.1374 | 25 | 7.1085 | 1.0723 | 0.6195 | 0.3852 | 0.2357 |
|
834 |
+
| 0.1429 | 26 | 7.3926 | - | - | - | - |
|
835 |
+
| 0.1484 | 27 | 7.1817 | - | - | - | - |
|
836 |
+
| 0.1538 | 28 | 7.239 | - | - | - | - |
|
837 |
+
| 0.1593 | 29 | 7.0023 | - | - | - | - |
|
838 |
+
| 0.1648 | 30 | 6.9898 | 1.0282 | 0.6215 | 0.3898 | 0.2477 |
|
839 |
+
| 0.1703 | 31 | 6.9776 | - | - | - | - |
|
840 |
+
| 0.1758 | 32 | 6.8088 | - | - | - | - |
|
841 |
+
| 0.1813 | 33 | 6.8916 | - | - | - | - |
|
842 |
+
| 0.1868 | 34 | 6.6931 | - | - | - | - |
|
843 |
+
| 0.1923 | 35 | 6.5707 | 0.9846 | 0.6253 | 0.3952 | 0.2608 |
|
844 |
+
| 0.1978 | 36 | 6.6231 | - | - | - | - |
|
845 |
+
| 0.2033 | 37 | 6.4951 | - | - | - | - |
|
846 |
+
| 0.2088 | 38 | 6.4607 | - | - | - | - |
|
847 |
+
| 0.2143 | 39 | 6.4504 | - | - | - | - |
|
848 |
+
| 0.2198 | 40 | 6.3649 | 0.9314 | 0.6299 | 0.4041 | 0.2738 |
|
849 |
+
| 0.2253 | 41 | 6.2244 | - | - | - | - |
|
850 |
+
| 0.2308 | 42 | 6.007 | - | - | - | - |
|
851 |
+
| 0.2363 | 43 | 5.977 | - | - | - | - |
|
852 |
+
| 0.2418 | 44 | 6.0748 | - | - | - | - |
|
853 |
+
| 0.2473 | 45 | 5.7946 | 0.8549 | 0.6404 | 0.4116 | 0.2847 |
|
854 |
+
| 0.2527 | 46 | 5.8751 | - | - | - | - |
|
855 |
+
| 0.2582 | 47 | 5.543 | - | - | - | - |
|
856 |
+
| 0.2637 | 48 | 5.5511 | - | - | - | - |
|
857 |
+
| 0.2692 | 49 | 5.411 | - | - | - | - |
|
858 |
+
| 0.2747 | 50 | 5.378 | 0.7943 | 0.6557 | 0.4159 | 0.2866 |
|
859 |
+
| 0.2802 | 51 | 5.3831 | - | - | - | - |
|
860 |
+
| 0.2857 | 52 | 4.9729 | - | - | - | - |
|
861 |
+
| 0.2912 | 53 | 5.0425 | - | - | - | - |
|
862 |
+
| 0.2967 | 54 | 4.9446 | - | - | - | - |
|
863 |
+
| 0.3022 | 55 | 4.9288 | 0.7178 | 0.6679 | 0.4273 | 0.3132 |
|
864 |
+
| 0.3077 | 56 | 4.8434 | - | - | - | - |
|
865 |
+
| 0.3132 | 57 | 4.6914 | - | - | - | - |
|
866 |
+
| 0.3187 | 58 | 4.5254 | - | - | - | - |
|
867 |
+
| 0.3242 | 59 | 4.6734 | - | - | - | - |
|
868 |
+
| 0.3297 | 60 | 4.2421 | 0.6202 | 0.6684 | 0.4423 | 0.3580 |
|
869 |
+
| 0.3352 | 61 | 4.2234 | - | - | - | - |
|
870 |
+
| 0.3407 | 62 | 4.0225 | - | - | - | - |
|
871 |
+
| 0.3462 | 63 | 4.0034 | - | - | - | - |
|
872 |
+
| 0.3516 | 64 | 3.994 | - | - | - | - |
|
873 |
+
| 0.3571 | 65 | 3.651 | 0.5489 | 0.6750 | 0.4569 | 0.4014 |
|
874 |
+
| 0.3626 | 66 | 3.9308 | - | - | - | - |
|
875 |
+
| 0.3681 | 67 | 3.8694 | - | - | - | - |
|
876 |
+
| 0.3736 | 68 | 3.7159 | - | - | - | - |
|
877 |
+
| 0.3791 | 69 | 3.6499 | - | - | - | - |
|
878 |
+
| 0.3846 | 70 | 3.4749 | 0.4923 | 0.6734 | 0.4701 | 0.4465 |
|
879 |
+
| 0.3901 | 71 | 3.3356 | - | - | - | - |
|
880 |
+
| 0.3956 | 72 | 3.4768 | - | - | - | - |
|
881 |
+
| 0.4011 | 73 | 3.2748 | - | - | - | - |
|
882 |
+
| 0.4066 | 74 | 3.2789 | - | - | - | - |
|
883 |
+
| 0.4121 | 75 | 2.9815 | 0.4422 | 0.6759 | 0.4747 | 0.4924 |
|
884 |
+
| 0.4176 | 76 | 3.2356 | - | - | - | - |
|
885 |
+
| 0.4231 | 77 | 2.946 | - | - | - | - |
|
886 |
+
| 0.4286 | 78 | 2.8888 | - | - | - | - |
|
887 |
+
| 0.4341 | 79 | 2.8992 | - | - | - | - |
|
888 |
+
| 0.4396 | 80 | 2.9901 | 0.4040 | 0.6786 | 0.4781 | 0.5478 |
|
889 |
+
| 0.4451 | 81 | 2.6608 | - | - | - | - |
|
890 |
+
| 0.4505 | 82 | 2.831 | - | - | - | - |
|
891 |
+
| 0.4560 | 83 | 2.5503 | - | - | - | - |
|
892 |
+
| 0.4615 | 84 | 2.8576 | - | - | - | - |
|
893 |
+
| 0.4670 | 85 | 2.5726 | 0.3711 | 0.6858 | 0.4898 | 0.6134 |
|
894 |
+
| 0.4725 | 86 | 2.7197 | - | - | - | - |
|
895 |
+
| 0.4780 | 87 | 2.5123 | - | - | - | - |
|
896 |
+
| 0.4835 | 88 | 2.553 | - | - | - | - |
|
897 |
+
| 0.4890 | 89 | 2.4862 | - | - | - | - |
|
898 |
+
| 0.4945 | 90 | 2.491 | 0.3450 | 0.6997 | 0.5077 | 0.6668 |
|
899 |
+
| 0.5 | 91 | 2.3648 | - | - | - | - |
|
900 |
+
| 0.5055 | 92 | 2.3788 | - | - | - | - |
|
901 |
+
| 0.5110 | 93 | 2.3758 | - | - | - | - |
|
902 |
+
| 0.5165 | 94 | 2.3319 | - | - | - | - |
|
903 |
+
| 0.5220 | 95 | 2.2336 | 0.3238 | 0.7048 | 0.5252 | 0.7018 |
|
904 |
+
| 0.5275 | 96 | 2.3036 | - | - | - | - |
|
905 |
+
| 0.5330 | 97 | 2.3034 | - | - | - | - |
|
906 |
+
| 0.5385 | 98 | 2.207 | - | - | - | - |
|
907 |
+
| 0.5440 | 99 | 2.1732 | - | - | - | - |
|
908 |
+
| 0.5495 | 100 | 2.1743 | 0.3036 | 0.7091 | 0.5418 | 0.7272 |
|
909 |
+
| 0.5549 | 101 | 2.086 | - | - | - | - |
|
910 |
+
| 0.5604 | 102 | 2.0223 | - | - | - | - |
|
911 |
+
| 0.5659 | 103 | 2.0878 | - | - | - | - |
|
912 |
+
| 0.5714 | 104 | 1.9475 | - | - | - | - |
|
913 |
+
| 0.5769 | 105 | 2.1524 | 0.2853 | 0.7159 | 0.5499 | 0.7489 |
|
914 |
+
| 0.5824 | 106 | 1.9393 | - | - | - | - |
|
915 |
+
| 0.5879 | 107 | 2.1308 | - | - | - | - |
|
916 |
+
| 0.5934 | 108 | 1.9469 | - | - | - | - |
|
917 |
+
| 0.5989 | 109 | 1.8683 | - | - | - | - |
|
918 |
+
| 0.6044 | 110 | 1.8167 | 0.2702 | 0.7217 | 0.5536 | 0.7626 |
|
919 |
+
|
920 |
+
</details>
|
921 |
+
|
922 |
+
### Framework Versions
|
923 |
+
- Python: 3.10.14
|
924 |
+
- Sentence Transformers: 3.0.1
|
925 |
+
- Transformers: 4.44.0
|
926 |
+
- PyTorch: 2.4.0
|
927 |
+
- Accelerate: 0.33.0
|
928 |
+
- Datasets: 2.21.0
|
929 |
+
- Tokenizers: 0.19.1
|
930 |
+
|
931 |
+
## Citation
|
932 |
+
|
933 |
+
### BibTeX
|
934 |
+
|
935 |
+
#### Sentence Transformers
|
936 |
+
```bibtex
|
937 |
+
@inproceedings{reimers-2019-sentence-bert,
|
938 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
939 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
940 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
941 |
+
month = "11",
|
942 |
+
year = "2019",
|
943 |
+
publisher = "Association for Computational Linguistics",
|
944 |
+
url = "https://arxiv.org/abs/1908.10084",
|
945 |
+
}
|
946 |
+
```
|
947 |
+
|
948 |
+
<!--
|
949 |
+
## Glossary
|
950 |
+
|
951 |
+
*Clearly define terms in order to be accessible across audiences.*
|
952 |
+
-->
|
953 |
+
|
954 |
+
<!--
|
955 |
+
## Model Card Authors
|
956 |
+
|
957 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
958 |
+
-->
|
959 |
+
|
960 |
+
<!--
|
961 |
+
## Model Card Contact
|
962 |
+
|
963 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
964 |
+
-->
|
checkpoint-110/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
checkpoint-110/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-small",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.44.0",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
checkpoint-110/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.0",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-110/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
checkpoint-110/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8b58baa1d148c2570e59d52cab7516e156bb31762ea2e676cc136a49116b0af
|
3 |
+
size 1130520122
|
checkpoint-110/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:738f0a7ea7064dc1fad40f06348ccc1b270737b5df295320877dfeb122ea18a9
|
3 |
+
size 565251810
|
checkpoint-110/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58f811f94539aa733ba4ef861adb95e7c49fb89154fee4002503dcf3153081b7
|
3 |
+
size 14244
|
checkpoint-110/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c14f6669285b589459a92ce501e1b7bb3e1c10d97d299ec8dab14ebb69f66e0
|
3 |
+
size 1064
|
checkpoint-110/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-110/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
checkpoint-110/spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
checkpoint-110/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-110/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|
checkpoint-110/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-110/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b50a4a92b5eb29f5d9b19f9e1060fdd6af0a02268cb16ba6bb85ab82bb7ddd6b
|
3 |
+
size 5752
|