File size: 39,022 Bytes
72c36bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
---
base_model: bobox/DeBERTa-small-ST-v1-test-step3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:120849
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: '"Today I lost those who for 24 years I called...my family," said
Enes Kanter of the Oklahoma City Thunder.
Turkish President Recep Tayyip Erdogan blames Mr Gulen for inciting a failed coup
last month and is seeking the cleric''s extradition to Turkey.
Mr Gulen, who has a large following, denies being involved in the coup.
Kanter''s father, Mehmet, disowned his son in a letter published on Monday by
Sabah, a pro-government newspaper.
Mehmet Kanter wrote his son had been "hypnotised" by the Gulen movement.
"With a feeling of shame I apologise to our president and the Turkish people for
having such a son," the letter said.
Q&A on the Gulen movement
Mr Gulen is regarded by followers as a spiritual leader and sometimes described
as Turkey''s second most powerful man.
Enes Kanter has been a vocal supporter of Mr Gulen on Twitter.
The movement - known in Turkey as Hizmet, or service - runs schools all over Turkey
and around the world, including in Turkic former Soviet republics, Muslim countries
such as Pakistan and Western nations including Romania and the US, where it runs
more than 100 schools.
In May 2016, the Turkish government formally declared the Gulen movement a terrorist
organisation.
After the failed coup, suspected Gulen supporters in Turkey were purged in a wave
of arrests.
Western nations have been critical of the government''s response to the coup.
US officials have said they will extradite Mr Gulen only if Turkey provides evidence.'
sentences:
- 'The Thinker | Rodin Museum H. 189 cm ; W. 98 cm ; D. 140 cm S.2838 When conceived
in 1880 in its original size (approx. 70 cm) as the crowning element of The Gates
of Hell , seated on the tympanum , The Thinker was entitled The Poet. He represented
Dante, author of the Divine Comedy which had inspired The Gates, leaning forward
to observe the circles of Hell, while meditating on his work. The Thinker was
therefore initially both a being with a tortured body, almost a damned soul, and
a free-thinking man, determined to transcend his suffering through poetry. The
pose of this figure owes much to Carpeaux’s Ugolino (1861) and to the seated portrait
of Lorenzo de’ Medici carved by Michelangelo (1526-31). While remaining in place
on the monumental Gates of Hell, The Thinker was exhibited individually in 1888
and thus became an independent work. Enlarged in 1904, its colossal version proved
even more popular: this image of a man lost in thought, but whose powerful body
suggests a great capacity for action, has became one of the most celebrated sculptures
ever known. Numerous casts exist worldwide, including the one now in the gardens
of the Musée Rodin, a gift to the City of Paris installed outside the Panthéon
in 1906, and another in the gardens of Rodin’s house in Meudon, on the tomb of
the sculptor and his wife. George Bernard Shaw in the Pose of "The Thinker" Rodin,
the Monument to Victor Hugo and The Thinker Rodin''s "Thinker" in Dr Linde''s
Garden in Lübeck'
- An American basketball player has cut ties with his Turkish family over his support
for Pennsylvania-based preacher Fethullah Gulen.
- Police are investigating a death at a bus stop in Fife.
- source_sentence: Two adorable birds perched on a piece of bamboo.
sentences:
- Two birds are sitting perched on a tree limb
- A young boy with a spoon looking at a birthday cupcake.
- As part of his attempt to turn the Austrian right , Dessaix ordered a battalion
to move along the Aire stream near Tairier and Crache .
- source_sentence: how do venom snake keepers make money?
sentences:
- "The USDA regulates who can buy and sell snake venom. It is very important to\
\ learn about these regulations so that you can operate properly. On average,\
\ snake milkers make around $2,500 per month, but snake venom is an expensive\
\ market. One gram of certain types of snake venom can sell for $2,000.If you\
\ are crazy enough to capture, milk, and breed snakes, please take the precaution\
\ to wear protective clothing and always have antivenom close at hand.nake milkers\
\ have an insane job. They â\x80\x9Cmilkâ\x80\x9D snakes for their venom. This\
\ means that every single day, a snake milker handles deadly, venomous snakes.\
\ Itâ\x80\x99s a hands on job where you put your fingers millimeters away from\
\ the sharp, fangs of asps, vipers, cobras, corals, mambas, kraits, and rattlesnakes."
- a greenhouse is used to protect plants by keeping them warm
- Nashville Mayor Megan Barry has said her 22-year-old son died of what appeared
to be a drug overdose, according to a family statement.
- source_sentence: Adult bees include workers, a queen and what other type?
sentences:
- "matter vibrating can cause sound. Thus, sound is a wave in air . \n matter vibrating\
\ can cause a wave in air"
- His references in electronic music are Todd Terry , Armand Van Helden , Roger
Sanchez , Tiesto and the Epic Sax Guy.
- 'Look at the honeybees in Figure below . Honeybees live in colonies that may consist
of thousands of individual bees. Generally, there are three types of adult bees
in a colony: workers, a queen, and drones.'
- source_sentence: can an object have constant non zero velocity and changing acceleration?
sentences:
- when an animal sheds its fur , its fur becomes less dense
- Acceleration is defined as the time derivative of the velocity; if the velocity
is unchanging the acceleration is zero. Velocity is a vector, speed is a scalar
magnitude of the vector. If the velocity vector changes direction you can have
constant speed (not velocity) with a non-zero acceleration.
- Acne treatment is individual and customized to the type of acne you have. On average,
mild acne responds in 1-2 months, moderate acne responds in 2-4 months and severe
acne can take 4-6 months to clear, granted that the most effective measures can
be used.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8743508789394699
name: Pearson Cosine
- type: spearman_cosine
value: 0.9023025884529369
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9078091191041777
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9049393775253795
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9072202919761476
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9046202541246842
name: Spearman Euclidean
- type: pearson_dot
value: 0.8527007540947626
name: Pearson Dot
- type: spearman_dot
value: 0.8550739867334323
name: Spearman Dot
- type: pearson_max
value: 0.9078091191041777
name: Pearson Max
- type: spearman_max
value: 0.9049393775253795
name: Spearman Max
---
# SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) <!-- at revision df9aaa75fe0c2791e5ed35ff33de1689d9a5f5ff -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- bobox/enhanced_nli-50_k
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-checkpoints-tmp")
# Run inference
sentences = [
'can an object have constant non zero velocity and changing acceleration?',
'Acceleration is defined as the time derivative of the velocity; if the velocity is unchanging the acceleration is zero. Velocity is a vector, speed is a scalar magnitude of the vector. If the velocity vector changes direction you can have constant speed (not velocity) with a non-zero acceleration.',
'Acne treatment is individual and customized to the type of acne you have. On average, mild acne responds in 1-2 months, moderate acne responds in 2-4 months and severe acne can take 4-6 months to clear, granted that the most effective measures can be used.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8744 |
| **spearman_cosine** | **0.9023** |
| pearson_manhattan | 0.9078 |
| spearman_manhattan | 0.9049 |
| pearson_euclidean | 0.9072 |
| spearman_euclidean | 0.9046 |
| pearson_dot | 0.8527 |
| spearman_dot | 0.8551 |
| pearson_max | 0.9078 |
| spearman_max | 0.9049 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### bobox/enhanced_nli-50_k
* Dataset: bobox/enhanced_nli-50_k
* Size: 120,849 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 32.01 tokens</li><li>max: 336 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 60.45 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>A lady working in a kitchen with several different types of dishes.</code> | <code>A woman is cooking and cleaning in her kitchen.</code> |
| <code>can you renew your licence online sa?</code> | <code>You can renew your licence online for as long as your photo is valid. Renew your driver's licence online with a mySA GOV account. With a mySA GOV account, you can access a legally compliant digital licence through the mySA GOV app.</code> |
| <code>how can coconut oil lower cholesterol</code> | <code>It has been shown that lauric acid increases the good HDL cholesterol in the blood to help improve cholesterol ratio levels. Coconut oil lowers cholesterol by promoting its conversion to pregnenolone, a molecule that is a precursor to many of the hormones our bodies need. Coconut can help restore normal thyroid function. When the thyroid does not function optimally, it can contribute to higher levels of bad cholesterol.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Evaluation Dataset
#### bobox/enhanced_nli-50_k
* Dataset: bobox/enhanced_nli-50_k
* Size: 3,052 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 32.91 tokens</li><li>max: 342 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 60.3 tokens</li><li>max: 408 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The body was found in the River Avon in Bath, Avon and Somerset Police said.<br>Officers said although formal identification had not yet taken place, Henry Burke's family had been told.<br>Earlier officers said they were looking for Mr Burke, who was last seen leaving a nightclub in George Street late on Thursday.<br>A force spokesman said the death was being treated as unexplained and inquiries were continuing.<br>Mr Burke's girlfriend, Em Comley, earlier said he had been texting her "throughout the night" but then the messages suddenly stopped just after midnight.</code> | <code>A man's body has been found in a river after search and rescue teams were called in to try and find a missing 19-year-old student.</code> |
| <code>what happens when the president of united states is impeached?</code> | <code>Parliament votes on the proposal by secret ballot, and if two thirds of all representatives agree, the president is impeached. Once impeached, the president's powers are suspended, and the Constitutional Court decides whether or not the President should be removed from office.</code> |
| <code>What can feed at more than one trophic level?</code> | <code>Many consumers feed at more than one trophic level.. Nuts are also consumed by deer, turkey, foxes, wood ducks and squirrels. <br> wood ducks can feed at more than one trophic level</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 960
- `per_device_eval_batch_size`: 128
- `learning_rate`: 3.5e-05
- `weight_decay`: 0.0001
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 5.833333333333333e-06}
- `warmup_ratio`: 0.25
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 960
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3.5e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 5.833333333333333e-06}
- `warmup_ratio`: 0.25
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | loss | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:------------------------:|
| 0.0079 | 1 | 0.404 | - | - |
| 0.0159 | 2 | 0.3185 | - | - |
| 0.0238 | 3 | 0.2821 | - | - |
| 0.0317 | 4 | 0.4036 | - | - |
| 0.0397 | 5 | 0.3442 | 0.1253 | 0.9078 |
| 0.0476 | 6 | 0.4145 | - | - |
| 0.0556 | 7 | 0.4224 | - | - |
| 0.0635 | 8 | 0.4048 | - | - |
| 0.0714 | 9 | 0.3899 | - | - |
| 0.0794 | 10 | 0.4127 | 0.1237 | 0.9079 |
| 0.0873 | 11 | 0.3496 | - | - |
| 0.0952 | 12 | 0.3731 | - | - |
| 0.1032 | 13 | 0.3929 | - | - |
| 0.1111 | 14 | 0.2957 | - | - |
| 0.1190 | 15 | 0.3324 | 0.1206 | 0.9083 |
| 0.1270 | 16 | 0.3341 | - | - |
| 0.1349 | 17 | 0.3466 | - | - |
| 0.1429 | 18 | 0.3558 | - | - |
| 0.1508 | 19 | 0.2634 | - | - |
| 0.1587 | 20 | 0.3095 | 0.1156 | 0.9088 |
| 0.1667 | 21 | 0.2973 | - | - |
| 0.1746 | 22 | 0.2884 | - | - |
| 0.1825 | 23 | 0.3697 | - | - |
| 0.1905 | 24 | 0.2683 | - | - |
| 0.1984 | 25 | 0.3026 | 0.1096 | 0.9088 |
| 0.2063 | 26 | 0.2441 | - | - |
| 0.2143 | 27 | 0.3145 | - | - |
| 0.2222 | 28 | 0.3119 | - | - |
| 0.2302 | 29 | 0.2766 | - | - |
| 0.2381 | 30 | 0.3343 | 0.1054 | 0.9084 |
| 0.2460 | 31 | 0.344 | - | - |
| 0.2540 | 32 | 0.3005 | - | - |
| 0.2619 | 33 | 0.2526 | - | - |
| 0.2698 | 34 | 0.2422 | - | - |
| 0.2778 | 35 | 0.3447 | 0.1022 | 0.9072 |
| 0.2857 | 36 | 0.2809 | - | - |
| 0.2937 | 37 | 0.2836 | - | - |
| 0.3016 | 38 | 0.2878 | - | - |
| 0.3095 | 39 | 0.2738 | - | - |
| 0.3175 | 40 | 0.2806 | 0.1003 | 0.9065 |
| 0.3254 | 41 | 0.2797 | - | - |
| 0.3333 | 42 | 0.3217 | - | - |
| 0.3413 | 43 | 0.2544 | - | - |
| 0.3492 | 44 | 0.3203 | - | - |
| 0.3571 | 45 | 0.2987 | 0.0990 | 0.9064 |
| 0.3651 | 46 | 0.2765 | - | - |
| 0.3730 | 47 | 0.2716 | - | - |
| 0.3810 | 48 | 0.3726 | - | - |
| 0.3889 | 49 | 0.2963 | - | - |
| 0.3968 | 50 | 0.2784 | 0.0952 | 0.9072 |
| 0.4048 | 51 | 0.2437 | - | - |
| 0.4127 | 52 | 0.2258 | - | - |
| 0.4206 | 53 | 0.2821 | - | - |
| 0.4286 | 54 | 0.249 | - | - |
| 0.4365 | 55 | 0.2813 | 0.0928 | 0.9080 |
| 0.4444 | 56 | 0.3003 | - | - |
| 0.4524 | 57 | 0.2812 | - | - |
| 0.4603 | 58 | 0.2619 | - | - |
| 0.4683 | 59 | 0.299 | - | - |
| 0.4762 | 60 | 0.2706 | 0.0927 | 0.9088 |
| 0.4841 | 61 | 0.297 | - | - |
| 0.4921 | 62 | 0.2906 | - | - |
| 0.5 | 63 | 0.2914 | - | - |
| 0.5079 | 64 | 0.2669 | - | - |
| 0.5159 | 65 | 0.2723 | 0.0946 | 0.9093 |
| 0.5238 | 66 | 0.3194 | - | - |
| 0.5317 | 67 | 0.3585 | - | - |
| 0.5397 | 68 | 0.2843 | - | - |
| 0.5476 | 69 | 0.1916 | - | - |
| 0.5556 | 70 | 0.351 | 0.0971 | 0.9104 |
| 0.5635 | 71 | 0.3105 | - | - |
| 0.5714 | 72 | 0.2847 | - | - |
| 0.5794 | 73 | 0.2641 | - | - |
| 0.5873 | 74 | 0.3305 | - | - |
| 0.5952 | 75 | 0.2461 | 0.0965 | 0.9096 |
| 0.6032 | 76 | 0.259 | - | - |
| 0.6111 | 77 | 0.2506 | - | - |
| 0.6190 | 78 | 0.2832 | - | - |
| 0.6270 | 79 | 0.3322 | - | - |
| 0.6349 | 80 | 0.2533 | 0.1001 | 0.9089 |
| 0.6429 | 81 | 0.2349 | - | - |
| 0.6508 | 82 | 0.2748 | - | - |
| 0.6587 | 83 | 0.223 | - | - |
| 0.6667 | 84 | 0.2416 | - | - |
| 0.6746 | 85 | 0.2637 | 0.1034 | 0.9082 |
| 0.6825 | 86 | 0.2856 | - | - |
| 0.6905 | 87 | 0.2476 | - | - |
| 0.6984 | 88 | 0.2427 | - | - |
| 0.7063 | 89 | 0.2614 | - | - |
| 0.7143 | 90 | 0.26 | 0.1032 | 0.9088 |
| 0.7222 | 91 | 0.1862 | - | - |
| 0.7302 | 92 | 0.267 | - | - |
| 0.7381 | 93 | 0.2175 | - | - |
| 0.7460 | 94 | 0.2079 | - | - |
| 0.7540 | 95 | 0.2562 | 0.0999 | 0.9086 |
| 0.7619 | 96 | 0.2516 | - | - |
| 0.7698 | 97 | 0.2956 | - | - |
| 0.7778 | 98 | 0.2733 | - | - |
| 0.7857 | 99 | 0.2919 | - | - |
| 0.7937 | 100 | 0.2997 | 0.1032 | 0.9069 |
| 0.8016 | 101 | 0.2276 | - | - |
| 0.8095 | 102 | 0.2582 | - | - |
| 0.8175 | 103 | 0.2559 | - | - |
| 0.8254 | 104 | 0.2864 | - | - |
| 0.8333 | 105 | 0.2839 | 0.1074 | 0.9076 |
| 0.8413 | 106 | 0.2549 | - | - |
| 0.8492 | 107 | 0.2826 | - | - |
| 0.8571 | 108 | 0.2334 | - | - |
| 0.8651 | 109 | 0.2632 | - | - |
| 0.8730 | 110 | 0.2255 | 0.1090 | 0.9056 |
| 0.8810 | 111 | 0.2589 | - | - |
| 0.8889 | 112 | 0.2569 | - | - |
| 0.8968 | 113 | 0.2797 | - | - |
| 0.9048 | 114 | 0.2742 | - | - |
| 0.9127 | 115 | 0.2295 | 0.1070 | 0.9014 |
| 0.9206 | 116 | 0.2047 | - | - |
| 0.9286 | 117 | 0.2577 | - | - |
| 0.9365 | 118 | 0.2614 | - | - |
| 0.9444 | 119 | 0.2722 | - | - |
| 0.9524 | 120 | 0.1927 | 0.1024 | 0.9008 |
| 0.9603 | 121 | 0.2649 | - | - |
| 0.9683 | 122 | 0.2386 | - | - |
| 0.9762 | 123 | 0.2801 | - | - |
| 0.9841 | 124 | 0.2583 | - | - |
| 0.9921 | 125 | 0.3076 | 0.0949 | 0.9016 |
| 1.0 | 126 | 0.5477 | - | - |
| 1.0079 | 127 | 0.0031 | - | - |
| 1.0159 | 128 | 0.0 | - | - |
| 1.0238 | 129 | 0.0 | - | - |
| 1.0317 | 130 | 0.0 | 0.0955 | 0.9021 |
| 1.0397 | 131 | 0.0 | - | - |
| 1.0476 | 132 | 0.0 | - | - |
| 1.0556 | 133 | 0.0 | - | - |
| 1.0635 | 134 | 0.0 | - | - |
| 1.0714 | 135 | 0.0 | 0.0968 | 0.9023 |
| 1.0794 | 136 | 0.0 | - | - |
| 1.0873 | 137 | 0.0 | - | - |
| 1.0952 | 138 | 0.0 | - | - |
| 1.1032 | 139 | 0.0 | - | - |
| 1.1111 | 140 | 0.0 | 0.0978 | 0.9024 |
| 1.1190 | 141 | 0.0 | - | - |
| 1.1270 | 142 | 0.0 | - | - |
| 1.1349 | 143 | 0.0 | - | - |
| 1.1429 | 144 | 0.0 | - | - |
| 1.1508 | 145 | 0.0 | 0.0986 | 0.9024 |
| 1.1587 | 146 | 0.0 | - | - |
| 1.1667 | 147 | 0.0 | - | - |
| 1.1746 | 148 | 0.0 | - | - |
| 1.1825 | 149 | 0.0 | - | - |
| 1.1905 | 150 | 0.0 | 0.0991 | 0.9023 |
| 1.1984 | 151 | 0.0 | - | - |
| 1.2063 | 152 | 0.0 | - | - |
| 1.2143 | 153 | 0.0 | - | - |
| 1.2222 | 154 | 0.0 | - | - |
| 1.2302 | 155 | 0.0 | 0.0994 | 0.9023 |
| 1.2381 | 156 | 0.0 | - | - |
</details>
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |