Training in progress, step 208, checkpoint
Browse files- checkpoint-208/1_Pooling/config.json +10 -0
- checkpoint-208/README.md +739 -0
- checkpoint-208/added_tokens.json +3 -0
- checkpoint-208/config.json +35 -0
- checkpoint-208/config_sentence_transformers.json +10 -0
- checkpoint-208/modules.json +14 -0
- checkpoint-208/optimizer.pt +3 -0
- checkpoint-208/pytorch_model.bin +3 -0
- checkpoint-208/rng_state.pth +3 -0
- checkpoint-208/scheduler.pt +3 -0
- checkpoint-208/sentence_bert_config.json +4 -0
- checkpoint-208/special_tokens_map.json +51 -0
- checkpoint-208/spm.model +3 -0
- checkpoint-208/tokenizer.json +0 -0
- checkpoint-208/tokenizer_config.json +65 -0
- checkpoint-208/trainer_state.json +2227 -0
- checkpoint-208/training_args.bin +3 -0
checkpoint-208/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-208/README.md
ADDED
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: bobox/DeBERTa-small-ST-v1-test-step3
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- pearson_cosine
|
8 |
+
- spearman_cosine
|
9 |
+
- pearson_manhattan
|
10 |
+
- spearman_manhattan
|
11 |
+
- pearson_euclidean
|
12 |
+
- spearman_euclidean
|
13 |
+
- pearson_dot
|
14 |
+
- spearman_dot
|
15 |
+
- pearson_max
|
16 |
+
- spearman_max
|
17 |
+
pipeline_tag: sentence-similarity
|
18 |
+
tags:
|
19 |
+
- sentence-transformers
|
20 |
+
- sentence-similarity
|
21 |
+
- feature-extraction
|
22 |
+
- generated_from_trainer
|
23 |
+
- dataset_size:120849
|
24 |
+
- loss:CachedGISTEmbedLoss
|
25 |
+
widget:
|
26 |
+
- source_sentence: '"Today I lost those who for 24 years I called...my family," said
|
27 |
+
Enes Kanter of the Oklahoma City Thunder.
|
28 |
+
|
29 |
+
Turkish President Recep Tayyip Erdogan blames Mr Gulen for inciting a failed coup
|
30 |
+
last month and is seeking the cleric''s extradition to Turkey.
|
31 |
+
|
32 |
+
Mr Gulen, who has a large following, denies being involved in the coup.
|
33 |
+
|
34 |
+
Kanter''s father, Mehmet, disowned his son in a letter published on Monday by
|
35 |
+
Sabah, a pro-government newspaper.
|
36 |
+
|
37 |
+
Mehmet Kanter wrote his son had been "hypnotised" by the Gulen movement.
|
38 |
+
|
39 |
+
"With a feeling of shame I apologise to our president and the Turkish people for
|
40 |
+
having such a son," the letter said.
|
41 |
+
|
42 |
+
Q&A on the Gulen movement
|
43 |
+
|
44 |
+
Mr Gulen is regarded by followers as a spiritual leader and sometimes described
|
45 |
+
as Turkey''s second most powerful man.
|
46 |
+
|
47 |
+
Enes Kanter has been a vocal supporter of Mr Gulen on Twitter.
|
48 |
+
|
49 |
+
The movement - known in Turkey as Hizmet, or service - runs schools all over Turkey
|
50 |
+
and around the world, including in Turkic former Soviet republics, Muslim countries
|
51 |
+
such as Pakistan and Western nations including Romania and the US, where it runs
|
52 |
+
more than 100 schools.
|
53 |
+
|
54 |
+
In May 2016, the Turkish government formally declared the Gulen movement a terrorist
|
55 |
+
organisation.
|
56 |
+
|
57 |
+
After the failed coup, suspected Gulen supporters in Turkey were purged in a wave
|
58 |
+
of arrests.
|
59 |
+
|
60 |
+
Western nations have been critical of the government''s response to the coup.
|
61 |
+
US officials have said they will extradite Mr Gulen only if Turkey provides evidence.'
|
62 |
+
sentences:
|
63 |
+
- 'The Thinker | Rodin Museum H. 189 cm ; W. 98 cm ; D. 140 cm S.2838 When conceived
|
64 |
+
in 1880 in its original size (approx. 70 cm) as the crowning element of The Gates
|
65 |
+
of Hell , seated on the tympanum , The Thinker was entitled The Poet. He represented
|
66 |
+
Dante, author of the Divine Comedy which had inspired The Gates, leaning forward
|
67 |
+
to observe the circles of Hell, while meditating on his work. The Thinker was
|
68 |
+
therefore initially both a being with a tortured body, almost a damned soul, and
|
69 |
+
a free-thinking man, determined to transcend his suffering through poetry. The
|
70 |
+
pose of this figure owes much to Carpeaux’s Ugolino (1861) and to the seated portrait
|
71 |
+
of Lorenzo de’ Medici carved by Michelangelo (1526-31). While remaining in place
|
72 |
+
on the monumental Gates of Hell, The Thinker was exhibited individually in 1888
|
73 |
+
and thus became an independent work. Enlarged in 1904, its colossal version proved
|
74 |
+
even more popular: this image of a man lost in thought, but whose powerful body
|
75 |
+
suggests a great capacity for action, has became one of the most celebrated sculptures
|
76 |
+
ever known. Numerous casts exist worldwide, including the one now in the gardens
|
77 |
+
of the Musée Rodin, a gift to the City of Paris installed outside the Panthéon
|
78 |
+
in 1906, and another in the gardens of Rodin’s house in Meudon, on the tomb of
|
79 |
+
the sculptor and his wife. George Bernard Shaw in the Pose of "The Thinker" Rodin,
|
80 |
+
the Monument to Victor Hugo and The Thinker Rodin''s "Thinker" in Dr Linde''s
|
81 |
+
Garden in Lübeck'
|
82 |
+
- An American basketball player has cut ties with his Turkish family over his support
|
83 |
+
for Pennsylvania-based preacher Fethullah Gulen.
|
84 |
+
- Police are investigating a death at a bus stop in Fife.
|
85 |
+
- source_sentence: Two adorable birds perched on a piece of bamboo.
|
86 |
+
sentences:
|
87 |
+
- Two birds are sitting perched on a tree limb
|
88 |
+
- A young boy with a spoon looking at a birthday cupcake.
|
89 |
+
- As part of his attempt to turn the Austrian right , Dessaix ordered a battalion
|
90 |
+
to move along the Aire stream near Tairier and Crache .
|
91 |
+
- source_sentence: how do venom snake keepers make money?
|
92 |
+
sentences:
|
93 |
+
- "The USDA regulates who can buy and sell snake venom. It is very important to\
|
94 |
+
\ learn about these regulations so that you can operate properly. On average,\
|
95 |
+
\ snake milkers make around $2,500 per month, but snake venom is an expensive\
|
96 |
+
\ market. One gram of certain types of snake venom can sell for $2,000.If you\
|
97 |
+
\ are crazy enough to capture, milk, and breed snakes, please take the precaution\
|
98 |
+
\ to wear protective clothing and always have antivenom close at hand.nake milkers\
|
99 |
+
\ have an insane job. They â\x80\x9Cmilkâ\x80\x9D snakes for their venom. This\
|
100 |
+
\ means that every single day, a snake milker handles deadly, venomous snakes.\
|
101 |
+
\ Itâ\x80\x99s a hands on job where you put your fingers millimeters away from\
|
102 |
+
\ the sharp, fangs of asps, vipers, cobras, corals, mambas, kraits, and rattlesnakes."
|
103 |
+
- a greenhouse is used to protect plants by keeping them warm
|
104 |
+
- Nashville Mayor Megan Barry has said her 22-year-old son died of what appeared
|
105 |
+
to be a drug overdose, according to a family statement.
|
106 |
+
- source_sentence: Adult bees include workers, a queen and what other type?
|
107 |
+
sentences:
|
108 |
+
- "matter vibrating can cause sound. Thus, sound is a wave in air . \n matter vibrating\
|
109 |
+
\ can cause a wave in air"
|
110 |
+
- His references in electronic music are Todd Terry , Armand Van Helden , Roger
|
111 |
+
Sanchez , Tiesto and the Epic Sax Guy.
|
112 |
+
- 'Look at the honeybees in Figure below . Honeybees live in colonies that may consist
|
113 |
+
of thousands of individual bees. Generally, there are three types of adult bees
|
114 |
+
in a colony: workers, a queen, and drones.'
|
115 |
+
- source_sentence: can an object have constant non zero velocity and changing acceleration?
|
116 |
+
sentences:
|
117 |
+
- when an animal sheds its fur , its fur becomes less dense
|
118 |
+
- Acceleration is defined as the time derivative of the velocity; if the velocity
|
119 |
+
is unchanging the acceleration is zero. Velocity is a vector, speed is a scalar
|
120 |
+
magnitude of the vector. If the velocity vector changes direction you can have
|
121 |
+
constant speed (not velocity) with a non-zero acceleration.
|
122 |
+
- Acne treatment is individual and customized to the type of acne you have. On average,
|
123 |
+
mild acne responds in 1-2 months, moderate acne responds in 2-4 months and severe
|
124 |
+
acne can take 4-6 months to clear, granted that the most effective measures can
|
125 |
+
be used.
|
126 |
+
model-index:
|
127 |
+
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
|
128 |
+
results:
|
129 |
+
- task:
|
130 |
+
type: semantic-similarity
|
131 |
+
name: Semantic Similarity
|
132 |
+
dataset:
|
133 |
+
name: sts test
|
134 |
+
type: sts-test
|
135 |
+
metrics:
|
136 |
+
- type: pearson_cosine
|
137 |
+
value: 0.8742827064396023
|
138 |
+
name: Pearson Cosine
|
139 |
+
- type: spearman_cosine
|
140 |
+
value: 0.9022449488282648
|
141 |
+
name: Spearman Cosine
|
142 |
+
- type: pearson_manhattan
|
143 |
+
value: 0.9078074095863298
|
144 |
+
name: Pearson Manhattan
|
145 |
+
- type: spearman_manhattan
|
146 |
+
value: 0.9048224424793636
|
147 |
+
name: Spearman Manhattan
|
148 |
+
- type: pearson_euclidean
|
149 |
+
value: 0.9072144921384091
|
150 |
+
name: Pearson Euclidean
|
151 |
+
- type: spearman_euclidean
|
152 |
+
value: 0.9046033403035915
|
153 |
+
name: Spearman Euclidean
|
154 |
+
- type: pearson_dot
|
155 |
+
value: 0.8524658058205945
|
156 |
+
name: Pearson Dot
|
157 |
+
- type: spearman_dot
|
158 |
+
value: 0.8547093534556153
|
159 |
+
name: Spearman Dot
|
160 |
+
- type: pearson_max
|
161 |
+
value: 0.9078074095863298
|
162 |
+
name: Pearson Max
|
163 |
+
- type: spearman_max
|
164 |
+
value: 0.9048224424793636
|
165 |
+
name: Spearman Max
|
166 |
+
---
|
167 |
+
|
168 |
+
# SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
|
169 |
+
|
170 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
171 |
+
|
172 |
+
## Model Details
|
173 |
+
|
174 |
+
### Model Description
|
175 |
+
- **Model Type:** Sentence Transformer
|
176 |
+
- **Base model:** [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) <!-- at revision df9aaa75fe0c2791e5ed35ff33de1689d9a5f5ff -->
|
177 |
+
- **Maximum Sequence Length:** 512 tokens
|
178 |
+
- **Output Dimensionality:** 768 tokens
|
179 |
+
- **Similarity Function:** Cosine Similarity
|
180 |
+
- **Training Dataset:**
|
181 |
+
- bobox/enhanced_nli-50_k
|
182 |
+
<!-- - **Language:** Unknown -->
|
183 |
+
<!-- - **License:** Unknown -->
|
184 |
+
|
185 |
+
### Model Sources
|
186 |
+
|
187 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
188 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
189 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
190 |
+
|
191 |
+
### Full Model Architecture
|
192 |
+
|
193 |
+
```
|
194 |
+
SentenceTransformer(
|
195 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
196 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
197 |
+
)
|
198 |
+
```
|
199 |
+
|
200 |
+
## Usage
|
201 |
+
|
202 |
+
### Direct Usage (Sentence Transformers)
|
203 |
+
|
204 |
+
First install the Sentence Transformers library:
|
205 |
+
|
206 |
+
```bash
|
207 |
+
pip install -U sentence-transformers
|
208 |
+
```
|
209 |
+
|
210 |
+
Then you can load this model and run inference.
|
211 |
+
```python
|
212 |
+
from sentence_transformers import SentenceTransformer
|
213 |
+
|
214 |
+
# Download from the 🤗 Hub
|
215 |
+
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-checkpoints-tmp")
|
216 |
+
# Run inference
|
217 |
+
sentences = [
|
218 |
+
'can an object have constant non zero velocity and changing acceleration?',
|
219 |
+
'Acceleration is defined as the time derivative of the velocity; if the velocity is unchanging the acceleration is zero. Velocity is a vector, speed is a scalar magnitude of the vector. If the velocity vector changes direction you can have constant speed (not velocity) with a non-zero acceleration.',
|
220 |
+
'Acne treatment is individual and customized to the type of acne you have. On average, mild acne responds in 1-2 months, moderate acne responds in 2-4 months and severe acne can take 4-6 months to clear, granted that the most effective measures can be used.',
|
221 |
+
]
|
222 |
+
embeddings = model.encode(sentences)
|
223 |
+
print(embeddings.shape)
|
224 |
+
# [3, 768]
|
225 |
+
|
226 |
+
# Get the similarity scores for the embeddings
|
227 |
+
similarities = model.similarity(embeddings, embeddings)
|
228 |
+
print(similarities.shape)
|
229 |
+
# [3, 3]
|
230 |
+
```
|
231 |
+
|
232 |
+
<!--
|
233 |
+
### Direct Usage (Transformers)
|
234 |
+
|
235 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
236 |
+
|
237 |
+
</details>
|
238 |
+
-->
|
239 |
+
|
240 |
+
<!--
|
241 |
+
### Downstream Usage (Sentence Transformers)
|
242 |
+
|
243 |
+
You can finetune this model on your own dataset.
|
244 |
+
|
245 |
+
<details><summary>Click to expand</summary>
|
246 |
+
|
247 |
+
</details>
|
248 |
+
-->
|
249 |
+
|
250 |
+
<!--
|
251 |
+
### Out-of-Scope Use
|
252 |
+
|
253 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
254 |
+
-->
|
255 |
+
|
256 |
+
## Evaluation
|
257 |
+
|
258 |
+
### Metrics
|
259 |
+
|
260 |
+
#### Semantic Similarity
|
261 |
+
* Dataset: `sts-test`
|
262 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
263 |
+
|
264 |
+
| Metric | Value |
|
265 |
+
|:--------------------|:-----------|
|
266 |
+
| pearson_cosine | 0.8743 |
|
267 |
+
| **spearman_cosine** | **0.9022** |
|
268 |
+
| pearson_manhattan | 0.9078 |
|
269 |
+
| spearman_manhattan | 0.9048 |
|
270 |
+
| pearson_euclidean | 0.9072 |
|
271 |
+
| spearman_euclidean | 0.9046 |
|
272 |
+
| pearson_dot | 0.8525 |
|
273 |
+
| spearman_dot | 0.8547 |
|
274 |
+
| pearson_max | 0.9078 |
|
275 |
+
| spearman_max | 0.9048 |
|
276 |
+
|
277 |
+
<!--
|
278 |
+
## Bias, Risks and Limitations
|
279 |
+
|
280 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
281 |
+
-->
|
282 |
+
|
283 |
+
<!--
|
284 |
+
### Recommendations
|
285 |
+
|
286 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
287 |
+
-->
|
288 |
+
|
289 |
+
## Training Details
|
290 |
+
|
291 |
+
### Training Dataset
|
292 |
+
|
293 |
+
#### bobox/enhanced_nli-50_k
|
294 |
+
|
295 |
+
* Dataset: bobox/enhanced_nli-50_k
|
296 |
+
* Size: 120,849 training samples
|
297 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
298 |
+
* Approximate statistics based on the first 1000 samples:
|
299 |
+
| | sentence1 | sentence2 |
|
300 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
301 |
+
| type | string | string |
|
302 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 32.01 tokens</li><li>max: 336 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 60.45 tokens</li><li>max: 512 tokens</li></ul> |
|
303 |
+
* Samples:
|
304 |
+
| sentence1 | sentence2 |
|
305 |
+
|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
306 |
+
| <code>A lady working in a kitchen with several different types of dishes.</code> | <code>A woman is cooking and cleaning in her kitchen.</code> |
|
307 |
+
| <code>can you renew your licence online sa?</code> | <code>You can renew your licence online for as long as your photo is valid. Renew your driver's licence online with a mySA GOV account. With a mySA GOV account, you can access a legally compliant digital licence through the mySA GOV app.</code> |
|
308 |
+
| <code>how can coconut oil lower cholesterol</code> | <code>It has been shown that lauric acid increases the good HDL cholesterol in the blood to help improve cholesterol ratio levels. Coconut oil lowers cholesterol by promoting its conversion to pregnenolone, a molecule that is a precursor to many of the hormones our bodies need. Coconut can help restore normal thyroid function. When the thyroid does not function optimally, it can contribute to higher levels of bad cholesterol.</code> |
|
309 |
+
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
|
310 |
+
```json
|
311 |
+
{'guide': SentenceTransformer(
|
312 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
313 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
314 |
+
(2): Normalize()
|
315 |
+
), 'temperature': 0.025}
|
316 |
+
```
|
317 |
+
|
318 |
+
### Evaluation Dataset
|
319 |
+
|
320 |
+
#### bobox/enhanced_nli-50_k
|
321 |
+
|
322 |
+
* Dataset: bobox/enhanced_nli-50_k
|
323 |
+
* Size: 3,052 evaluation samples
|
324 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
325 |
+
* Approximate statistics based on the first 1000 samples:
|
326 |
+
| | sentence1 | sentence2 |
|
327 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
328 |
+
| type | string | string |
|
329 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 32.91 tokens</li><li>max: 342 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 60.3 tokens</li><li>max: 408 tokens</li></ul> |
|
330 |
+
* Samples:
|
331 |
+
| sentence1 | sentence2 |
|
332 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
333 |
+
| <code>The body was found in the River Avon in Bath, Avon and Somerset Police said.<br>Officers said although formal identification had not yet taken place, Henry Burke's family had been told.<br>Earlier officers said they were looking for Mr Burke, who was last seen leaving a nightclub in George Street late on Thursday.<br>A force spokesman said the death was being treated as unexplained and inquiries were continuing.<br>Mr Burke's girlfriend, Em Comley, earlier said he had been texting her "throughout the night" but then the messages suddenly stopped just after midnight.</code> | <code>A man's body has been found in a river after search and rescue teams were called in to try and find a missing 19-year-old student.</code> |
|
334 |
+
| <code>what happens when the president of united states is impeached?</code> | <code>Parliament votes on the proposal by secret ballot, and if two thirds of all representatives agree, the president is impeached. Once impeached, the president's powers are suspended, and the Constitutional Court decides whether or not the President should be removed from office.</code> |
|
335 |
+
| <code>What can feed at more than one trophic level?</code> | <code>Many consumers feed at more than one trophic level.. Nuts are also consumed by deer, turkey, foxes, wood ducks and squirrels. <br> wood ducks can feed at more than one trophic level</code> |
|
336 |
+
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
|
337 |
+
```json
|
338 |
+
{'guide': SentenceTransformer(
|
339 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
340 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
341 |
+
(2): Normalize()
|
342 |
+
), 'temperature': 0.025}
|
343 |
+
```
|
344 |
+
|
345 |
+
### Training Hyperparameters
|
346 |
+
#### Non-Default Hyperparameters
|
347 |
+
|
348 |
+
- `eval_strategy`: steps
|
349 |
+
- `per_device_train_batch_size`: 960
|
350 |
+
- `per_device_eval_batch_size`: 128
|
351 |
+
- `learning_rate`: 3.5e-05
|
352 |
+
- `weight_decay`: 0.0001
|
353 |
+
- `num_train_epochs`: 2
|
354 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
355 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 5.833333333333333e-06}
|
356 |
+
- `warmup_ratio`: 0.25
|
357 |
+
- `save_safetensors`: False
|
358 |
+
- `fp16`: True
|
359 |
+
- `push_to_hub`: True
|
360 |
+
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-checkpoints-tmp
|
361 |
+
- `hub_strategy`: all_checkpoints
|
362 |
+
- `batch_sampler`: no_duplicates
|
363 |
+
|
364 |
+
#### All Hyperparameters
|
365 |
+
<details><summary>Click to expand</summary>
|
366 |
+
|
367 |
+
- `overwrite_output_dir`: False
|
368 |
+
- `do_predict`: False
|
369 |
+
- `eval_strategy`: steps
|
370 |
+
- `prediction_loss_only`: True
|
371 |
+
- `per_device_train_batch_size`: 960
|
372 |
+
- `per_device_eval_batch_size`: 128
|
373 |
+
- `per_gpu_train_batch_size`: None
|
374 |
+
- `per_gpu_eval_batch_size`: None
|
375 |
+
- `gradient_accumulation_steps`: 1
|
376 |
+
- `eval_accumulation_steps`: None
|
377 |
+
- `torch_empty_cache_steps`: None
|
378 |
+
- `learning_rate`: 3.5e-05
|
379 |
+
- `weight_decay`: 0.0001
|
380 |
+
- `adam_beta1`: 0.9
|
381 |
+
- `adam_beta2`: 0.999
|
382 |
+
- `adam_epsilon`: 1e-08
|
383 |
+
- `max_grad_norm`: 1.0
|
384 |
+
- `num_train_epochs`: 2
|
385 |
+
- `max_steps`: -1
|
386 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
387 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 5.833333333333333e-06}
|
388 |
+
- `warmup_ratio`: 0.25
|
389 |
+
- `warmup_steps`: 0
|
390 |
+
- `log_level`: passive
|
391 |
+
- `log_level_replica`: warning
|
392 |
+
- `log_on_each_node`: True
|
393 |
+
- `logging_nan_inf_filter`: True
|
394 |
+
- `save_safetensors`: False
|
395 |
+
- `save_on_each_node`: False
|
396 |
+
- `save_only_model`: False
|
397 |
+
- `restore_callback_states_from_checkpoint`: False
|
398 |
+
- `no_cuda`: False
|
399 |
+
- `use_cpu`: False
|
400 |
+
- `use_mps_device`: False
|
401 |
+
- `seed`: 42
|
402 |
+
- `data_seed`: None
|
403 |
+
- `jit_mode_eval`: False
|
404 |
+
- `use_ipex`: False
|
405 |
+
- `bf16`: False
|
406 |
+
- `fp16`: True
|
407 |
+
- `fp16_opt_level`: O1
|
408 |
+
- `half_precision_backend`: auto
|
409 |
+
- `bf16_full_eval`: False
|
410 |
+
- `fp16_full_eval`: False
|
411 |
+
- `tf32`: None
|
412 |
+
- `local_rank`: 0
|
413 |
+
- `ddp_backend`: None
|
414 |
+
- `tpu_num_cores`: None
|
415 |
+
- `tpu_metrics_debug`: False
|
416 |
+
- `debug`: []
|
417 |
+
- `dataloader_drop_last`: False
|
418 |
+
- `dataloader_num_workers`: 0
|
419 |
+
- `dataloader_prefetch_factor`: None
|
420 |
+
- `past_index`: -1
|
421 |
+
- `disable_tqdm`: False
|
422 |
+
- `remove_unused_columns`: True
|
423 |
+
- `label_names`: None
|
424 |
+
- `load_best_model_at_end`: False
|
425 |
+
- `ignore_data_skip`: False
|
426 |
+
- `fsdp`: []
|
427 |
+
- `fsdp_min_num_params`: 0
|
428 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
429 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
430 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
431 |
+
- `deepspeed`: None
|
432 |
+
- `label_smoothing_factor`: 0.0
|
433 |
+
- `optim`: adamw_torch
|
434 |
+
- `optim_args`: None
|
435 |
+
- `adafactor`: False
|
436 |
+
- `group_by_length`: False
|
437 |
+
- `length_column_name`: length
|
438 |
+
- `ddp_find_unused_parameters`: None
|
439 |
+
- `ddp_bucket_cap_mb`: None
|
440 |
+
- `ddp_broadcast_buffers`: False
|
441 |
+
- `dataloader_pin_memory`: True
|
442 |
+
- `dataloader_persistent_workers`: False
|
443 |
+
- `skip_memory_metrics`: True
|
444 |
+
- `use_legacy_prediction_loop`: False
|
445 |
+
- `push_to_hub`: True
|
446 |
+
- `resume_from_checkpoint`: None
|
447 |
+
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-checkpoints-tmp
|
448 |
+
- `hub_strategy`: all_checkpoints
|
449 |
+
- `hub_private_repo`: False
|
450 |
+
- `hub_always_push`: False
|
451 |
+
- `gradient_checkpointing`: False
|
452 |
+
- `gradient_checkpointing_kwargs`: None
|
453 |
+
- `include_inputs_for_metrics`: False
|
454 |
+
- `eval_do_concat_batches`: True
|
455 |
+
- `fp16_backend`: auto
|
456 |
+
- `push_to_hub_model_id`: None
|
457 |
+
- `push_to_hub_organization`: None
|
458 |
+
- `mp_parameters`:
|
459 |
+
- `auto_find_batch_size`: False
|
460 |
+
- `full_determinism`: False
|
461 |
+
- `torchdynamo`: None
|
462 |
+
- `ray_scope`: last
|
463 |
+
- `ddp_timeout`: 1800
|
464 |
+
- `torch_compile`: False
|
465 |
+
- `torch_compile_backend`: None
|
466 |
+
- `torch_compile_mode`: None
|
467 |
+
- `dispatch_batches`: None
|
468 |
+
- `split_batches`: None
|
469 |
+
- `include_tokens_per_second`: False
|
470 |
+
- `include_num_input_tokens_seen`: False
|
471 |
+
- `neftune_noise_alpha`: None
|
472 |
+
- `optim_target_modules`: None
|
473 |
+
- `batch_eval_metrics`: False
|
474 |
+
- `eval_on_start`: False
|
475 |
+
- `eval_use_gather_object`: False
|
476 |
+
- `batch_sampler`: no_duplicates
|
477 |
+
- `multi_dataset_batch_sampler`: proportional
|
478 |
+
|
479 |
+
</details>
|
480 |
+
|
481 |
+
### Training Logs
|
482 |
+
<details><summary>Click to expand</summary>
|
483 |
+
|
484 |
+
| Epoch | Step | Training Loss | loss | sts-test_spearman_cosine |
|
485 |
+
|:------:|:----:|:-------------:|:------:|:------------------------:|
|
486 |
+
| 0.0079 | 1 | 0.404 | - | - |
|
487 |
+
| 0.0159 | 2 | 0.3185 | - | - |
|
488 |
+
| 0.0238 | 3 | 0.2821 | - | - |
|
489 |
+
| 0.0317 | 4 | 0.4036 | - | - |
|
490 |
+
| 0.0397 | 5 | 0.3442 | 0.1253 | 0.9078 |
|
491 |
+
| 0.0476 | 6 | 0.4145 | - | - |
|
492 |
+
| 0.0556 | 7 | 0.4224 | - | - |
|
493 |
+
| 0.0635 | 8 | 0.4048 | - | - |
|
494 |
+
| 0.0714 | 9 | 0.3899 | - | - |
|
495 |
+
| 0.0794 | 10 | 0.4127 | 0.1237 | 0.9079 |
|
496 |
+
| 0.0873 | 11 | 0.3496 | - | - |
|
497 |
+
| 0.0952 | 12 | 0.3731 | - | - |
|
498 |
+
| 0.1032 | 13 | 0.3929 | - | - |
|
499 |
+
| 0.1111 | 14 | 0.2957 | - | - |
|
500 |
+
| 0.1190 | 15 | 0.3324 | 0.1206 | 0.9083 |
|
501 |
+
| 0.1270 | 16 | 0.3341 | - | - |
|
502 |
+
| 0.1349 | 17 | 0.3466 | - | - |
|
503 |
+
| 0.1429 | 18 | 0.3558 | - | - |
|
504 |
+
| 0.1508 | 19 | 0.2634 | - | - |
|
505 |
+
| 0.1587 | 20 | 0.3095 | 0.1156 | 0.9088 |
|
506 |
+
| 0.1667 | 21 | 0.2973 | - | - |
|
507 |
+
| 0.1746 | 22 | 0.2884 | - | - |
|
508 |
+
| 0.1825 | 23 | 0.3697 | - | - |
|
509 |
+
| 0.1905 | 24 | 0.2683 | - | - |
|
510 |
+
| 0.1984 | 25 | 0.3026 | 0.1096 | 0.9088 |
|
511 |
+
| 0.2063 | 26 | 0.2441 | - | - |
|
512 |
+
| 0.2143 | 27 | 0.3145 | - | - |
|
513 |
+
| 0.2222 | 28 | 0.3119 | - | - |
|
514 |
+
| 0.2302 | 29 | 0.2766 | - | - |
|
515 |
+
| 0.2381 | 30 | 0.3343 | 0.1054 | 0.9084 |
|
516 |
+
| 0.2460 | 31 | 0.344 | - | - |
|
517 |
+
| 0.2540 | 32 | 0.3005 | - | - |
|
518 |
+
| 0.2619 | 33 | 0.2526 | - | - |
|
519 |
+
| 0.2698 | 34 | 0.2422 | - | - |
|
520 |
+
| 0.2778 | 35 | 0.3447 | 0.1022 | 0.9072 |
|
521 |
+
| 0.2857 | 36 | 0.2809 | - | - |
|
522 |
+
| 0.2937 | 37 | 0.2836 | - | - |
|
523 |
+
| 0.3016 | 38 | 0.2878 | - | - |
|
524 |
+
| 0.3095 | 39 | 0.2738 | - | - |
|
525 |
+
| 0.3175 | 40 | 0.2806 | 0.1003 | 0.9065 |
|
526 |
+
| 0.3254 | 41 | 0.2797 | - | - |
|
527 |
+
| 0.3333 | 42 | 0.3217 | - | - |
|
528 |
+
| 0.3413 | 43 | 0.2544 | - | - |
|
529 |
+
| 0.3492 | 44 | 0.3203 | - | - |
|
530 |
+
| 0.3571 | 45 | 0.2987 | 0.0990 | 0.9064 |
|
531 |
+
| 0.3651 | 46 | 0.2765 | - | - |
|
532 |
+
| 0.3730 | 47 | 0.2716 | - | - |
|
533 |
+
| 0.3810 | 48 | 0.3726 | - | - |
|
534 |
+
| 0.3889 | 49 | 0.2963 | - | - |
|
535 |
+
| 0.3968 | 50 | 0.2784 | 0.0952 | 0.9072 |
|
536 |
+
| 0.4048 | 51 | 0.2437 | - | - |
|
537 |
+
| 0.4127 | 52 | 0.2258 | - | - |
|
538 |
+
| 0.4206 | 53 | 0.2821 | - | - |
|
539 |
+
| 0.4286 | 54 | 0.249 | - | - |
|
540 |
+
| 0.4365 | 55 | 0.2813 | 0.0928 | 0.9080 |
|
541 |
+
| 0.4444 | 56 | 0.3003 | - | - |
|
542 |
+
| 0.4524 | 57 | 0.2812 | - | - |
|
543 |
+
| 0.4603 | 58 | 0.2619 | - | - |
|
544 |
+
| 0.4683 | 59 | 0.299 | - | - |
|
545 |
+
| 0.4762 | 60 | 0.2706 | 0.0927 | 0.9088 |
|
546 |
+
| 0.4841 | 61 | 0.297 | - | - |
|
547 |
+
| 0.4921 | 62 | 0.2906 | - | - |
|
548 |
+
| 0.5 | 63 | 0.2914 | - | - |
|
549 |
+
| 0.5079 | 64 | 0.2669 | - | - |
|
550 |
+
| 0.5159 | 65 | 0.2723 | 0.0946 | 0.9093 |
|
551 |
+
| 0.5238 | 66 | 0.3194 | - | - |
|
552 |
+
| 0.5317 | 67 | 0.3585 | - | - |
|
553 |
+
| 0.5397 | 68 | 0.2843 | - | - |
|
554 |
+
| 0.5476 | 69 | 0.1916 | - | - |
|
555 |
+
| 0.5556 | 70 | 0.351 | 0.0971 | 0.9104 |
|
556 |
+
| 0.5635 | 71 | 0.3105 | - | - |
|
557 |
+
| 0.5714 | 72 | 0.2847 | - | - |
|
558 |
+
| 0.5794 | 73 | 0.2641 | - | - |
|
559 |
+
| 0.5873 | 74 | 0.3305 | - | - |
|
560 |
+
| 0.5952 | 75 | 0.2461 | 0.0965 | 0.9096 |
|
561 |
+
| 0.6032 | 76 | 0.259 | - | - |
|
562 |
+
| 0.6111 | 77 | 0.2506 | - | - |
|
563 |
+
| 0.6190 | 78 | 0.2832 | - | - |
|
564 |
+
| 0.6270 | 79 | 0.3322 | - | - |
|
565 |
+
| 0.6349 | 80 | 0.2533 | 0.1001 | 0.9089 |
|
566 |
+
| 0.6429 | 81 | 0.2349 | - | - |
|
567 |
+
| 0.6508 | 82 | 0.2748 | - | - |
|
568 |
+
| 0.6587 | 83 | 0.223 | - | - |
|
569 |
+
| 0.6667 | 84 | 0.2416 | - | - |
|
570 |
+
| 0.6746 | 85 | 0.2637 | 0.1034 | 0.9082 |
|
571 |
+
| 0.6825 | 86 | 0.2856 | - | - |
|
572 |
+
| 0.6905 | 87 | 0.2476 | - | - |
|
573 |
+
| 0.6984 | 88 | 0.2427 | - | - |
|
574 |
+
| 0.7063 | 89 | 0.2614 | - | - |
|
575 |
+
| 0.7143 | 90 | 0.26 | 0.1032 | 0.9088 |
|
576 |
+
| 0.7222 | 91 | 0.1862 | - | - |
|
577 |
+
| 0.7302 | 92 | 0.267 | - | - |
|
578 |
+
| 0.7381 | 93 | 0.2175 | - | - |
|
579 |
+
| 0.7460 | 94 | 0.2079 | - | - |
|
580 |
+
| 0.7540 | 95 | 0.2562 | 0.0999 | 0.9086 |
|
581 |
+
| 0.7619 | 96 | 0.2516 | - | - |
|
582 |
+
| 0.7698 | 97 | 0.2956 | - | - |
|
583 |
+
| 0.7778 | 98 | 0.2733 | - | - |
|
584 |
+
| 0.7857 | 99 | 0.2919 | - | - |
|
585 |
+
| 0.7937 | 100 | 0.2997 | 0.1032 | 0.9069 |
|
586 |
+
| 0.8016 | 101 | 0.2276 | - | - |
|
587 |
+
| 0.8095 | 102 | 0.2582 | - | - |
|
588 |
+
| 0.8175 | 103 | 0.2559 | - | - |
|
589 |
+
| 0.8254 | 104 | 0.2864 | - | - |
|
590 |
+
| 0.8333 | 105 | 0.2839 | 0.1074 | 0.9076 |
|
591 |
+
| 0.8413 | 106 | 0.2549 | - | - |
|
592 |
+
| 0.8492 | 107 | 0.2826 | - | - |
|
593 |
+
| 0.8571 | 108 | 0.2334 | - | - |
|
594 |
+
| 0.8651 | 109 | 0.2632 | - | - |
|
595 |
+
| 0.8730 | 110 | 0.2255 | 0.1090 | 0.9056 |
|
596 |
+
| 0.8810 | 111 | 0.2589 | - | - |
|
597 |
+
| 0.8889 | 112 | 0.2569 | - | - |
|
598 |
+
| 0.8968 | 113 | 0.2797 | - | - |
|
599 |
+
| 0.9048 | 114 | 0.2742 | - | - |
|
600 |
+
| 0.9127 | 115 | 0.2295 | 0.1070 | 0.9014 |
|
601 |
+
| 0.9206 | 116 | 0.2047 | - | - |
|
602 |
+
| 0.9286 | 117 | 0.2577 | - | - |
|
603 |
+
| 0.9365 | 118 | 0.2614 | - | - |
|
604 |
+
| 0.9444 | 119 | 0.2722 | - | - |
|
605 |
+
| 0.9524 | 120 | 0.1927 | 0.1024 | 0.9008 |
|
606 |
+
| 0.9603 | 121 | 0.2649 | - | - |
|
607 |
+
| 0.9683 | 122 | 0.2386 | - | - |
|
608 |
+
| 0.9762 | 123 | 0.2801 | - | - |
|
609 |
+
| 0.9841 | 124 | 0.2583 | - | - |
|
610 |
+
| 0.9921 | 125 | 0.3076 | 0.0949 | 0.9016 |
|
611 |
+
| 1.0 | 126 | 0.5477 | - | - |
|
612 |
+
| 1.0079 | 127 | 0.0031 | - | - |
|
613 |
+
| 1.0159 | 128 | 0.0 | - | - |
|
614 |
+
| 1.0238 | 129 | 0.0 | - | - |
|
615 |
+
| 1.0317 | 130 | 0.0 | 0.0955 | 0.9021 |
|
616 |
+
| 1.0397 | 131 | 0.0 | - | - |
|
617 |
+
| 1.0476 | 132 | 0.0 | - | - |
|
618 |
+
| 1.0556 | 133 | 0.0 | - | - |
|
619 |
+
| 1.0635 | 134 | 0.0 | - | - |
|
620 |
+
| 1.0714 | 135 | 0.0 | 0.0968 | 0.9023 |
|
621 |
+
| 1.0794 | 136 | 0.0 | - | - |
|
622 |
+
| 1.0873 | 137 | 0.0 | - | - |
|
623 |
+
| 1.0952 | 138 | 0.0 | - | - |
|
624 |
+
| 1.1032 | 139 | 0.0 | - | - |
|
625 |
+
| 1.1111 | 140 | 0.0 | 0.0978 | 0.9024 |
|
626 |
+
| 1.1190 | 141 | 0.0 | - | - |
|
627 |
+
| 1.1270 | 142 | 0.0 | - | - |
|
628 |
+
| 1.1349 | 143 | 0.0 | - | - |
|
629 |
+
| 1.1429 | 144 | 0.0 | - | - |
|
630 |
+
| 1.1508 | 145 | 0.0 | 0.0986 | 0.9024 |
|
631 |
+
| 1.1587 | 146 | 0.0 | - | - |
|
632 |
+
| 1.1667 | 147 | 0.0 | - | - |
|
633 |
+
| 1.1746 | 148 | 0.0 | - | - |
|
634 |
+
| 1.1825 | 149 | 0.0 | - | - |
|
635 |
+
| 1.1905 | 150 | 0.0 | 0.0991 | 0.9023 |
|
636 |
+
| 1.1984 | 151 | 0.0 | - | - |
|
637 |
+
| 1.2063 | 152 | 0.0 | - | - |
|
638 |
+
| 1.2143 | 153 | 0.0 | - | - |
|
639 |
+
| 1.2222 | 154 | 0.0 | - | - |
|
640 |
+
| 1.2302 | 155 | 0.0 | 0.0994 | 0.9023 |
|
641 |
+
| 1.2381 | 156 | 0.0 | - | - |
|
642 |
+
| 1.2460 | 157 | 0.0 | - | - |
|
643 |
+
| 1.2540 | 158 | 0.0 | - | - |
|
644 |
+
| 1.2619 | 159 | 0.0 | - | - |
|
645 |
+
| 1.2698 | 160 | 0.0 | 0.0995 | 0.9023 |
|
646 |
+
| 1.2778 | 161 | 0.0 | - | - |
|
647 |
+
| 1.2857 | 162 | 0.0 | - | - |
|
648 |
+
| 1.2937 | 163 | 0.0 | - | - |
|
649 |
+
| 1.3016 | 164 | 0.0 | - | - |
|
650 |
+
| 1.3095 | 165 | 0.0 | 0.0996 | 0.9023 |
|
651 |
+
| 1.3175 | 166 | 0.0 | - | - |
|
652 |
+
| 1.3254 | 167 | 0.0 | - | - |
|
653 |
+
| 1.3333 | 168 | 0.0 | - | - |
|
654 |
+
| 1.3413 | 169 | 0.0 | - | - |
|
655 |
+
| 1.3492 | 170 | 0.0 | 0.0997 | 0.9023 |
|
656 |
+
| 1.3571 | 171 | 0.0 | - | - |
|
657 |
+
| 1.3651 | 172 | 0.0 | - | - |
|
658 |
+
| 1.3730 | 173 | 0.0 | - | - |
|
659 |
+
| 1.3810 | 174 | 0.0 | - | - |
|
660 |
+
| 1.3889 | 175 | 0.0 | 0.0997 | 0.9023 |
|
661 |
+
| 1.3968 | 176 | 0.0 | - | - |
|
662 |
+
| 1.4048 | 177 | 0.0 | - | - |
|
663 |
+
| 1.4127 | 178 | 0.0 | - | - |
|
664 |
+
| 1.4206 | 179 | 0.0 | - | - |
|
665 |
+
| 1.4286 | 180 | 0.0 | 0.0997 | 0.9023 |
|
666 |
+
| 1.4365 | 181 | 0.0 | - | - |
|
667 |
+
| 1.4444 | 182 | 0.0 | - | - |
|
668 |
+
| 1.4524 | 183 | 0.0 | - | - |
|
669 |
+
| 1.4603 | 184 | 0.0 | - | - |
|
670 |
+
| 1.4683 | 185 | 0.0 | 0.0998 | 0.9023 |
|
671 |
+
| 1.4762 | 186 | 0.0 | - | - |
|
672 |
+
| 1.4841 | 187 | 0.0 | - | - |
|
673 |
+
| 1.4921 | 188 | 0.0 | - | - |
|
674 |
+
| 1.5 | 189 | 0.0 | - | - |
|
675 |
+
| 1.5079 | 190 | 0.0 | 0.0998 | 0.9023 |
|
676 |
+
| 1.5159 | 191 | 0.0 | - | - |
|
677 |
+
| 1.5238 | 192 | 0.0 | - | - |
|
678 |
+
| 1.5317 | 193 | 0.0 | - | - |
|
679 |
+
| 1.5397 | 194 | 0.0 | - | - |
|
680 |
+
| 1.5476 | 195 | 0.0 | 0.0998 | 0.9022 |
|
681 |
+
| 1.5556 | 196 | 0.0 | - | - |
|
682 |
+
| 1.5635 | 197 | 0.0 | - | - |
|
683 |
+
| 1.5714 | 198 | 0.0 | - | - |
|
684 |
+
| 1.5794 | 199 | 0.0 | - | - |
|
685 |
+
| 1.5873 | 200 | 0.0 | 0.0998 | 0.9022 |
|
686 |
+
| 1.5952 | 201 | 0.0 | - | - |
|
687 |
+
| 1.6032 | 202 | 0.0 | - | - |
|
688 |
+
| 1.6111 | 203 | 0.0 | - | - |
|
689 |
+
| 1.6190 | 204 | 0.0 | - | - |
|
690 |
+
| 1.6270 | 205 | 0.0 | 0.0998 | 0.9022 |
|
691 |
+
| 1.6349 | 206 | 0.0 | - | - |
|
692 |
+
| 1.6429 | 207 | 0.0 | - | - |
|
693 |
+
| 1.6508 | 208 | 0.0 | - | - |
|
694 |
+
|
695 |
+
</details>
|
696 |
+
|
697 |
+
### Framework Versions
|
698 |
+
- Python: 3.10.14
|
699 |
+
- Sentence Transformers: 3.0.1
|
700 |
+
- Transformers: 4.44.0
|
701 |
+
- PyTorch: 2.4.0
|
702 |
+
- Accelerate: 0.33.0
|
703 |
+
- Datasets: 2.21.0
|
704 |
+
- Tokenizers: 0.19.1
|
705 |
+
|
706 |
+
## Citation
|
707 |
+
|
708 |
+
### BibTeX
|
709 |
+
|
710 |
+
#### Sentence Transformers
|
711 |
+
```bibtex
|
712 |
+
@inproceedings{reimers-2019-sentence-bert,
|
713 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
714 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
715 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
716 |
+
month = "11",
|
717 |
+
year = "2019",
|
718 |
+
publisher = "Association for Computational Linguistics",
|
719 |
+
url = "https://arxiv.org/abs/1908.10084",
|
720 |
+
}
|
721 |
+
```
|
722 |
+
|
723 |
+
<!--
|
724 |
+
## Glossary
|
725 |
+
|
726 |
+
*Clearly define terms in order to be accessible across audiences.*
|
727 |
+
-->
|
728 |
+
|
729 |
+
<!--
|
730 |
+
## Model Card Authors
|
731 |
+
|
732 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
733 |
+
-->
|
734 |
+
|
735 |
+
<!--
|
736 |
+
## Model Card Contact
|
737 |
+
|
738 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
739 |
+
-->
|
checkpoint-208/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
checkpoint-208/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bobox/DeBERTa-small-ST-v1-test-step3",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.44.0",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
checkpoint-208/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.0",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-208/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
checkpoint-208/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f3b86ff4c3efcebfc399dfd271fd1639a9b55c164e61648b7fc7122690538a5
|
3 |
+
size 1130520122
|
checkpoint-208/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa8260eefc98e996b63b68e71176685983c92c02b4f58e4ee350cdaf99e9dd71
|
3 |
+
size 565251810
|
checkpoint-208/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2512fc08615ffa6c7bb0033e5d7a5447bc04a8c002bfa327e13e989292c25b28
|
3 |
+
size 14244
|
checkpoint-208/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38510ab06b46572fec36821fc3b8a60274b14209e591c36397ec5ec60b192e9e
|
3 |
+
size 1064
|
checkpoint-208/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-208/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
checkpoint-208/spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
checkpoint-208/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-208/tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"sp_model_kwargs": {},
|
58 |
+
"split_by_punct": false,
|
59 |
+
"stride": 0,
|
60 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]",
|
64 |
+
"vocab_type": "spm"
|
65 |
+
}
|
checkpoint-208/trainer_state.json
ADDED
@@ -0,0 +1,2227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.6507936507936507,
|
5 |
+
"eval_steps": 5,
|
6 |
+
"global_step": 208,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.007936507936507936,
|
13 |
+
"grad_norm": 3.5297670364379883,
|
14 |
+
"learning_rate": 5.555555555555555e-07,
|
15 |
+
"loss": 0.404,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.015873015873015872,
|
20 |
+
"grad_norm": 3.6838796138763428,
|
21 |
+
"learning_rate": 1.111111111111111e-06,
|
22 |
+
"loss": 0.3185,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.023809523809523808,
|
27 |
+
"grad_norm": 3.5556721687316895,
|
28 |
+
"learning_rate": 1.6666666666666665e-06,
|
29 |
+
"loss": 0.2821,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.031746031746031744,
|
34 |
+
"grad_norm": 3.922109842300415,
|
35 |
+
"learning_rate": 2.222222222222222e-06,
|
36 |
+
"loss": 0.4036,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.03968253968253968,
|
41 |
+
"grad_norm": 3.9366657733917236,
|
42 |
+
"learning_rate": 2.7777777777777775e-06,
|
43 |
+
"loss": 0.3442,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03968253968253968,
|
48 |
+
"eval_loss": 0.12529698014259338,
|
49 |
+
"eval_runtime": 113.8002,
|
50 |
+
"eval_samples_per_second": 26.819,
|
51 |
+
"eval_steps_per_second": 0.211,
|
52 |
+
"eval_sts-test_pearson_cosine": 0.886081184413048,
|
53 |
+
"eval_sts-test_pearson_dot": 0.8767533438290611,
|
54 |
+
"eval_sts-test_pearson_euclidean": 0.9080817963557108,
|
55 |
+
"eval_sts-test_pearson_manhattan": 0.9087794191320873,
|
56 |
+
"eval_sts-test_pearson_max": 0.9087794191320873,
|
57 |
+
"eval_sts-test_spearman_cosine": 0.9077787555581409,
|
58 |
+
"eval_sts-test_spearman_dot": 0.8792746633711961,
|
59 |
+
"eval_sts-test_spearman_euclidean": 0.9039925750881216,
|
60 |
+
"eval_sts-test_spearman_manhattan": 0.904489537845873,
|
61 |
+
"eval_sts-test_spearman_max": 0.9077787555581409,
|
62 |
+
"step": 5
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.047619047619047616,
|
66 |
+
"grad_norm": 3.8135547637939453,
|
67 |
+
"learning_rate": 3.333333333333333e-06,
|
68 |
+
"loss": 0.4145,
|
69 |
+
"step": 6
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.05555555555555555,
|
73 |
+
"grad_norm": 4.132374286651611,
|
74 |
+
"learning_rate": 3.888888888888889e-06,
|
75 |
+
"loss": 0.4224,
|
76 |
+
"step": 7
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.06349206349206349,
|
80 |
+
"grad_norm": 3.9953386783599854,
|
81 |
+
"learning_rate": 4.444444444444444e-06,
|
82 |
+
"loss": 0.4048,
|
83 |
+
"step": 8
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.07142857142857142,
|
87 |
+
"grad_norm": 4.023675918579102,
|
88 |
+
"learning_rate": 4.9999999999999996e-06,
|
89 |
+
"loss": 0.3899,
|
90 |
+
"step": 9
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.07936507936507936,
|
94 |
+
"grad_norm": 3.854191780090332,
|
95 |
+
"learning_rate": 5.555555555555555e-06,
|
96 |
+
"loss": 0.4127,
|
97 |
+
"step": 10
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.07936507936507936,
|
101 |
+
"eval_loss": 0.12369368970394135,
|
102 |
+
"eval_runtime": 113.6707,
|
103 |
+
"eval_samples_per_second": 26.849,
|
104 |
+
"eval_steps_per_second": 0.211,
|
105 |
+
"eval_sts-test_pearson_cosine": 0.8860118050647048,
|
106 |
+
"eval_sts-test_pearson_dot": 0.8760605933678182,
|
107 |
+
"eval_sts-test_pearson_euclidean": 0.9086480781293332,
|
108 |
+
"eval_sts-test_pearson_manhattan": 0.9092897840847158,
|
109 |
+
"eval_sts-test_pearson_max": 0.9092897840847158,
|
110 |
+
"eval_sts-test_spearman_cosine": 0.9078577415344969,
|
111 |
+
"eval_sts-test_spearman_dot": 0.8791339654053815,
|
112 |
+
"eval_sts-test_spearman_euclidean": 0.9047648028546915,
|
113 |
+
"eval_sts-test_spearman_manhattan": 0.9052383607027356,
|
114 |
+
"eval_sts-test_spearman_max": 0.9078577415344969,
|
115 |
+
"step": 10
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.0873015873015873,
|
119 |
+
"grad_norm": 3.8079540729522705,
|
120 |
+
"learning_rate": 6.11111111111111e-06,
|
121 |
+
"loss": 0.3496,
|
122 |
+
"step": 11
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.09523809523809523,
|
126 |
+
"grad_norm": 3.929018259048462,
|
127 |
+
"learning_rate": 6.666666666666666e-06,
|
128 |
+
"loss": 0.3731,
|
129 |
+
"step": 12
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.10317460317460317,
|
133 |
+
"grad_norm": 4.284013271331787,
|
134 |
+
"learning_rate": 7.222222222222221e-06,
|
135 |
+
"loss": 0.3929,
|
136 |
+
"step": 13
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.1111111111111111,
|
140 |
+
"grad_norm": 3.3490402698516846,
|
141 |
+
"learning_rate": 7.777777777777777e-06,
|
142 |
+
"loss": 0.2957,
|
143 |
+
"step": 14
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.11904761904761904,
|
147 |
+
"grad_norm": 3.553280830383301,
|
148 |
+
"learning_rate": 8.333333333333332e-06,
|
149 |
+
"loss": 0.3324,
|
150 |
+
"step": 15
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.11904761904761904,
|
154 |
+
"eval_loss": 0.12056715041399002,
|
155 |
+
"eval_runtime": 113.718,
|
156 |
+
"eval_samples_per_second": 26.838,
|
157 |
+
"eval_steps_per_second": 0.211,
|
158 |
+
"eval_sts-test_pearson_cosine": 0.8856265458568289,
|
159 |
+
"eval_sts-test_pearson_dot": 0.8743050518330721,
|
160 |
+
"eval_sts-test_pearson_euclidean": 0.9095228583162331,
|
161 |
+
"eval_sts-test_pearson_manhattan": 0.9101600217218586,
|
162 |
+
"eval_sts-test_pearson_max": 0.9101600217218586,
|
163 |
+
"eval_sts-test_spearman_cosine": 0.908261263658463,
|
164 |
+
"eval_sts-test_spearman_dot": 0.87867141636764,
|
165 |
+
"eval_sts-test_spearman_euclidean": 0.9060734192402989,
|
166 |
+
"eval_sts-test_spearman_manhattan": 0.9066336155303966,
|
167 |
+
"eval_sts-test_spearman_max": 0.908261263658463,
|
168 |
+
"step": 15
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.12698412698412698,
|
172 |
+
"grad_norm": 3.6310322284698486,
|
173 |
+
"learning_rate": 8.888888888888888e-06,
|
174 |
+
"loss": 0.3341,
|
175 |
+
"step": 16
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.1349206349206349,
|
179 |
+
"grad_norm": 3.6535122394561768,
|
180 |
+
"learning_rate": 9.444444444444443e-06,
|
181 |
+
"loss": 0.3466,
|
182 |
+
"step": 17
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.14285714285714285,
|
186 |
+
"grad_norm": 3.6199331283569336,
|
187 |
+
"learning_rate": 9.999999999999999e-06,
|
188 |
+
"loss": 0.3558,
|
189 |
+
"step": 18
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.15079365079365079,
|
193 |
+
"grad_norm": 3.089895248413086,
|
194 |
+
"learning_rate": 1.0555555555555554e-05,
|
195 |
+
"loss": 0.2634,
|
196 |
+
"step": 19
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.15873015873015872,
|
200 |
+
"grad_norm": 3.320916175842285,
|
201 |
+
"learning_rate": 1.111111111111111e-05,
|
202 |
+
"loss": 0.3095,
|
203 |
+
"step": 20
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 0.15873015873015872,
|
207 |
+
"eval_loss": 0.11563990265130997,
|
208 |
+
"eval_runtime": 113.5377,
|
209 |
+
"eval_samples_per_second": 26.881,
|
210 |
+
"eval_steps_per_second": 0.211,
|
211 |
+
"eval_sts-test_pearson_cosine": 0.8848740042612456,
|
212 |
+
"eval_sts-test_pearson_dot": 0.8724689429546052,
|
213 |
+
"eval_sts-test_pearson_euclidean": 0.9104294765782397,
|
214 |
+
"eval_sts-test_pearson_manhattan": 0.9111381492292419,
|
215 |
+
"eval_sts-test_pearson_max": 0.9111381492292419,
|
216 |
+
"eval_sts-test_spearman_cosine": 0.9087803335393421,
|
217 |
+
"eval_sts-test_spearman_dot": 0.8777188410176626,
|
218 |
+
"eval_sts-test_spearman_euclidean": 0.9069791847708608,
|
219 |
+
"eval_sts-test_spearman_manhattan": 0.9078148698260838,
|
220 |
+
"eval_sts-test_spearman_max": 0.9087803335393421,
|
221 |
+
"step": 20
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.16666666666666666,
|
225 |
+
"grad_norm": 3.0193159580230713,
|
226 |
+
"learning_rate": 1.1666666666666665e-05,
|
227 |
+
"loss": 0.2973,
|
228 |
+
"step": 21
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.1746031746031746,
|
232 |
+
"grad_norm": 3.3553476333618164,
|
233 |
+
"learning_rate": 1.222222222222222e-05,
|
234 |
+
"loss": 0.2884,
|
235 |
+
"step": 22
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.18253968253968253,
|
239 |
+
"grad_norm": 3.5176496505737305,
|
240 |
+
"learning_rate": 1.2777777777777775e-05,
|
241 |
+
"loss": 0.3697,
|
242 |
+
"step": 23
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.19047619047619047,
|
246 |
+
"grad_norm": 3.2073943614959717,
|
247 |
+
"learning_rate": 1.3333333333333332e-05,
|
248 |
+
"loss": 0.2683,
|
249 |
+
"step": 24
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.1984126984126984,
|
253 |
+
"grad_norm": 3.2101964950561523,
|
254 |
+
"learning_rate": 1.3888888888888886e-05,
|
255 |
+
"loss": 0.3026,
|
256 |
+
"step": 25
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.1984126984126984,
|
260 |
+
"eval_loss": 0.10958973318338394,
|
261 |
+
"eval_runtime": 113.6214,
|
262 |
+
"eval_samples_per_second": 26.861,
|
263 |
+
"eval_steps_per_second": 0.211,
|
264 |
+
"eval_sts-test_pearson_cosine": 0.8832622086480311,
|
265 |
+
"eval_sts-test_pearson_dot": 0.8697582354953435,
|
266 |
+
"eval_sts-test_pearson_euclidean": 0.9107566690862425,
|
267 |
+
"eval_sts-test_pearson_manhattan": 0.9115546986654615,
|
268 |
+
"eval_sts-test_pearson_max": 0.9115546986654615,
|
269 |
+
"eval_sts-test_spearman_cosine": 0.9087605087305455,
|
270 |
+
"eval_sts-test_spearman_dot": 0.8760767382321666,
|
271 |
+
"eval_sts-test_spearman_euclidean": 0.9073999361304628,
|
272 |
+
"eval_sts-test_spearman_manhattan": 0.9084107328715103,
|
273 |
+
"eval_sts-test_spearman_max": 0.9087605087305455,
|
274 |
+
"step": 25
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.20634920634920634,
|
278 |
+
"grad_norm": 2.84037709236145,
|
279 |
+
"learning_rate": 1.4444444444444442e-05,
|
280 |
+
"loss": 0.2441,
|
281 |
+
"step": 26
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.21428571428571427,
|
285 |
+
"grad_norm": 3.3099992275238037,
|
286 |
+
"learning_rate": 1.4999999999999999e-05,
|
287 |
+
"loss": 0.3145,
|
288 |
+
"step": 27
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 0.2222222222222222,
|
292 |
+
"grad_norm": 3.061953067779541,
|
293 |
+
"learning_rate": 1.5555555555555555e-05,
|
294 |
+
"loss": 0.3119,
|
295 |
+
"step": 28
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 0.23015873015873015,
|
299 |
+
"grad_norm": 3.0163729190826416,
|
300 |
+
"learning_rate": 1.6111111111111108e-05,
|
301 |
+
"loss": 0.2766,
|
302 |
+
"step": 29
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.23809523809523808,
|
306 |
+
"grad_norm": 3.140418291091919,
|
307 |
+
"learning_rate": 1.6666666666666664e-05,
|
308 |
+
"loss": 0.3343,
|
309 |
+
"step": 30
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.23809523809523808,
|
313 |
+
"eval_loss": 0.10535401105880737,
|
314 |
+
"eval_runtime": 113.5942,
|
315 |
+
"eval_samples_per_second": 26.868,
|
316 |
+
"eval_steps_per_second": 0.211,
|
317 |
+
"eval_sts-test_pearson_cosine": 0.8819465403802665,
|
318 |
+
"eval_sts-test_pearson_dot": 0.866997957398371,
|
319 |
+
"eval_sts-test_pearson_euclidean": 0.9110501477101954,
|
320 |
+
"eval_sts-test_pearson_manhattan": 0.9119047974126511,
|
321 |
+
"eval_sts-test_pearson_max": 0.9119047974126511,
|
322 |
+
"eval_sts-test_spearman_cosine": 0.9084358383291508,
|
323 |
+
"eval_sts-test_spearman_dot": 0.8727757956894143,
|
324 |
+
"eval_sts-test_spearman_euclidean": 0.9077817538926543,
|
325 |
+
"eval_sts-test_spearman_manhattan": 0.9089103807049453,
|
326 |
+
"eval_sts-test_spearman_max": 0.9089103807049453,
|
327 |
+
"step": 30
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.24603174603174602,
|
331 |
+
"grad_norm": 3.1329221725463867,
|
332 |
+
"learning_rate": 1.722222222222222e-05,
|
333 |
+
"loss": 0.344,
|
334 |
+
"step": 31
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 0.25396825396825395,
|
338 |
+
"grad_norm": 2.9861748218536377,
|
339 |
+
"learning_rate": 1.7777777777777777e-05,
|
340 |
+
"loss": 0.3005,
|
341 |
+
"step": 32
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.2619047619047619,
|
345 |
+
"grad_norm": 2.8316733837127686,
|
346 |
+
"learning_rate": 1.8333333333333333e-05,
|
347 |
+
"loss": 0.2526,
|
348 |
+
"step": 33
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.2698412698412698,
|
352 |
+
"grad_norm": 2.8335487842559814,
|
353 |
+
"learning_rate": 1.8888888888888886e-05,
|
354 |
+
"loss": 0.2422,
|
355 |
+
"step": 34
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.2777777777777778,
|
359 |
+
"grad_norm": 3.0785422325134277,
|
360 |
+
"learning_rate": 1.9444444444444442e-05,
|
361 |
+
"loss": 0.3447,
|
362 |
+
"step": 35
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.2777777777777778,
|
366 |
+
"eval_loss": 0.10223711282014847,
|
367 |
+
"eval_runtime": 113.9847,
|
368 |
+
"eval_samples_per_second": 26.776,
|
369 |
+
"eval_steps_per_second": 0.211,
|
370 |
+
"eval_sts-test_pearson_cosine": 0.8812001280334643,
|
371 |
+
"eval_sts-test_pearson_dot": 0.8652746969985129,
|
372 |
+
"eval_sts-test_pearson_euclidean": 0.9105701789873448,
|
373 |
+
"eval_sts-test_pearson_manhattan": 0.9116177887236803,
|
374 |
+
"eval_sts-test_pearson_max": 0.9116177887236803,
|
375 |
+
"eval_sts-test_spearman_cosine": 0.9072243769320245,
|
376 |
+
"eval_sts-test_spearman_dot": 0.8716048789351082,
|
377 |
+
"eval_sts-test_spearman_euclidean": 0.9073166540330135,
|
378 |
+
"eval_sts-test_spearman_manhattan": 0.9081332302996223,
|
379 |
+
"eval_sts-test_spearman_max": 0.9081332302996223,
|
380 |
+
"step": 35
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.2857142857142857,
|
384 |
+
"grad_norm": 2.944396734237671,
|
385 |
+
"learning_rate": 1.9999999999999998e-05,
|
386 |
+
"loss": 0.2809,
|
387 |
+
"step": 36
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.29365079365079366,
|
391 |
+
"grad_norm": 2.8323400020599365,
|
392 |
+
"learning_rate": 2.0555555555555555e-05,
|
393 |
+
"loss": 0.2836,
|
394 |
+
"step": 37
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.30158730158730157,
|
398 |
+
"grad_norm": 2.8760273456573486,
|
399 |
+
"learning_rate": 2.1111111111111107e-05,
|
400 |
+
"loss": 0.2878,
|
401 |
+
"step": 38
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.30952380952380953,
|
405 |
+
"grad_norm": 2.744379758834839,
|
406 |
+
"learning_rate": 2.1666666666666667e-05,
|
407 |
+
"loss": 0.2738,
|
408 |
+
"step": 39
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.31746031746031744,
|
412 |
+
"grad_norm": 2.8519983291625977,
|
413 |
+
"learning_rate": 2.222222222222222e-05,
|
414 |
+
"loss": 0.2806,
|
415 |
+
"step": 40
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.31746031746031744,
|
419 |
+
"eval_loss": 0.10033170133829117,
|
420 |
+
"eval_runtime": 113.5147,
|
421 |
+
"eval_samples_per_second": 26.886,
|
422 |
+
"eval_steps_per_second": 0.211,
|
423 |
+
"eval_sts-test_pearson_cosine": 0.8802115569848467,
|
424 |
+
"eval_sts-test_pearson_dot": 0.8634798448575132,
|
425 |
+
"eval_sts-test_pearson_euclidean": 0.9094188438238102,
|
426 |
+
"eval_sts-test_pearson_manhattan": 0.9105849471172345,
|
427 |
+
"eval_sts-test_pearson_max": 0.9105849471172345,
|
428 |
+
"eval_sts-test_spearman_cosine": 0.9064710789490229,
|
429 |
+
"eval_sts-test_spearman_dot": 0.8693704037025742,
|
430 |
+
"eval_sts-test_spearman_euclidean": 0.9064271779615981,
|
431 |
+
"eval_sts-test_spearman_manhattan": 0.9073247092600637,
|
432 |
+
"eval_sts-test_spearman_max": 0.9073247092600637,
|
433 |
+
"step": 40
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.3253968253968254,
|
437 |
+
"grad_norm": 2.9139747619628906,
|
438 |
+
"learning_rate": 2.2777777777777776e-05,
|
439 |
+
"loss": 0.2797,
|
440 |
+
"step": 41
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.3333333333333333,
|
444 |
+
"grad_norm": 2.9206557273864746,
|
445 |
+
"learning_rate": 2.333333333333333e-05,
|
446 |
+
"loss": 0.3217,
|
447 |
+
"step": 42
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.3412698412698413,
|
451 |
+
"grad_norm": 2.755398988723755,
|
452 |
+
"learning_rate": 2.388888888888889e-05,
|
453 |
+
"loss": 0.2544,
|
454 |
+
"step": 43
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"epoch": 0.3492063492063492,
|
458 |
+
"grad_norm": 3.0441982746124268,
|
459 |
+
"learning_rate": 2.444444444444444e-05,
|
460 |
+
"loss": 0.3203,
|
461 |
+
"step": 44
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.35714285714285715,
|
465 |
+
"grad_norm": 2.978891611099243,
|
466 |
+
"learning_rate": 2.4999999999999998e-05,
|
467 |
+
"loss": 0.2987,
|
468 |
+
"step": 45
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 0.35714285714285715,
|
472 |
+
"eval_loss": 0.09902294725179672,
|
473 |
+
"eval_runtime": 113.6912,
|
474 |
+
"eval_samples_per_second": 26.845,
|
475 |
+
"eval_steps_per_second": 0.211,
|
476 |
+
"eval_sts-test_pearson_cosine": 0.8796209948380269,
|
477 |
+
"eval_sts-test_pearson_dot": 0.8617122615494917,
|
478 |
+
"eval_sts-test_pearson_euclidean": 0.9092272396432914,
|
479 |
+
"eval_sts-test_pearson_manhattan": 0.9100341993020892,
|
480 |
+
"eval_sts-test_pearson_max": 0.9100341993020892,
|
481 |
+
"eval_sts-test_spearman_cosine": 0.9063911531961779,
|
482 |
+
"eval_sts-test_spearman_dot": 0.867835166929281,
|
483 |
+
"eval_sts-test_spearman_euclidean": 0.9066020658911155,
|
484 |
+
"eval_sts-test_spearman_manhattan": 0.9072894005148261,
|
485 |
+
"eval_sts-test_spearman_max": 0.9072894005148261,
|
486 |
+
"step": 45
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.36507936507936506,
|
490 |
+
"grad_norm": 2.9183595180511475,
|
491 |
+
"learning_rate": 2.555555555555555e-05,
|
492 |
+
"loss": 0.2765,
|
493 |
+
"step": 46
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.373015873015873,
|
497 |
+
"grad_norm": 2.960238456726074,
|
498 |
+
"learning_rate": 2.611111111111111e-05,
|
499 |
+
"loss": 0.2716,
|
500 |
+
"step": 47
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.38095238095238093,
|
504 |
+
"grad_norm": 3.23356294631958,
|
505 |
+
"learning_rate": 2.6666666666666663e-05,
|
506 |
+
"loss": 0.3726,
|
507 |
+
"step": 48
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.3888888888888889,
|
511 |
+
"grad_norm": 2.974705457687378,
|
512 |
+
"learning_rate": 2.722222222222222e-05,
|
513 |
+
"loss": 0.2963,
|
514 |
+
"step": 49
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.3968253968253968,
|
518 |
+
"grad_norm": 2.8041574954986572,
|
519 |
+
"learning_rate": 2.7777777777777772e-05,
|
520 |
+
"loss": 0.2784,
|
521 |
+
"step": 50
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.3968253968253968,
|
525 |
+
"eval_loss": 0.09521521627902985,
|
526 |
+
"eval_runtime": 113.6139,
|
527 |
+
"eval_samples_per_second": 26.863,
|
528 |
+
"eval_steps_per_second": 0.211,
|
529 |
+
"eval_sts-test_pearson_cosine": 0.8802451373465323,
|
530 |
+
"eval_sts-test_pearson_dot": 0.8609764645232105,
|
531 |
+
"eval_sts-test_pearson_euclidean": 0.9103012041260427,
|
532 |
+
"eval_sts-test_pearson_manhattan": 0.9108880877390901,
|
533 |
+
"eval_sts-test_pearson_max": 0.9108880877390901,
|
534 |
+
"eval_sts-test_spearman_cosine": 0.9071928272927434,
|
535 |
+
"eval_sts-test_spearman_dot": 0.867374407941995,
|
536 |
+
"eval_sts-test_spearman_euclidean": 0.9083242734345022,
|
537 |
+
"eval_sts-test_spearman_manhattan": 0.9086424996542565,
|
538 |
+
"eval_sts-test_spearman_max": 0.9086424996542565,
|
539 |
+
"step": 50
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.40476190476190477,
|
543 |
+
"grad_norm": 2.6451456546783447,
|
544 |
+
"learning_rate": 2.8333333333333332e-05,
|
545 |
+
"loss": 0.2437,
|
546 |
+
"step": 51
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 0.4126984126984127,
|
550 |
+
"grad_norm": 2.7020044326782227,
|
551 |
+
"learning_rate": 2.8888888888888885e-05,
|
552 |
+
"loss": 0.2258,
|
553 |
+
"step": 52
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 0.42063492063492064,
|
557 |
+
"grad_norm": 2.7229156494140625,
|
558 |
+
"learning_rate": 2.944444444444444e-05,
|
559 |
+
"loss": 0.2821,
|
560 |
+
"step": 53
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.42857142857142855,
|
564 |
+
"grad_norm": 2.770799398422241,
|
565 |
+
"learning_rate": 2.9999999999999997e-05,
|
566 |
+
"loss": 0.249,
|
567 |
+
"step": 54
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.4365079365079365,
|
571 |
+
"grad_norm": 2.762690305709839,
|
572 |
+
"learning_rate": 3.0555555555555554e-05,
|
573 |
+
"loss": 0.2813,
|
574 |
+
"step": 55
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"epoch": 0.4365079365079365,
|
578 |
+
"eval_loss": 0.09280610829591751,
|
579 |
+
"eval_runtime": 113.4966,
|
580 |
+
"eval_samples_per_second": 26.891,
|
581 |
+
"eval_steps_per_second": 0.211,
|
582 |
+
"eval_sts-test_pearson_cosine": 0.8804507408393794,
|
583 |
+
"eval_sts-test_pearson_dot": 0.8631869703781383,
|
584 |
+
"eval_sts-test_pearson_euclidean": 0.9108211341698824,
|
585 |
+
"eval_sts-test_pearson_manhattan": 0.9114068237803576,
|
586 |
+
"eval_sts-test_pearson_max": 0.9114068237803576,
|
587 |
+
"eval_sts-test_spearman_cosine": 0.9079720810073518,
|
588 |
+
"eval_sts-test_spearman_dot": 0.8709471248951776,
|
589 |
+
"eval_sts-test_spearman_euclidean": 0.9085633794241165,
|
590 |
+
"eval_sts-test_spearman_manhattan": 0.9093315348258998,
|
591 |
+
"eval_sts-test_spearman_max": 0.9093315348258998,
|
592 |
+
"step": 55
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 0.4444444444444444,
|
596 |
+
"grad_norm": 2.9767086505889893,
|
597 |
+
"learning_rate": 3.111111111111111e-05,
|
598 |
+
"loss": 0.3003,
|
599 |
+
"step": 56
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.4523809523809524,
|
603 |
+
"grad_norm": 2.816253185272217,
|
604 |
+
"learning_rate": 3.1666666666666666e-05,
|
605 |
+
"loss": 0.2812,
|
606 |
+
"step": 57
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.4603174603174603,
|
610 |
+
"grad_norm": 2.5184807777404785,
|
611 |
+
"learning_rate": 3.2222222222222216e-05,
|
612 |
+
"loss": 0.2619,
|
613 |
+
"step": 58
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.46825396825396826,
|
617 |
+
"grad_norm": 2.7500715255737305,
|
618 |
+
"learning_rate": 3.277777777777777e-05,
|
619 |
+
"loss": 0.299,
|
620 |
+
"step": 59
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.47619047619047616,
|
624 |
+
"grad_norm": 2.5309386253356934,
|
625 |
+
"learning_rate": 3.333333333333333e-05,
|
626 |
+
"loss": 0.2706,
|
627 |
+
"step": 60
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.47619047619047616,
|
631 |
+
"eval_loss": 0.09274312108755112,
|
632 |
+
"eval_runtime": 113.479,
|
633 |
+
"eval_samples_per_second": 26.895,
|
634 |
+
"eval_steps_per_second": 0.211,
|
635 |
+
"eval_sts-test_pearson_cosine": 0.8814996628266308,
|
636 |
+
"eval_sts-test_pearson_dot": 0.8647617194348185,
|
637 |
+
"eval_sts-test_pearson_euclidean": 0.9116395612568413,
|
638 |
+
"eval_sts-test_pearson_manhattan": 0.9121591417317261,
|
639 |
+
"eval_sts-test_pearson_max": 0.9121591417317261,
|
640 |
+
"eval_sts-test_spearman_cosine": 0.9087614932582961,
|
641 |
+
"eval_sts-test_spearman_dot": 0.8732032149869635,
|
642 |
+
"eval_sts-test_spearman_euclidean": 0.9101066714244602,
|
643 |
+
"eval_sts-test_spearman_manhattan": 0.9099515188012163,
|
644 |
+
"eval_sts-test_spearman_max": 0.9101066714244602,
|
645 |
+
"step": 60
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.48412698412698413,
|
649 |
+
"grad_norm": 2.7175261974334717,
|
650 |
+
"learning_rate": 3.3888888888888884e-05,
|
651 |
+
"loss": 0.297,
|
652 |
+
"step": 61
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"epoch": 0.49206349206349204,
|
656 |
+
"grad_norm": 2.7492423057556152,
|
657 |
+
"learning_rate": 3.444444444444444e-05,
|
658 |
+
"loss": 0.2906,
|
659 |
+
"step": 62
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 0.5,
|
663 |
+
"grad_norm": 2.815702438354492,
|
664 |
+
"learning_rate": 3.5e-05,
|
665 |
+
"loss": 0.2914,
|
666 |
+
"step": 63
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 0.5079365079365079,
|
670 |
+
"grad_norm": 2.9056921005249023,
|
671 |
+
"learning_rate": 3.499798538091195e-05,
|
672 |
+
"loss": 0.2669,
|
673 |
+
"step": 64
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.5158730158730159,
|
677 |
+
"grad_norm": 2.832461357116699,
|
678 |
+
"learning_rate": 3.4991942080268184e-05,
|
679 |
+
"loss": 0.2723,
|
680 |
+
"step": 65
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.5158730158730159,
|
684 |
+
"eval_loss": 0.09455278515815735,
|
685 |
+
"eval_runtime": 113.5618,
|
686 |
+
"eval_samples_per_second": 26.875,
|
687 |
+
"eval_steps_per_second": 0.211,
|
688 |
+
"eval_sts-test_pearson_cosine": 0.8827592572843797,
|
689 |
+
"eval_sts-test_pearson_dot": 0.8655702748779494,
|
690 |
+
"eval_sts-test_pearson_euclidean": 0.9124138196335778,
|
691 |
+
"eval_sts-test_pearson_manhattan": 0.9124858955018784,
|
692 |
+
"eval_sts-test_pearson_max": 0.9124858955018784,
|
693 |
+
"eval_sts-test_spearman_cosine": 0.9092536676310787,
|
694 |
+
"eval_sts-test_spearman_dot": 0.87468645079452,
|
695 |
+
"eval_sts-test_spearman_euclidean": 0.910149408879089,
|
696 |
+
"eval_sts-test_spearman_manhattan": 0.9104867886387189,
|
697 |
+
"eval_sts-test_spearman_max": 0.9104867886387189,
|
698 |
+
"step": 65
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.5238095238095238,
|
702 |
+
"grad_norm": 2.834491729736328,
|
703 |
+
"learning_rate": 3.4981871767775944e-05,
|
704 |
+
"loss": 0.3194,
|
705 |
+
"step": 66
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.5317460317460317,
|
709 |
+
"grad_norm": 3.168403148651123,
|
710 |
+
"learning_rate": 3.496777722576811e-05,
|
711 |
+
"loss": 0.3585,
|
712 |
+
"step": 67
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.5396825396825397,
|
716 |
+
"grad_norm": 2.8590433597564697,
|
717 |
+
"learning_rate": 3.494966234843439e-05,
|
718 |
+
"loss": 0.2843,
|
719 |
+
"step": 68
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.5476190476190477,
|
723 |
+
"grad_norm": 2.4585649967193604,
|
724 |
+
"learning_rate": 3.4927532140745435e-05,
|
725 |
+
"loss": 0.1916,
|
726 |
+
"step": 69
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 0.5555555555555556,
|
730 |
+
"grad_norm": 3.0862460136413574,
|
731 |
+
"learning_rate": 3.490139271707e-05,
|
732 |
+
"loss": 0.351,
|
733 |
+
"step": 70
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.5555555555555556,
|
737 |
+
"eval_loss": 0.09706800431013107,
|
738 |
+
"eval_runtime": 113.496,
|
739 |
+
"eval_samples_per_second": 26.891,
|
740 |
+
"eval_steps_per_second": 0.211,
|
741 |
+
"eval_sts-test_pearson_cosine": 0.8816183440112817,
|
742 |
+
"eval_sts-test_pearson_dot": 0.863407251078466,
|
743 |
+
"eval_sts-test_pearson_euclidean": 0.9125994563651346,
|
744 |
+
"eval_sts-test_pearson_manhattan": 0.9121928260729458,
|
745 |
+
"eval_sts-test_pearson_max": 0.9125994563651346,
|
746 |
+
"eval_sts-test_spearman_cosine": 0.9103631836274073,
|
747 |
+
"eval_sts-test_spearman_dot": 0.8729154643762167,
|
748 |
+
"eval_sts-test_spearman_euclidean": 0.9106339755374351,
|
749 |
+
"eval_sts-test_spearman_manhattan": 0.9104940383430642,
|
750 |
+
"eval_sts-test_spearman_max": 0.9106339755374351,
|
751 |
+
"step": 70
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.5634920634920635,
|
755 |
+
"grad_norm": 2.948397636413574,
|
756 |
+
"learning_rate": 3.48712512994856e-05,
|
757 |
+
"loss": 0.3105,
|
758 |
+
"step": 71
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.5714285714285714,
|
762 |
+
"grad_norm": 2.904085159301758,
|
763 |
+
"learning_rate": 3.4837116215783116e-05,
|
764 |
+
"loss": 0.2847,
|
765 |
+
"step": 72
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.5793650793650794,
|
769 |
+
"grad_norm": 2.6948978900909424,
|
770 |
+
"learning_rate": 3.4798996897165926e-05,
|
771 |
+
"loss": 0.2641,
|
772 |
+
"step": 73
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.5873015873015873,
|
776 |
+
"grad_norm": 3.068554162979126,
|
777 |
+
"learning_rate": 3.475690387564411e-05,
|
778 |
+
"loss": 0.3305,
|
779 |
+
"step": 74
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.5952380952380952,
|
783 |
+
"grad_norm": 2.6903178691864014,
|
784 |
+
"learning_rate": 3.471084878112459e-05,
|
785 |
+
"loss": 0.2461,
|
786 |
+
"step": 75
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.5952380952380952,
|
790 |
+
"eval_loss": 0.09646341949701309,
|
791 |
+
"eval_runtime": 113.5342,
|
792 |
+
"eval_samples_per_second": 26.882,
|
793 |
+
"eval_steps_per_second": 0.211,
|
794 |
+
"eval_sts-test_pearson_cosine": 0.879746728283104,
|
795 |
+
"eval_sts-test_pearson_dot": 0.85998475002447,
|
796 |
+
"eval_sts-test_pearson_euclidean": 0.9117602609729114,
|
797 |
+
"eval_sts-test_pearson_manhattan": 0.9111396965114745,
|
798 |
+
"eval_sts-test_pearson_max": 0.9117602609729114,
|
799 |
+
"eval_sts-test_spearman_cosine": 0.9096228207862964,
|
800 |
+
"eval_sts-test_spearman_dot": 0.8689540379665887,
|
801 |
+
"eval_sts-test_spearman_euclidean": 0.9099527718365351,
|
802 |
+
"eval_sts-test_spearman_manhattan": 0.9098263942743658,
|
803 |
+
"eval_sts-test_spearman_max": 0.9099527718365351,
|
804 |
+
"step": 75
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 0.6031746031746031,
|
808 |
+
"grad_norm": 2.81105637550354,
|
809 |
+
"learning_rate": 3.4660844338197886e-05,
|
810 |
+
"loss": 0.259,
|
811 |
+
"step": 76
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 0.6111111111111112,
|
815 |
+
"grad_norm": 2.629365921020508,
|
816 |
+
"learning_rate": 3.460690436262242e-05,
|
817 |
+
"loss": 0.2506,
|
818 |
+
"step": 77
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.6190476190476191,
|
822 |
+
"grad_norm": 2.6665291786193848,
|
823 |
+
"learning_rate": 3.454904375750738e-05,
|
824 |
+
"loss": 0.2832,
|
825 |
+
"step": 78
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.626984126984127,
|
829 |
+
"grad_norm": 2.916246175765991,
|
830 |
+
"learning_rate": 3.448727850919509e-05,
|
831 |
+
"loss": 0.3322,
|
832 |
+
"step": 79
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 0.6349206349206349,
|
836 |
+
"grad_norm": 2.4879415035247803,
|
837 |
+
"learning_rate": 3.442162568284416e-05,
|
838 |
+
"loss": 0.2533,
|
839 |
+
"step": 80
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 0.6349206349206349,
|
843 |
+
"eval_loss": 0.10007175803184509,
|
844 |
+
"eval_runtime": 113.3295,
|
845 |
+
"eval_samples_per_second": 26.93,
|
846 |
+
"eval_steps_per_second": 0.212,
|
847 |
+
"eval_sts-test_pearson_cosine": 0.8791063595826033,
|
848 |
+
"eval_sts-test_pearson_dot": 0.8594763353424633,
|
849 |
+
"eval_sts-test_pearson_euclidean": 0.9109289279488433,
|
850 |
+
"eval_sts-test_pearson_manhattan": 0.9101783025650423,
|
851 |
+
"eval_sts-test_pearson_max": 0.9109289279488433,
|
852 |
+
"eval_sts-test_spearman_cosine": 0.9088725211378084,
|
853 |
+
"eval_sts-test_spearman_dot": 0.8680133664521414,
|
854 |
+
"eval_sts-test_spearman_euclidean": 0.9091277823327847,
|
855 |
+
"eval_sts-test_spearman_manhattan": 0.9091334209917199,
|
856 |
+
"eval_sts-test_spearman_max": 0.9091334209917199,
|
857 |
+
"step": 80
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.6428571428571429,
|
861 |
+
"grad_norm": 2.6558098793029785,
|
862 |
+
"learning_rate": 3.435210341771455e-05,
|
863 |
+
"loss": 0.2349,
|
864 |
+
"step": 81
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.6507936507936508,
|
868 |
+
"grad_norm": 2.690624475479126,
|
869 |
+
"learning_rate": 3.427873092215584e-05,
|
870 |
+
"loss": 0.2748,
|
871 |
+
"step": 82
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.6587301587301587,
|
875 |
+
"grad_norm": 2.451726198196411,
|
876 |
+
"learning_rate": 3.420152846830015e-05,
|
877 |
+
"loss": 0.223,
|
878 |
+
"step": 83
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.6666666666666666,
|
882 |
+
"grad_norm": 2.6376216411590576,
|
883 |
+
"learning_rate": 3.412051738646116e-05,
|
884 |
+
"loss": 0.2416,
|
885 |
+
"step": 84
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.6746031746031746,
|
889 |
+
"grad_norm": 2.8111939430236816,
|
890 |
+
"learning_rate": 3.403572005924071e-05,
|
891 |
+
"loss": 0.2637,
|
892 |
+
"step": 85
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.6746031746031746,
|
896 |
+
"eval_loss": 0.10335631668567657,
|
897 |
+
"eval_runtime": 113.4166,
|
898 |
+
"eval_samples_per_second": 26.91,
|
899 |
+
"eval_steps_per_second": 0.212,
|
900 |
+
"eval_sts-test_pearson_cosine": 0.8779388329417936,
|
901 |
+
"eval_sts-test_pearson_dot": 0.8608493769098732,
|
902 |
+
"eval_sts-test_pearson_euclidean": 0.9095252832629803,
|
903 |
+
"eval_sts-test_pearson_manhattan": 0.9090695197203245,
|
904 |
+
"eval_sts-test_pearson_max": 0.9095252832629803,
|
905 |
+
"eval_sts-test_spearman_cosine": 0.9082387985252446,
|
906 |
+
"eval_sts-test_spearman_dot": 0.8707913010030126,
|
907 |
+
"eval_sts-test_spearman_euclidean": 0.9083403391373417,
|
908 |
+
"eval_sts-test_spearman_manhattan": 0.9084906586243554,
|
909 |
+
"eval_sts-test_spearman_max": 0.9084906586243554,
|
910 |
+
"step": 85
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 0.6825396825396826,
|
914 |
+
"grad_norm": 2.859077215194702,
|
915 |
+
"learning_rate": 3.394715991534474e-05,
|
916 |
+
"loss": 0.2856,
|
917 |
+
"step": 86
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 0.6904761904761905,
|
921 |
+
"grad_norm": 2.433560371398926,
|
922 |
+
"learning_rate": 3.385486142311011e-05,
|
923 |
+
"loss": 0.2476,
|
924 |
+
"step": 87
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 0.6984126984126984,
|
928 |
+
"grad_norm": 2.6791834831237793,
|
929 |
+
"learning_rate": 3.375885008374425e-05,
|
930 |
+
"loss": 0.2427,
|
931 |
+
"step": 88
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 0.7063492063492064,
|
935 |
+
"grad_norm": 2.6574490070343018,
|
936 |
+
"learning_rate": 3.365915242427944e-05,
|
937 |
+
"loss": 0.2614,
|
938 |
+
"step": 89
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.7142857142857143,
|
942 |
+
"grad_norm": 2.5747766494750977,
|
943 |
+
"learning_rate": 3.355579599024361e-05,
|
944 |
+
"loss": 0.26,
|
945 |
+
"step": 90
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.7142857142857143,
|
949 |
+
"eval_loss": 0.10315236449241638,
|
950 |
+
"eval_runtime": 113.4044,
|
951 |
+
"eval_samples_per_second": 26.913,
|
952 |
+
"eval_steps_per_second": 0.212,
|
953 |
+
"eval_sts-test_pearson_cosine": 0.8793659111713259,
|
954 |
+
"eval_sts-test_pearson_dot": 0.8641308245754843,
|
955 |
+
"eval_sts-test_pearson_euclidean": 0.9095961426218309,
|
956 |
+
"eval_sts-test_pearson_manhattan": 0.9093977382821561,
|
957 |
+
"eval_sts-test_pearson_max": 0.9095961426218309,
|
958 |
+
"eval_sts-test_spearman_cosine": 0.9087700407492219,
|
959 |
+
"eval_sts-test_spearman_dot": 0.8756799287974091,
|
960 |
+
"eval_sts-test_spearman_euclidean": 0.9084703415516837,
|
961 |
+
"eval_sts-test_spearman_manhattan": 0.908642678659302,
|
962 |
+
"eval_sts-test_spearman_max": 0.9087700407492219,
|
963 |
+
"step": 90
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.7222222222222222,
|
967 |
+
"grad_norm": 2.3570423126220703,
|
968 |
+
"learning_rate": 3.3448809338049753e-05,
|
969 |
+
"loss": 0.1862,
|
970 |
+
"step": 91
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.7301587301587301,
|
974 |
+
"grad_norm": 2.486401319503784,
|
975 |
+
"learning_rate": 3.333822202710612e-05,
|
976 |
+
"loss": 0.267,
|
977 |
+
"step": 92
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.7380952380952381,
|
981 |
+
"grad_norm": 2.436018705368042,
|
982 |
+
"learning_rate": 3.322406461164916e-05,
|
983 |
+
"loss": 0.2175,
|
984 |
+
"step": 93
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.746031746031746,
|
988 |
+
"grad_norm": 2.2685282230377197,
|
989 |
+
"learning_rate": 3.310636863230172e-05,
|
990 |
+
"loss": 0.2079,
|
991 |
+
"step": 94
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.753968253968254,
|
995 |
+
"grad_norm": 2.564317464828491,
|
996 |
+
"learning_rate": 3.2985166607358637e-05,
|
997 |
+
"loss": 0.2562,
|
998 |
+
"step": 95
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.753968253968254,
|
1002 |
+
"eval_loss": 0.09990089386701584,
|
1003 |
+
"eval_runtime": 113.4641,
|
1004 |
+
"eval_samples_per_second": 26.898,
|
1005 |
+
"eval_steps_per_second": 0.212,
|
1006 |
+
"eval_sts-test_pearson_cosine": 0.8795677625682299,
|
1007 |
+
"eval_sts-test_pearson_dot": 0.8659349142313639,
|
1008 |
+
"eval_sts-test_pearson_euclidean": 0.9099982334792637,
|
1009 |
+
"eval_sts-test_pearson_manhattan": 0.9099098081017423,
|
1010 |
+
"eval_sts-test_pearson_max": 0.9099982334792637,
|
1011 |
+
"eval_sts-test_spearman_cosine": 0.9085842782631862,
|
1012 |
+
"eval_sts-test_spearman_dot": 0.8767303751560495,
|
1013 |
+
"eval_sts-test_spearman_euclidean": 0.9083879992307234,
|
1014 |
+
"eval_sts-test_spearman_manhattan": 0.9084153422514337,
|
1015 |
+
"eval_sts-test_spearman_max": 0.9085842782631862,
|
1016 |
+
"step": 95
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.7619047619047619,
|
1020 |
+
"grad_norm": 2.594452381134033,
|
1021 |
+
"learning_rate": 3.286049202380226e-05,
|
1022 |
+
"loss": 0.2516,
|
1023 |
+
"step": 96
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.7698412698412699,
|
1027 |
+
"grad_norm": 2.6356875896453857,
|
1028 |
+
"learning_rate": 3.273237932805032e-05,
|
1029 |
+
"loss": 0.2956,
|
1030 |
+
"step": 97
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 0.7777777777777778,
|
1034 |
+
"grad_norm": 2.6263818740844727,
|
1035 |
+
"learning_rate": 3.260086391643865e-05,
|
1036 |
+
"loss": 0.2733,
|
1037 |
+
"step": 98
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 0.7857142857142857,
|
1041 |
+
"grad_norm": 2.636934757232666,
|
1042 |
+
"learning_rate": 3.246598212544159e-05,
|
1043 |
+
"loss": 0.2919,
|
1044 |
+
"step": 99
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 0.7936507936507936,
|
1048 |
+
"grad_norm": 2.710754632949829,
|
1049 |
+
"learning_rate": 3.2327771221632486e-05,
|
1050 |
+
"loss": 0.2997,
|
1051 |
+
"step": 100
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 0.7936507936507936,
|
1055 |
+
"eval_loss": 0.10318750143051147,
|
1056 |
+
"eval_runtime": 113.3236,
|
1057 |
+
"eval_samples_per_second": 26.932,
|
1058 |
+
"eval_steps_per_second": 0.212,
|
1059 |
+
"eval_sts-test_pearson_cosine": 0.8759700287215791,
|
1060 |
+
"eval_sts-test_pearson_dot": 0.8604257798750153,
|
1061 |
+
"eval_sts-test_pearson_euclidean": 0.9085309767938886,
|
1062 |
+
"eval_sts-test_pearson_manhattan": 0.9086607224369581,
|
1063 |
+
"eval_sts-test_pearson_max": 0.9086607224369581,
|
1064 |
+
"eval_sts-test_spearman_cosine": 0.9069411909499396,
|
1065 |
+
"eval_sts-test_spearman_dot": 0.8719651713405704,
|
1066 |
+
"eval_sts-test_spearman_euclidean": 0.9080629260679763,
|
1067 |
+
"eval_sts-test_spearman_manhattan": 0.907642129957113,
|
1068 |
+
"eval_sts-test_spearman_max": 0.9080629260679763,
|
1069 |
+
"step": 100
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 0.8015873015873016,
|
1073 |
+
"grad_norm": 2.516517162322998,
|
1074 |
+
"learning_rate": 3.218626939138736e-05,
|
1075 |
+
"loss": 0.2276,
|
1076 |
+
"step": 101
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.8095238095238095,
|
1080 |
+
"grad_norm": 2.6900599002838135,
|
1081 |
+
"learning_rate": 3.204151573033428e-05,
|
1082 |
+
"loss": 0.2582,
|
1083 |
+
"step": 102
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.8174603174603174,
|
1087 |
+
"grad_norm": 2.5696845054626465,
|
1088 |
+
"learning_rate": 3.189355023255171e-05,
|
1089 |
+
"loss": 0.2559,
|
1090 |
+
"step": 103
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.8253968253968254,
|
1094 |
+
"grad_norm": 2.7647061347961426,
|
1095 |
+
"learning_rate": 3.174241377951843e-05,
|
1096 |
+
"loss": 0.2864,
|
1097 |
+
"step": 104
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.8333333333333334,
|
1101 |
+
"grad_norm": 2.7451863288879395,
|
1102 |
+
"learning_rate": 3.1588148128818425e-05,
|
1103 |
+
"loss": 0.2839,
|
1104 |
+
"step": 105
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.8333333333333334,
|
1108 |
+
"eval_loss": 0.10743121802806854,
|
1109 |
+
"eval_runtime": 113.407,
|
1110 |
+
"eval_samples_per_second": 26.912,
|
1111 |
+
"eval_steps_per_second": 0.212,
|
1112 |
+
"eval_sts-test_pearson_cosine": 0.8767875416189156,
|
1113 |
+
"eval_sts-test_pearson_dot": 0.8604239654952288,
|
1114 |
+
"eval_sts-test_pearson_euclidean": 0.9092313999029703,
|
1115 |
+
"eval_sts-test_pearson_manhattan": 0.9094243708597547,
|
1116 |
+
"eval_sts-test_pearson_max": 0.9094243708597547,
|
1117 |
+
"eval_sts-test_spearman_cosine": 0.9075548649973998,
|
1118 |
+
"eval_sts-test_spearman_dot": 0.8721893304088798,
|
1119 |
+
"eval_sts-test_spearman_euclidean": 0.9081462081654257,
|
1120 |
+
"eval_sts-test_spearman_manhattan": 0.9082743310267892,
|
1121 |
+
"eval_sts-test_spearman_max": 0.9082743310267892,
|
1122 |
+
"step": 105
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.8412698412698413,
|
1126 |
+
"grad_norm": 2.5484859943389893,
|
1127 |
+
"learning_rate": 3.1430795902603625e-05,
|
1128 |
+
"loss": 0.2549,
|
1129 |
+
"step": 106
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.8492063492063492,
|
1133 |
+
"grad_norm": 2.6235854625701904,
|
1134 |
+
"learning_rate": 3.127040057581783e-05,
|
1135 |
+
"loss": 0.2826,
|
1136 |
+
"step": 107
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.8571428571428571,
|
1140 |
+
"grad_norm": 2.5238397121429443,
|
1141 |
+
"learning_rate": 3.110700646418496e-05,
|
1142 |
+
"loss": 0.2334,
|
1143 |
+
"step": 108
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.8650793650793651,
|
1147 |
+
"grad_norm": 2.740260362625122,
|
1148 |
+
"learning_rate": 3.0940658711965065e-05,
|
1149 |
+
"loss": 0.2632,
|
1150 |
+
"step": 109
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.873015873015873,
|
1154 |
+
"grad_norm": 2.510667562484741,
|
1155 |
+
"learning_rate": 3.077140327948137e-05,
|
1156 |
+
"loss": 0.2255,
|
1157 |
+
"step": 110
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.873015873015873,
|
1161 |
+
"eval_loss": 0.10900076478719711,
|
1162 |
+
"eval_runtime": 113.5509,
|
1163 |
+
"eval_samples_per_second": 26.878,
|
1164 |
+
"eval_steps_per_second": 0.211,
|
1165 |
+
"eval_sts-test_pearson_cosine": 0.8751607943383615,
|
1166 |
+
"eval_sts-test_pearson_dot": 0.8589309347875178,
|
1167 |
+
"eval_sts-test_pearson_euclidean": 0.9068514756772725,
|
1168 |
+
"eval_sts-test_pearson_manhattan": 0.9076530218955405,
|
1169 |
+
"eval_sts-test_pearson_max": 0.9076530218955405,
|
1170 |
+
"eval_sts-test_spearman_cosine": 0.9056104674412049,
|
1171 |
+
"eval_sts-test_spearman_dot": 0.8704153456560634,
|
1172 |
+
"eval_sts-test_spearman_euclidean": 0.9057139771088031,
|
1173 |
+
"eval_sts-test_spearman_manhattan": 0.9064273122153821,
|
1174 |
+
"eval_sts-test_spearman_max": 0.9064273122153821,
|
1175 |
+
"step": 110
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 0.8809523809523809,
|
1179 |
+
"grad_norm": 2.552116632461548,
|
1180 |
+
"learning_rate": 3.059928693042189e-05,
|
1181 |
+
"loss": 0.2589,
|
1182 |
+
"step": 111
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 0.8888888888888888,
|
1186 |
+
"grad_norm": 2.5401554107666016,
|
1187 |
+
"learning_rate": 3.0424357218919025e-05,
|
1188 |
+
"loss": 0.2569,
|
1189 |
+
"step": 112
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 0.8968253968253969,
|
1193 |
+
"grad_norm": 2.695404291152954,
|
1194 |
+
"learning_rate": 3.0246662476410844e-05,
|
1195 |
+
"loss": 0.2797,
|
1196 |
+
"step": 113
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.9047619047619048,
|
1200 |
+
"grad_norm": 2.8901283740997314,
|
1201 |
+
"learning_rate": 3.0066251798287526e-05,
|
1202 |
+
"loss": 0.2742,
|
1203 |
+
"step": 114
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.9126984126984127,
|
1207 |
+
"grad_norm": 2.4771928787231445,
|
1208 |
+
"learning_rate": 2.9883175030326795e-05,
|
1209 |
+
"loss": 0.2295,
|
1210 |
+
"step": 115
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 0.9126984126984127,
|
1214 |
+
"eval_loss": 0.10703907907009125,
|
1215 |
+
"eval_runtime": 113.456,
|
1216 |
+
"eval_samples_per_second": 26.9,
|
1217 |
+
"eval_steps_per_second": 0.212,
|
1218 |
+
"eval_sts-test_pearson_cosine": 0.8721877249457892,
|
1219 |
+
"eval_sts-test_pearson_dot": 0.8560616623137738,
|
1220 |
+
"eval_sts-test_pearson_euclidean": 0.9030366016666834,
|
1221 |
+
"eval_sts-test_pearson_manhattan": 0.9045537484069119,
|
1222 |
+
"eval_sts-test_pearson_max": 0.9045537484069119,
|
1223 |
+
"eval_sts-test_spearman_cosine": 0.9013517136508925,
|
1224 |
+
"eval_sts-test_spearman_dot": 0.8659265703821992,
|
1225 |
+
"eval_sts-test_spearman_euclidean": 0.9015738141611778,
|
1226 |
+
"eval_sts-test_spearman_manhattan": 0.9030298859530699,
|
1227 |
+
"eval_sts-test_spearman_max": 0.9030298859530699,
|
1228 |
+
"step": 115
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.9206349206349206,
|
1232 |
+
"grad_norm": 2.4024698734283447,
|
1233 |
+
"learning_rate": 2.969748275492197e-05,
|
1234 |
+
"loss": 0.2047,
|
1235 |
+
"step": 116
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.9285714285714286,
|
1239 |
+
"grad_norm": 2.7750799655914307,
|
1240 |
+
"learning_rate": 2.9509226277106527e-05,
|
1241 |
+
"loss": 0.2577,
|
1242 |
+
"step": 117
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.9365079365079365,
|
1246 |
+
"grad_norm": 2.545588731765747,
|
1247 |
+
"learning_rate": 2.9318457610379043e-05,
|
1248 |
+
"loss": 0.2614,
|
1249 |
+
"step": 118
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.9444444444444444,
|
1253 |
+
"grad_norm": 2.685835123062134,
|
1254 |
+
"learning_rate": 2.9125229462332293e-05,
|
1255 |
+
"loss": 0.2722,
|
1256 |
+
"step": 119
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.9523809523809523,
|
1260 |
+
"grad_norm": 2.3174188137054443,
|
1261 |
+
"learning_rate": 2.892959522009068e-05,
|
1262 |
+
"loss": 0.1927,
|
1263 |
+
"step": 120
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.9523809523809523,
|
1267 |
+
"eval_loss": 0.10235559195280075,
|
1268 |
+
"eval_runtime": 113.4984,
|
1269 |
+
"eval_samples_per_second": 26.89,
|
1270 |
+
"eval_steps_per_second": 0.211,
|
1271 |
+
"eval_sts-test_pearson_cosine": 0.872488088039419,
|
1272 |
+
"eval_sts-test_pearson_dot": 0.8563761302721377,
|
1273 |
+
"eval_sts-test_pearson_euclidean": 0.9034767476820997,
|
1274 |
+
"eval_sts-test_pearson_manhattan": 0.9044620383979292,
|
1275 |
+
"eval_sts-test_pearson_max": 0.9044620383979292,
|
1276 |
+
"eval_sts-test_spearman_cosine": 0.9008235592639511,
|
1277 |
+
"eval_sts-test_spearman_dot": 0.864130657511301,
|
1278 |
+
"eval_sts-test_spearman_euclidean": 0.9016059455668568,
|
1279 |
+
"eval_sts-test_spearman_manhattan": 0.9027126890123276,
|
1280 |
+
"eval_sts-test_spearman_max": 0.9027126890123276,
|
1281 |
+
"step": 120
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.9603174603174603,
|
1285 |
+
"grad_norm": 2.8979287147521973,
|
1286 |
+
"learning_rate": 2.8731608935559857e-05,
|
1287 |
+
"loss": 0.2649,
|
1288 |
+
"step": 121
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 0.9682539682539683,
|
1292 |
+
"grad_norm": 2.485367774963379,
|
1293 |
+
"learning_rate": 2.8531325310492677e-05,
|
1294 |
+
"loss": 0.2386,
|
1295 |
+
"step": 122
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 0.9761904761904762,
|
1299 |
+
"grad_norm": 2.662865400314331,
|
1300 |
+
"learning_rate": 2.8328799681375657e-05,
|
1301 |
+
"loss": 0.2801,
|
1302 |
+
"step": 123
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 0.9841269841269841,
|
1306 |
+
"grad_norm": 2.693284511566162,
|
1307 |
+
"learning_rate": 2.812408800413997e-05,
|
1308 |
+
"loss": 0.2583,
|
1309 |
+
"step": 124
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"epoch": 0.9920634920634921,
|
1313 |
+
"grad_norm": 3.0903170108795166,
|
1314 |
+
"learning_rate": 2.79172468387014e-05,
|
1315 |
+
"loss": 0.3076,
|
1316 |
+
"step": 125
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.9920634920634921,
|
1320 |
+
"eval_loss": 0.09488630294799805,
|
1321 |
+
"eval_runtime": 113.5341,
|
1322 |
+
"eval_samples_per_second": 26.882,
|
1323 |
+
"eval_steps_per_second": 0.211,
|
1324 |
+
"eval_sts-test_pearson_cosine": 0.8742114661417826,
|
1325 |
+
"eval_sts-test_pearson_dot": 0.8564803125306033,
|
1326 |
+
"eval_sts-test_pearson_euclidean": 0.905509251442753,
|
1327 |
+
"eval_sts-test_pearson_manhattan": 0.9061976864024648,
|
1328 |
+
"eval_sts-test_pearson_max": 0.9061976864024648,
|
1329 |
+
"eval_sts-test_spearman_cosine": 0.901563655624842,
|
1330 |
+
"eval_sts-test_spearman_dot": 0.8618259675496438,
|
1331 |
+
"eval_sts-test_spearman_euclidean": 0.90313473815851,
|
1332 |
+
"eval_sts-test_spearman_manhattan": 0.9041778900615435,
|
1333 |
+
"eval_sts-test_spearman_max": 0.9041778900615435,
|
1334 |
+
"step": 125
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 1.0,
|
1338 |
+
"grad_norm": NaN,
|
1339 |
+
"learning_rate": 2.79172468387014e-05,
|
1340 |
+
"loss": 0.5477,
|
1341 |
+
"step": 126
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 1.007936507936508,
|
1345 |
+
"grad_norm": 0.982935905456543,
|
1346 |
+
"learning_rate": 2.7708333333333334e-05,
|
1347 |
+
"loss": 0.0031,
|
1348 |
+
"step": 127
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"epoch": 1.0158730158730158,
|
1352 |
+
"grad_norm": 7.32542133619063e-08,
|
1353 |
+
"learning_rate": 2.7497405208877213e-05,
|
1354 |
+
"loss": 0.0,
|
1355 |
+
"step": 128
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 1.0238095238095237,
|
1359 |
+
"grad_norm": 0.0,
|
1360 |
+
"learning_rate": 2.7284520742794878e-05,
|
1361 |
+
"loss": 0.0,
|
1362 |
+
"step": 129
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 1.0317460317460319,
|
1366 |
+
"grad_norm": 0.0,
|
1367 |
+
"learning_rate": 2.706973875306696e-05,
|
1368 |
+
"loss": 0.0,
|
1369 |
+
"step": 130
|
1370 |
+
},
|
1371 |
+
{
|
1372 |
+
"epoch": 1.0317460317460319,
|
1373 |
+
"eval_loss": 0.09545031189918518,
|
1374 |
+
"eval_runtime": 114.0298,
|
1375 |
+
"eval_samples_per_second": 26.765,
|
1376 |
+
"eval_steps_per_second": 0.21,
|
1377 |
+
"eval_sts-test_pearson_cosine": 0.874702030760496,
|
1378 |
+
"eval_sts-test_pearson_dot": 0.8555439931828537,
|
1379 |
+
"eval_sts-test_pearson_euclidean": 0.9065531106539271,
|
1380 |
+
"eval_sts-test_pearson_manhattan": 0.9071871020121037,
|
1381 |
+
"eval_sts-test_pearson_max": 0.9071871020121037,
|
1382 |
+
"eval_sts-test_spearman_cosine": 0.9021036690960521,
|
1383 |
+
"eval_sts-test_spearman_dot": 0.8598106392441436,
|
1384 |
+
"eval_sts-test_spearman_euclidean": 0.9043656663543417,
|
1385 |
+
"eval_sts-test_spearman_manhattan": 0.9048875555646884,
|
1386 |
+
"eval_sts-test_spearman_max": 0.9048875555646884,
|
1387 |
+
"step": 130
|
1388 |
+
},
|
1389 |
+
{
|
1390 |
+
"epoch": 1.0396825396825398,
|
1391 |
+
"grad_norm": 0.0,
|
1392 |
+
"learning_rate": 2.6853118581942095e-05,
|
1393 |
+
"loss": 0.0,
|
1394 |
+
"step": 131
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 1.0476190476190477,
|
1398 |
+
"grad_norm": 0.0,
|
1399 |
+
"learning_rate": 2.66347200795412e-05,
|
1400 |
+
"loss": 0.0,
|
1401 |
+
"step": 132
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 1.0555555555555556,
|
1405 |
+
"grad_norm": 0.0,
|
1406 |
+
"learning_rate": 2.6414603587321415e-05,
|
1407 |
+
"loss": 0.0,
|
1408 |
+
"step": 133
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"epoch": 1.0634920634920635,
|
1412 |
+
"grad_norm": 0.0,
|
1413 |
+
"learning_rate": 2.6192829921404365e-05,
|
1414 |
+
"loss": 0.0,
|
1415 |
+
"step": 134
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 1.0714285714285714,
|
1419 |
+
"grad_norm": 0.0,
|
1420 |
+
"learning_rate": 2.596946035577322e-05,
|
1421 |
+
"loss": 0.0,
|
1422 |
+
"step": 135
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"epoch": 1.0714285714285714,
|
1426 |
+
"eval_loss": 0.09676523506641388,
|
1427 |
+
"eval_runtime": 113.8781,
|
1428 |
+
"eval_samples_per_second": 26.801,
|
1429 |
+
"eval_steps_per_second": 0.211,
|
1430 |
+
"eval_sts-test_pearson_cosine": 0.8747276197594331,
|
1431 |
+
"eval_sts-test_pearson_dot": 0.8544620877290974,
|
1432 |
+
"eval_sts-test_pearson_euclidean": 0.9070156259790649,
|
1433 |
+
"eval_sts-test_pearson_manhattan": 0.9076369642785601,
|
1434 |
+
"eval_sts-test_pearson_max": 0.9076369642785601,
|
1435 |
+
"eval_sts-test_spearman_cosine": 0.9022577924402841,
|
1436 |
+
"eval_sts-test_spearman_dot": 0.8575864120504681,
|
1437 |
+
"eval_sts-test_spearman_euclidean": 0.9046890144393489,
|
1438 |
+
"eval_sts-test_spearman_manhattan": 0.9049111394794415,
|
1439 |
+
"eval_sts-test_spearman_max": 0.9049111394794415,
|
1440 |
+
"step": 135
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 1.0793650793650793,
|
1444 |
+
"grad_norm": 0.0,
|
1445 |
+
"learning_rate": 2.5744556605343263e-05,
|
1446 |
+
"loss": 0.0,
|
1447 |
+
"step": 136
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 1.0873015873015872,
|
1451 |
+
"grad_norm": 0.0,
|
1452 |
+
"learning_rate": 2.5518180808910628e-05,
|
1453 |
+
"loss": 0.0,
|
1454 |
+
"step": 137
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 1.0952380952380953,
|
1458 |
+
"grad_norm": 0.0,
|
1459 |
+
"learning_rate": 2.5290395511983987e-05,
|
1460 |
+
"loss": 0.0,
|
1461 |
+
"step": 138
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 1.1031746031746033,
|
1465 |
+
"grad_norm": 0.0,
|
1466 |
+
"learning_rate": 2.5061263649503735e-05,
|
1467 |
+
"loss": 0.0,
|
1468 |
+
"step": 139
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"epoch": 1.1111111111111112,
|
1472 |
+
"grad_norm": 0.0,
|
1473 |
+
"learning_rate": 2.4830848528453706e-05,
|
1474 |
+
"loss": 0.0,
|
1475 |
+
"step": 140
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 1.1111111111111112,
|
1479 |
+
"eval_loss": 0.09783273935317993,
|
1480 |
+
"eval_runtime": 113.4913,
|
1481 |
+
"eval_samples_per_second": 26.892,
|
1482 |
+
"eval_steps_per_second": 0.211,
|
1483 |
+
"eval_sts-test_pearson_cosine": 0.8746125563575086,
|
1484 |
+
"eval_sts-test_pearson_dot": 0.8536822328210044,
|
1485 |
+
"eval_sts-test_pearson_euclidean": 0.9071769017286274,
|
1486 |
+
"eval_sts-test_pearson_manhattan": 0.9077849350046876,
|
1487 |
+
"eval_sts-test_pearson_max": 0.9077849350046876,
|
1488 |
+
"eval_sts-test_spearman_cosine": 0.9023702076088993,
|
1489 |
+
"eval_sts-test_spearman_dot": 0.8566226041338817,
|
1490 |
+
"eval_sts-test_spearman_euclidean": 0.9049979121752795,
|
1491 |
+
"eval_sts-test_spearman_manhattan": 0.9049124372660218,
|
1492 |
+
"eval_sts-test_spearman_max": 0.9049979121752795,
|
1493 |
+
"step": 140
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.119047619047619,
|
1497 |
+
"grad_norm": 0.0,
|
1498 |
+
"learning_rate": 2.4599213810370067e-05,
|
1499 |
+
"loss": 0.0,
|
1500 |
+
"step": 141
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.126984126984127,
|
1504 |
+
"grad_norm": 0.0,
|
1505 |
+
"learning_rate": 2.4366423493752155e-05,
|
1506 |
+
"loss": 0.0,
|
1507 |
+
"step": 142
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.1349206349206349,
|
1511 |
+
"grad_norm": 0.0,
|
1512 |
+
"learning_rate": 2.4132541896380374e-05,
|
1513 |
+
"loss": 0.0,
|
1514 |
+
"step": 143
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.1428571428571428,
|
1518 |
+
"grad_norm": 0.0,
|
1519 |
+
"learning_rate": 2.3897633637545755e-05,
|
1520 |
+
"loss": 0.0,
|
1521 |
+
"step": 144
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.1507936507936507,
|
1525 |
+
"grad_norm": 0.0,
|
1526 |
+
"learning_rate": 2.366176362019625e-05,
|
1527 |
+
"loss": 0.0,
|
1528 |
+
"step": 145
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.1507936507936507,
|
1532 |
+
"eval_loss": 0.09863892197608948,
|
1533 |
+
"eval_runtime": 113.5886,
|
1534 |
+
"eval_samples_per_second": 26.869,
|
1535 |
+
"eval_steps_per_second": 0.211,
|
1536 |
+
"eval_sts-test_pearson_cosine": 0.8744759141501874,
|
1537 |
+
"eval_sts-test_pearson_dot": 0.8531679877756508,
|
1538 |
+
"eval_sts-test_pearson_euclidean": 0.9072042306444432,
|
1539 |
+
"eval_sts-test_pearson_manhattan": 0.907805846396001,
|
1540 |
+
"eval_sts-test_pearson_max": 0.907805846396001,
|
1541 |
+
"eval_sts-test_spearman_cosine": 0.9023667170105107,
|
1542 |
+
"eval_sts-test_spearman_dot": 0.8560352885793809,
|
1543 |
+
"eval_sts-test_spearman_euclidean": 0.9048520230631434,
|
1544 |
+
"eval_sts-test_spearman_manhattan": 0.9049029947498682,
|
1545 |
+
"eval_sts-test_spearman_max": 0.9049029947498682,
|
1546 |
+
"step": 145
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 1.1587301587301588,
|
1550 |
+
"grad_norm": 0.0,
|
1551 |
+
"learning_rate": 2.342499701300467e-05,
|
1552 |
+
"loss": 0.0,
|
1553 |
+
"step": 146
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 1.1666666666666667,
|
1557 |
+
"grad_norm": 0.0,
|
1558 |
+
"learning_rate": 2.318739923236319e-05,
|
1559 |
+
"loss": 0.0,
|
1560 |
+
"step": 147
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 1.1746031746031746,
|
1564 |
+
"grad_norm": 0.0,
|
1565 |
+
"learning_rate": 2.29490359243094e-05,
|
1566 |
+
"loss": 0.0,
|
1567 |
+
"step": 148
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 1.1825396825396826,
|
1571 |
+
"grad_norm": 0.0,
|
1572 |
+
"learning_rate": 2.270997294638895e-05,
|
1573 |
+
"loss": 0.0,
|
1574 |
+
"step": 149
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 1.1904761904761905,
|
1578 |
+
"grad_norm": 0.0,
|
1579 |
+
"learning_rate": 2.24702763494597e-05,
|
1580 |
+
"loss": 0.0,
|
1581 |
+
"step": 150
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 1.1904761904761905,
|
1585 |
+
"eval_loss": 0.09906759858131409,
|
1586 |
+
"eval_runtime": 113.5604,
|
1587 |
+
"eval_samples_per_second": 26.876,
|
1588 |
+
"eval_steps_per_second": 0.211,
|
1589 |
+
"eval_sts-test_pearson_cosine": 0.8744060293405248,
|
1590 |
+
"eval_sts-test_pearson_dot": 0.8528829505611442,
|
1591 |
+
"eval_sts-test_pearson_euclidean": 0.9072185184616055,
|
1592 |
+
"eval_sts-test_pearson_manhattan": 0.9078100463432079,
|
1593 |
+
"eval_sts-test_pearson_max": 0.9078100463432079,
|
1594 |
+
"eval_sts-test_spearman_cosine": 0.9022761852087159,
|
1595 |
+
"eval_sts-test_spearman_dot": 0.8555268694987131,
|
1596 |
+
"eval_sts-test_spearman_euclidean": 0.9047365648087538,
|
1597 |
+
"eval_sts-test_spearman_manhattan": 0.9048373894006686,
|
1598 |
+
"eval_sts-test_spearman_max": 0.9048373894006686,
|
1599 |
+
"step": 150
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.1984126984126984,
|
1603 |
+
"grad_norm": 0.0,
|
1604 |
+
"learning_rate": 2.2230012359442495e-05,
|
1605 |
+
"loss": 0.0,
|
1606 |
+
"step": 151
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 1.2063492063492063,
|
1610 |
+
"grad_norm": 0.0,
|
1611 |
+
"learning_rate": 2.1989247359023566e-05,
|
1612 |
+
"loss": 0.0,
|
1613 |
+
"step": 152
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 1.2142857142857142,
|
1617 |
+
"grad_norm": 0.0,
|
1618 |
+
"learning_rate": 2.174804786931362e-05,
|
1619 |
+
"loss": 0.0,
|
1620 |
+
"step": 153
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 1.2222222222222223,
|
1624 |
+
"grad_norm": 0.0,
|
1625 |
+
"learning_rate": 2.150648053146869e-05,
|
1626 |
+
"loss": 0.0,
|
1627 |
+
"step": 154
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 1.2301587301587302,
|
1631 |
+
"grad_norm": 0.0,
|
1632 |
+
"learning_rate": 2.126461208827777e-05,
|
1633 |
+
"loss": 0.0,
|
1634 |
+
"step": 155
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.2301587301587302,
|
1638 |
+
"eval_loss": 0.09936919808387756,
|
1639 |
+
"eval_runtime": 113.5013,
|
1640 |
+
"eval_samples_per_second": 26.89,
|
1641 |
+
"eval_steps_per_second": 0.211,
|
1642 |
+
"eval_sts-test_pearson_cosine": 0.8743508789394699,
|
1643 |
+
"eval_sts-test_pearson_dot": 0.8527007540947626,
|
1644 |
+
"eval_sts-test_pearson_euclidean": 0.9072202919761476,
|
1645 |
+
"eval_sts-test_pearson_manhattan": 0.9078091191041777,
|
1646 |
+
"eval_sts-test_pearson_max": 0.9078091191041777,
|
1647 |
+
"eval_sts-test_spearman_cosine": 0.9023025884529369,
|
1648 |
+
"eval_sts-test_spearman_dot": 0.8550739867334323,
|
1649 |
+
"eval_sts-test_spearman_euclidean": 0.9046202541246842,
|
1650 |
+
"eval_sts-test_spearman_manhattan": 0.9049393775253795,
|
1651 |
+
"eval_sts-test_spearman_max": 0.9049393775253795,
|
1652 |
+
"step": 155
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 1.2380952380952381,
|
1656 |
+
"grad_norm": 0.0,
|
1657 |
+
"learning_rate": 2.102250936572247e-05,
|
1658 |
+
"loss": 0.0,
|
1659 |
+
"step": 156
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 1.246031746031746,
|
1663 |
+
"grad_norm": 0.0,
|
1664 |
+
"learning_rate": 2.0780239254513565e-05,
|
1665 |
+
"loss": 0.0,
|
1666 |
+
"step": 157
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 1.253968253968254,
|
1670 |
+
"grad_norm": 0.0,
|
1671 |
+
"learning_rate": 2.0537868691609745e-05,
|
1672 |
+
"loss": 0.0,
|
1673 |
+
"step": 158
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 1.2619047619047619,
|
1677 |
+
"grad_norm": 0.0,
|
1678 |
+
"learning_rate": 2.0295464641723583e-05,
|
1679 |
+
"loss": 0.0,
|
1680 |
+
"step": 159
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 1.2698412698412698,
|
1684 |
+
"grad_norm": 0.0,
|
1685 |
+
"learning_rate": 2.005309407881977e-05,
|
1686 |
+
"loss": 0.0,
|
1687 |
+
"step": 160
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 1.2698412698412698,
|
1691 |
+
"eval_loss": 0.09954561293125153,
|
1692 |
+
"eval_runtime": 113.8237,
|
1693 |
+
"eval_samples_per_second": 26.813,
|
1694 |
+
"eval_steps_per_second": 0.211,
|
1695 |
+
"eval_sts-test_pearson_cosine": 0.8743232038160612,
|
1696 |
+
"eval_sts-test_pearson_dot": 0.8526065970333739,
|
1697 |
+
"eval_sts-test_pearson_euclidean": 0.9072152805749177,
|
1698 |
+
"eval_sts-test_pearson_manhattan": 0.9078067984919014,
|
1699 |
+
"eval_sts-test_pearson_max": 0.9078067984919014,
|
1700 |
+
"eval_sts-test_spearman_cosine": 0.9022778857566487,
|
1701 |
+
"eval_sts-test_spearman_dot": 0.8549482356889225,
|
1702 |
+
"eval_sts-test_spearman_euclidean": 0.9046245971527523,
|
1703 |
+
"eval_sts-test_spearman_manhattan": 0.9048685362785969,
|
1704 |
+
"eval_sts-test_spearman_max": 0.9048685362785969,
|
1705 |
+
"step": 160
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"epoch": 1.2777777777777777,
|
1709 |
+
"grad_norm": 0.0,
|
1710 |
+
"learning_rate": 1.981082396761086e-05,
|
1711 |
+
"loss": 0.0,
|
1712 |
+
"step": 161
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 1.2857142857142858,
|
1716 |
+
"grad_norm": 0.0,
|
1717 |
+
"learning_rate": 1.956872124505556e-05,
|
1718 |
+
"loss": 0.0,
|
1719 |
+
"step": 162
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 1.2936507936507937,
|
1723 |
+
"grad_norm": 0.0,
|
1724 |
+
"learning_rate": 1.9326852801864646e-05,
|
1725 |
+
"loss": 0.0,
|
1726 |
+
"step": 163
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 1.3015873015873016,
|
1730 |
+
"grad_norm": 0.0,
|
1731 |
+
"learning_rate": 1.908528546401971e-05,
|
1732 |
+
"loss": 0.0,
|
1733 |
+
"step": 164
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 1.3095238095238095,
|
1737 |
+
"grad_norm": 0.0,
|
1738 |
+
"learning_rate": 1.8844085974309768e-05,
|
1739 |
+
"loss": 0.0,
|
1740 |
+
"step": 165
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 1.3095238095238095,
|
1744 |
+
"eval_loss": 0.09964071214199066,
|
1745 |
+
"eval_runtime": 113.5481,
|
1746 |
+
"eval_samples_per_second": 26.878,
|
1747 |
+
"eval_steps_per_second": 0.211,
|
1748 |
+
"eval_sts-test_pearson_cosine": 0.874299456945445,
|
1749 |
+
"eval_sts-test_pearson_dot": 0.8525374757432119,
|
1750 |
+
"eval_sts-test_pearson_euclidean": 0.9072080565726848,
|
1751 |
+
"eval_sts-test_pearson_manhattan": 0.907801820994878,
|
1752 |
+
"eval_sts-test_pearson_max": 0.907801820994878,
|
1753 |
+
"eval_sts-test_spearman_cosine": 0.9022729631178957,
|
1754 |
+
"eval_sts-test_spearman_dot": 0.8546675557774756,
|
1755 |
+
"eval_sts-test_spearman_euclidean": 0.9046749423218178,
|
1756 |
+
"eval_sts-test_spearman_manhattan": 0.9047542415570032,
|
1757 |
+
"eval_sts-test_spearman_max": 0.9047542415570032,
|
1758 |
+
"step": 165
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 1.3174603174603174,
|
1762 |
+
"grad_norm": 0.0,
|
1763 |
+
"learning_rate": 1.8603320973890842e-05,
|
1764 |
+
"loss": 0.0,
|
1765 |
+
"step": 166
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"epoch": 1.3253968253968254,
|
1769 |
+
"grad_norm": 0.0,
|
1770 |
+
"learning_rate": 1.836305698387363e-05,
|
1771 |
+
"loss": 0.0,
|
1772 |
+
"step": 167
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 1.3333333333333333,
|
1776 |
+
"grad_norm": 0.0,
|
1777 |
+
"learning_rate": 1.812336038694438e-05,
|
1778 |
+
"loss": 0.0,
|
1779 |
+
"step": 168
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.3412698412698412,
|
1783 |
+
"grad_norm": 0.0,
|
1784 |
+
"learning_rate": 1.7884297409023932e-05,
|
1785 |
+
"loss": 0.0,
|
1786 |
+
"step": 169
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 1.3492063492063493,
|
1790 |
+
"grad_norm": 0.0,
|
1791 |
+
"learning_rate": 1.7645934100970145e-05,
|
1792 |
+
"loss": 0.0,
|
1793 |
+
"step": 170
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 1.3492063492063493,
|
1797 |
+
"eval_loss": 0.09969252347946167,
|
1798 |
+
"eval_runtime": 113.9068,
|
1799 |
+
"eval_samples_per_second": 26.794,
|
1800 |
+
"eval_steps_per_second": 0.211,
|
1801 |
+
"eval_sts-test_pearson_cosine": 0.8742791376017494,
|
1802 |
+
"eval_sts-test_pearson_dot": 0.8524863854057724,
|
1803 |
+
"eval_sts-test_pearson_euclidean": 0.9072037622211908,
|
1804 |
+
"eval_sts-test_pearson_manhattan": 0.9077955012591168,
|
1805 |
+
"eval_sts-test_pearson_max": 0.9077955012591168,
|
1806 |
+
"eval_sts-test_spearman_cosine": 0.9022626703277757,
|
1807 |
+
"eval_sts-test_spearman_dot": 0.8547057286034424,
|
1808 |
+
"eval_sts-test_spearman_euclidean": 0.9046214198131936,
|
1809 |
+
"eval_sts-test_spearman_manhattan": 0.904806332025263,
|
1810 |
+
"eval_sts-test_spearman_max": 0.904806332025263,
|
1811 |
+
"step": 170
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 1.3571428571428572,
|
1815 |
+
"grad_norm": 0.0,
|
1816 |
+
"learning_rate": 1.740833632032866e-05,
|
1817 |
+
"loss": 0.0,
|
1818 |
+
"step": 171
|
1819 |
+
},
|
1820 |
+
{
|
1821 |
+
"epoch": 1.3650793650793651,
|
1822 |
+
"grad_norm": 0.0,
|
1823 |
+
"learning_rate": 1.717156971313708e-05,
|
1824 |
+
"loss": 0.0,
|
1825 |
+
"step": 172
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 1.373015873015873,
|
1829 |
+
"grad_norm": 0.0,
|
1830 |
+
"learning_rate": 1.6935699695787573e-05,
|
1831 |
+
"loss": 0.0,
|
1832 |
+
"step": 173
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 1.380952380952381,
|
1836 |
+
"grad_norm": 0.0,
|
1837 |
+
"learning_rate": 1.6700791436952954e-05,
|
1838 |
+
"loss": 0.0,
|
1839 |
+
"step": 174
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 1.3888888888888888,
|
1843 |
+
"grad_norm": 0.0,
|
1844 |
+
"learning_rate": 1.6466909839581176e-05,
|
1845 |
+
"loss": 0.0,
|
1846 |
+
"step": 175
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 1.3888888888888888,
|
1850 |
+
"eval_loss": 0.09972869604825974,
|
1851 |
+
"eval_runtime": 113.3507,
|
1852 |
+
"eval_samples_per_second": 26.925,
|
1853 |
+
"eval_steps_per_second": 0.212,
|
1854 |
+
"eval_sts-test_pearson_cosine": 0.8742756437676581,
|
1855 |
+
"eval_sts-test_pearson_dot": 0.852466650373626,
|
1856 |
+
"eval_sts-test_pearson_euclidean": 0.9072071674153375,
|
1857 |
+
"eval_sts-test_pearson_manhattan": 0.9077967797332845,
|
1858 |
+
"eval_sts-test_pearson_max": 0.9077967797332845,
|
1859 |
+
"eval_sts-test_spearman_cosine": 0.9022777962541261,
|
1860 |
+
"eval_sts-test_spearman_dot": 0.8546733734414563,
|
1861 |
+
"eval_sts-test_spearman_euclidean": 0.9045410465477347,
|
1862 |
+
"eval_sts-test_spearman_manhattan": 0.9047774674616654,
|
1863 |
+
"eval_sts-test_spearman_max": 0.9047774674616654,
|
1864 |
+
"step": 175
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 1.3968253968253967,
|
1868 |
+
"grad_norm": 0.0,
|
1869 |
+
"learning_rate": 1.6234119522963267e-05,
|
1870 |
+
"loss": 0.0,
|
1871 |
+
"step": 176
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 1.4047619047619047,
|
1875 |
+
"grad_norm": 0.0,
|
1876 |
+
"learning_rate": 1.6002484804879622e-05,
|
1877 |
+
"loss": 0.0,
|
1878 |
+
"step": 177
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 1.4126984126984128,
|
1882 |
+
"grad_norm": 0.0,
|
1883 |
+
"learning_rate": 1.5772069683829603e-05,
|
1884 |
+
"loss": 0.0,
|
1885 |
+
"step": 178
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 1.4206349206349207,
|
1889 |
+
"grad_norm": 0.0,
|
1890 |
+
"learning_rate": 1.5542937821349347e-05,
|
1891 |
+
"loss": 0.0,
|
1892 |
+
"step": 179
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 1.4285714285714286,
|
1896 |
+
"grad_norm": 0.0,
|
1897 |
+
"learning_rate": 1.5315152524422703e-05,
|
1898 |
+
"loss": 0.0,
|
1899 |
+
"step": 180
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.4285714285714286,
|
1903 |
+
"eval_loss": 0.09972812980413437,
|
1904 |
+
"eval_runtime": 113.3751,
|
1905 |
+
"eval_samples_per_second": 26.919,
|
1906 |
+
"eval_steps_per_second": 0.212,
|
1907 |
+
"eval_sts-test_pearson_cosine": 0.874267739156544,
|
1908 |
+
"eval_sts-test_pearson_dot": 0.8524562621509095,
|
1909 |
+
"eval_sts-test_pearson_euclidean": 0.9072067299928095,
|
1910 |
+
"eval_sts-test_pearson_manhattan": 0.907793793015005,
|
1911 |
+
"eval_sts-test_pearson_max": 0.907793793015005,
|
1912 |
+
"eval_sts-test_spearman_cosine": 0.902276095706193,
|
1913 |
+
"eval_sts-test_spearman_dot": 0.8546634834126889,
|
1914 |
+
"eval_sts-test_spearman_euclidean": 0.9045989546799751,
|
1915 |
+
"eval_sts-test_spearman_manhattan": 0.904807495558059,
|
1916 |
+
"eval_sts-test_spearman_max": 0.904807495558059,
|
1917 |
+
"step": 180
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 1.4365079365079365,
|
1921 |
+
"grad_norm": 0.0,
|
1922 |
+
"learning_rate": 1.508877672799007e-05,
|
1923 |
+
"loss": 0.0,
|
1924 |
+
"step": 181
|
1925 |
+
},
|
1926 |
+
{
|
1927 |
+
"epoch": 1.4444444444444444,
|
1928 |
+
"grad_norm": 0.0,
|
1929 |
+
"learning_rate": 1.486387297756011e-05,
|
1930 |
+
"loss": 0.0,
|
1931 |
+
"step": 182
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 1.4523809523809523,
|
1935 |
+
"grad_norm": 0.0,
|
1936 |
+
"learning_rate": 1.4640503411928961e-05,
|
1937 |
+
"loss": 0.0,
|
1938 |
+
"step": 183
|
1939 |
+
},
|
1940 |
+
{
|
1941 |
+
"epoch": 1.4603174603174602,
|
1942 |
+
"grad_norm": 0.0,
|
1943 |
+
"learning_rate": 1.4418729746011916e-05,
|
1944 |
+
"loss": 0.0,
|
1945 |
+
"step": 184
|
1946 |
+
},
|
1947 |
+
{
|
1948 |
+
"epoch": 1.4682539682539681,
|
1949 |
+
"grad_norm": 0.0,
|
1950 |
+
"learning_rate": 1.4198613253792132e-05,
|
1951 |
+
"loss": 0.0,
|
1952 |
+
"step": 185
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 1.4682539682539681,
|
1956 |
+
"eval_loss": 0.09976483881473541,
|
1957 |
+
"eval_runtime": 113.7822,
|
1958 |
+
"eval_samples_per_second": 26.823,
|
1959 |
+
"eval_steps_per_second": 0.211,
|
1960 |
+
"eval_sts-test_pearson_cosine": 0.8742870531942544,
|
1961 |
+
"eval_sts-test_pearson_dot": 0.8524755889148932,
|
1962 |
+
"eval_sts-test_pearson_euclidean": 0.907218239020885,
|
1963 |
+
"eval_sts-test_pearson_manhattan": 0.9078067867399013,
|
1964 |
+
"eval_sts-test_pearson_max": 0.9078067867399013,
|
1965 |
+
"eval_sts-test_spearman_cosine": 0.9022592692319099,
|
1966 |
+
"eval_sts-test_spearman_dot": 0.854695972828459,
|
1967 |
+
"eval_sts-test_spearman_euclidean": 0.9046065623944117,
|
1968 |
+
"eval_sts-test_spearman_manhattan": 0.9048098673749128,
|
1969 |
+
"eval_sts-test_spearman_max": 0.9048098673749128,
|
1970 |
+
"step": 185
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 1.4761904761904763,
|
1974 |
+
"grad_norm": 0.0,
|
1975 |
+
"learning_rate": 1.3980214751391232e-05,
|
1976 |
+
"loss": 0.0,
|
1977 |
+
"step": 186
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.4841269841269842,
|
1981 |
+
"grad_norm": 0.0,
|
1982 |
+
"learning_rate": 1.3763594580266373e-05,
|
1983 |
+
"loss": 0.0,
|
1984 |
+
"step": 187
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"epoch": 1.492063492063492,
|
1988 |
+
"grad_norm": 0.0,
|
1989 |
+
"learning_rate": 1.354881259053846e-05,
|
1990 |
+
"loss": 0.0,
|
1991 |
+
"step": 188
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 1.5,
|
1995 |
+
"grad_norm": 0.0,
|
1996 |
+
"learning_rate": 1.3335928124456112e-05,
|
1997 |
+
"loss": 0.0,
|
1998 |
+
"step": 189
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 1.507936507936508,
|
2002 |
+
"grad_norm": 0.0,
|
2003 |
+
"learning_rate": 1.3125000000000002e-05,
|
2004 |
+
"loss": 0.0,
|
2005 |
+
"step": 190
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 1.507936507936508,
|
2009 |
+
"eval_loss": 0.09976605325937271,
|
2010 |
+
"eval_runtime": 113.3826,
|
2011 |
+
"eval_samples_per_second": 26.918,
|
2012 |
+
"eval_steps_per_second": 0.212,
|
2013 |
+
"eval_sts-test_pearson_cosine": 0.874263623361507,
|
2014 |
+
"eval_sts-test_pearson_dot": 0.8524433275217005,
|
2015 |
+
"eval_sts-test_pearson_euclidean": 0.9072030414821628,
|
2016 |
+
"eval_sts-test_pearson_manhattan": 0.9077920475707721,
|
2017 |
+
"eval_sts-test_pearson_max": 0.9077920475707721,
|
2018 |
+
"eval_sts-test_spearman_cosine": 0.9022537200754974,
|
2019 |
+
"eval_sts-test_spearman_dot": 0.8545940742062709,
|
2020 |
+
"eval_sts-test_spearman_euclidean": 0.9046282667561865,
|
2021 |
+
"eval_sts-test_spearman_manhattan": 0.9047952337124378,
|
2022 |
+
"eval_sts-test_spearman_max": 0.9047952337124378,
|
2023 |
+
"step": 190
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 1.5158730158730158,
|
2027 |
+
"grad_norm": 0.0,
|
2028 |
+
"learning_rate": 1.2916086494631928e-05,
|
2029 |
+
"loss": 0.0,
|
2030 |
+
"step": 191
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 1.5238095238095237,
|
2034 |
+
"grad_norm": 0.0,
|
2035 |
+
"learning_rate": 1.270924532919336e-05,
|
2036 |
+
"loss": 0.0,
|
2037 |
+
"step": 192
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 1.5317460317460319,
|
2041 |
+
"grad_norm": 0.0,
|
2042 |
+
"learning_rate": 1.2504533651957674e-05,
|
2043 |
+
"loss": 0.0,
|
2044 |
+
"step": 193
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 1.5396825396825398,
|
2048 |
+
"grad_norm": 0.0,
|
2049 |
+
"learning_rate": 1.2302008022840655e-05,
|
2050 |
+
"loss": 0.0,
|
2051 |
+
"step": 194
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 1.5476190476190477,
|
2055 |
+
"grad_norm": 0.0,
|
2056 |
+
"learning_rate": 1.2101724397773472e-05,
|
2057 |
+
"loss": 0.0,
|
2058 |
+
"step": 195
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 1.5476190476190477,
|
2062 |
+
"eval_loss": 0.0997559204697609,
|
2063 |
+
"eval_runtime": 113.435,
|
2064 |
+
"eval_samples_per_second": 26.905,
|
2065 |
+
"eval_steps_per_second": 0.212,
|
2066 |
+
"eval_sts-test_pearson_cosine": 0.8742609202554884,
|
2067 |
+
"eval_sts-test_pearson_dot": 0.8524475712791351,
|
2068 |
+
"eval_sts-test_pearson_euclidean": 0.9071965067276254,
|
2069 |
+
"eval_sts-test_pearson_manhattan": 0.9077883011236819,
|
2070 |
+
"eval_sts-test_pearson_max": 0.9077883011236819,
|
2071 |
+
"eval_sts-test_spearman_cosine": 0.9022419952450129,
|
2072 |
+
"eval_sts-test_spearman_dot": 0.8546614696059263,
|
2073 |
+
"eval_sts-test_spearman_euclidean": 0.9045798011400996,
|
2074 |
+
"eval_sts-test_spearman_manhattan": 0.9047780939793248,
|
2075 |
+
"eval_sts-test_spearman_max": 0.9047780939793248,
|
2076 |
+
"step": 195
|
2077 |
+
},
|
2078 |
+
{
|
2079 |
+
"epoch": 1.5555555555555556,
|
2080 |
+
"grad_norm": 0.0,
|
2081 |
+
"learning_rate": 1.1903738113242652e-05,
|
2082 |
+
"loss": 0.0,
|
2083 |
+
"step": 196
|
2084 |
+
},
|
2085 |
+
{
|
2086 |
+
"epoch": 1.5634920634920635,
|
2087 |
+
"grad_norm": 0.0,
|
2088 |
+
"learning_rate": 1.1708103871001038e-05,
|
2089 |
+
"loss": 0.0,
|
2090 |
+
"step": 197
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 1.5714285714285714,
|
2094 |
+
"grad_norm": 0.0,
|
2095 |
+
"learning_rate": 1.1514875722954288e-05,
|
2096 |
+
"loss": 0.0,
|
2097 |
+
"step": 198
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 1.5793650793650793,
|
2101 |
+
"grad_norm": 0.0,
|
2102 |
+
"learning_rate": 1.1324107056226802e-05,
|
2103 |
+
"loss": 0.0,
|
2104 |
+
"step": 199
|
2105 |
+
},
|
2106 |
+
{
|
2107 |
+
"epoch": 1.5873015873015872,
|
2108 |
+
"grad_norm": 0.0,
|
2109 |
+
"learning_rate": 1.1135850578411364e-05,
|
2110 |
+
"loss": 0.0,
|
2111 |
+
"step": 200
|
2112 |
+
},
|
2113 |
+
{
|
2114 |
+
"epoch": 1.5873015873015872,
|
2115 |
+
"eval_loss": 0.09975530952215195,
|
2116 |
+
"eval_runtime": 113.4016,
|
2117 |
+
"eval_samples_per_second": 26.913,
|
2118 |
+
"eval_steps_per_second": 0.212,
|
2119 |
+
"eval_sts-test_pearson_cosine": 0.8742691362759177,
|
2120 |
+
"eval_sts-test_pearson_dot": 0.8524477872044587,
|
2121 |
+
"eval_sts-test_pearson_euclidean": 0.9072012894574042,
|
2122 |
+
"eval_sts-test_pearson_manhattan": 0.9077892471366175,
|
2123 |
+
"eval_sts-test_pearson_max": 0.9077892471366175,
|
2124 |
+
"eval_sts-test_spearman_cosine": 0.9022147864780868,
|
2125 |
+
"eval_sts-test_spearman_dot": 0.8547034910403729,
|
2126 |
+
"eval_sts-test_spearman_euclidean": 0.904585216042728,
|
2127 |
+
"eval_sts-test_spearman_manhattan": 0.9047465890913055,
|
2128 |
+
"eval_sts-test_spearman_max": 0.9047465890913055,
|
2129 |
+
"step": 200
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 1.5952380952380953,
|
2133 |
+
"grad_norm": 0.0,
|
2134 |
+
"learning_rate": 1.0950158303006534e-05,
|
2135 |
+
"loss": 0.0,
|
2136 |
+
"step": 201
|
2137 |
+
},
|
2138 |
+
{
|
2139 |
+
"epoch": 1.6031746031746033,
|
2140 |
+
"grad_norm": 0.0,
|
2141 |
+
"learning_rate": 1.0767081535045804e-05,
|
2142 |
+
"loss": 0.0,
|
2143 |
+
"step": 202
|
2144 |
+
},
|
2145 |
+
{
|
2146 |
+
"epoch": 1.6111111111111112,
|
2147 |
+
"grad_norm": 0.0,
|
2148 |
+
"learning_rate": 1.0586670856922482e-05,
|
2149 |
+
"loss": 0.0,
|
2150 |
+
"step": 203
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 1.619047619047619,
|
2154 |
+
"grad_norm": 0.0,
|
2155 |
+
"learning_rate": 1.0408976114414303e-05,
|
2156 |
+
"loss": 0.0,
|
2157 |
+
"step": 204
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 1.626984126984127,
|
2161 |
+
"grad_norm": 0.0,
|
2162 |
+
"learning_rate": 1.0234046402911438e-05,
|
2163 |
+
"loss": 0.0,
|
2164 |
+
"step": 205
|
2165 |
+
},
|
2166 |
+
{
|
2167 |
+
"epoch": 1.626984126984127,
|
2168 |
+
"eval_loss": 0.09976042062044144,
|
2169 |
+
"eval_runtime": 113.351,
|
2170 |
+
"eval_samples_per_second": 26.925,
|
2171 |
+
"eval_steps_per_second": 0.212,
|
2172 |
+
"eval_sts-test_pearson_cosine": 0.8742827064396023,
|
2173 |
+
"eval_sts-test_pearson_dot": 0.8524658058205945,
|
2174 |
+
"eval_sts-test_pearson_euclidean": 0.9072144921384091,
|
2175 |
+
"eval_sts-test_pearson_manhattan": 0.9078074095863298,
|
2176 |
+
"eval_sts-test_pearson_max": 0.9078074095863298,
|
2177 |
+
"eval_sts-test_spearman_cosine": 0.9022449488282648,
|
2178 |
+
"eval_sts-test_spearman_dot": 0.8547093534556153,
|
2179 |
+
"eval_sts-test_spearman_euclidean": 0.9046033403035915,
|
2180 |
+
"eval_sts-test_spearman_manhattan": 0.9048224424793636,
|
2181 |
+
"eval_sts-test_spearman_max": 0.9048224424793636,
|
2182 |
+
"step": 205
|
2183 |
+
},
|
2184 |
+
{
|
2185 |
+
"epoch": 1.6349206349206349,
|
2186 |
+
"grad_norm": 0.0,
|
2187 |
+
"learning_rate": 1.0061930053851954e-05,
|
2188 |
+
"loss": 0.0,
|
2189 |
+
"step": 206
|
2190 |
+
},
|
2191 |
+
{
|
2192 |
+
"epoch": 1.6428571428571428,
|
2193 |
+
"grad_norm": 0.0,
|
2194 |
+
"learning_rate": 9.892674621368259e-06,
|
2195 |
+
"loss": 0.0,
|
2196 |
+
"step": 207
|
2197 |
+
},
|
2198 |
+
{
|
2199 |
+
"epoch": 1.6507936507936507,
|
2200 |
+
"grad_norm": 0.0,
|
2201 |
+
"learning_rate": 9.72632686914837e-06,
|
2202 |
+
"loss": 0.0,
|
2203 |
+
"step": 208
|
2204 |
+
}
|
2205 |
+
],
|
2206 |
+
"logging_steps": 1,
|
2207 |
+
"max_steps": 252,
|
2208 |
+
"num_input_tokens_seen": 0,
|
2209 |
+
"num_train_epochs": 2,
|
2210 |
+
"save_steps": 26,
|
2211 |
+
"stateful_callbacks": {
|
2212 |
+
"TrainerControl": {
|
2213 |
+
"args": {
|
2214 |
+
"should_epoch_stop": false,
|
2215 |
+
"should_evaluate": false,
|
2216 |
+
"should_log": false,
|
2217 |
+
"should_save": true,
|
2218 |
+
"should_training_stop": false
|
2219 |
+
},
|
2220 |
+
"attributes": {}
|
2221 |
+
}
|
2222 |
+
},
|
2223 |
+
"total_flos": 0.0,
|
2224 |
+
"train_batch_size": 960,
|
2225 |
+
"trial_name": null,
|
2226 |
+
"trial_params": null
|
2227 |
+
}
|
checkpoint-208/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee09b1db931d465aec016b4dfd4ea584c8c7e7c02278d7fcac63d526c4d30767
|
3 |
+
size 5752
|