File size: 194,168 Bytes
8c21e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 |
---
base_model: bobox/DeBERTa-small-ST-v1-test
datasets:
- jinaai/negation-dataset-v2
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:305010
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: how long should a prelude be before a funeral
sentences:
- 'Organic 101: What the USDA Organic Label Means. This is the third installment
of the Organic 101 series that explores different aspects of the USDA organic
regulations. Organic certification requires that farmers and handlers document
their processes and get inspected every year.'
- 'The Quadrille. The Quadrille is a historic dance performed by four couples in
a rectangular formation, and a precursor to traditional square dancing as well
as a style of music. The Quadrille or Quadrille de Contre Danse was originally
a card game for four people but the name was given to this dance about 1740.The
dance probably derived from the Cotillions of the time. The Quadrille was a very
lively dance, unlike the Minuet.Wikipedia states thus: The term quadrille came
to exist in the 17th century, within military parades, in which four horsemen
and their mounts performed special square-shaped formations or figures.he Quadrille
or Quadrille de Contre Danse was originally a card game for four people but the
name was given to this dance about 1740. The dance probably derived from the Cotillions
of the time. The Quadrille was a very lively dance, unlike the Minuet.'
- 1 Arrive early. 2 You should always endeavor to arrive at the church or funeral
home at between 15 to 20 minutes before the service is scheduled to begin. 3 Take
your seat quietly, and reverently await the arrival of the family.
- source_sentence: More than 169 countries had reported over 212,000 COVID-19 cases
before March 19 , 2020 .
sentences:
- As of 23 March , more than 341,000 cases of COVID-19 have been reported in 192
countries and territories , resulting in more than 14,700 deaths and 99,000 recoveries
.
- As of 21 March , more than 278,000 cases of COVID-19 have been reported in over
186 countries and territories , resulting in more than 11,500 deaths and 92,000
recoveries. virus seems to mostly spread between people via respiratory droplets
.
- As of 18 March 2020 , more than 212,000 cases of COVID-19 have been reported in
at least 170 countries and territories , with major outbreaks in China , Iran
and the European Union .
- source_sentence: 'The book is about a fictional obsessed fan hunting down King,
the author of Misery, The Shining and Carrie.
But Patterson said he had learned in the run-up to the planned November publication
that fans had "disrupted" King''s home in real life.
King has had nothing to do with the novel, Patterson has stressed.
Before deciding to scrap the book, he wrote on his website: "I''m a Stephen King
fan, but Stephen King did not participate in the making of this novel, nor is
he affiliated with it in any way. I hope he likes it."
However, in a statement released by his publisher on Thursday, Patterson - who
co-wrote the book with Derek Nikitas - said: "My book is a positive portrayal
of a fictional character, and, spoiler alert, the main character is not actually
murdered.
"Nevertheless, I do not want to cause Stephen King or his family any discomfort.
Out of respect for them, I have decided not to publish The Murder of Stephen King."
King declined to comment on the book when asked about it last week by the Associated
Press.
Patterson, ranked as the world''s highest-earning author for the last three years,
told the news agency the pair do not know each other.
In 2009, King called Patterson a successful yet "terrible" writer. Crime writer
Patterson described that remark as "hyperbole" when speaking to AP.
Patterson is releasing the novel Taking the Titanic instead of the planned King
book.
Follow us on Twitter @BBCNewsEnts, on Instagram, or if you have a story suggestion
email [email protected].'
sentences:
- Author James Patterson has scrapped the publication of a new novel titled The
Murder of Stephen King because he does not want to cause "discomfort" to King.
- Portsmouth manager Paul Cook says he will "move heaven and earth" to get the club
promoted from League Two.
- Swansea City have reached a settlement with former manager Michael Laudrup over
his sacking.
- source_sentence: Electrical energy can be converted into kinetic energy and heat
energy by an electric motor.
sentences:
- Solution is the term for a homogeneous mixture of two or more substances.
- Solution is the term for a homogeneous mixture of two or more substances.
- Electric motors transform electrical energy into kinetic energy.
- source_sentence: where did the ice storm of 1998 happen
sentences:
- January 1998 North American ice storm The North American Ice Storm of 1998 (also
known as Great Ice Storm of 1998) was a massive combination of five smaller successive
ice storms in January 1998 that struck a relatively narrow swath of land from
eastern Ontario to southern Quebec, New Brunswick and Nova Scotia in Canada, and
bordering areas from northern New York to central Maine in the United States.
It caused massive damage to trees and electrical infrastructure all over the area,
leading to widespread long-term power outages. Millions were left in the dark
for periods varying from days to several weeks, and in some instances, months.
It led to 35 fatalities, a shutdown of activities in large cities like Montreal
and Ottawa, and an unprecedented effort in reconstruction of the power grid. The
ice storm led to the largest deployment of Canadian military personnel since the
Korean War, with over 16,000 Canadian Forces personnel deployed, 12,000 in Quebec
and 4,000 in Ontario at the height of the crisis.[1][2]:16
- Tom and Jerry Tom and Jerry is an American animated series of short films created
in 1940, by William Hanna and Joseph Barbera. It centers on a rivalry between
its two title characters, Tom and Jerry, and many recurring characters, based
around slapstick comedy.
- Nimbostratus cloud Nimbostratus is a stratiform genus formerly classified as "Family
C" low-level, but now considered by the World Meteorological Organization (WMO)
to be a middle- or multi-level stratus type.[1]. Although it is usually a low-based
cloud, it actually forms most commonly in the middle level of the troposphere
and then spreads vertically into the low and high levels. This change in classification
would once have made it a "Family D" cloud, but this style of nomenclature was
discontinued by the WMO in 1956. Nimbostratus usually produces precipitation over
a wide area. Nimbo- is from the Latin word nimbus, which denotes precipitation.
It has a diffuse cloud base generally found anywhere from near surface in the
low levels to about 3,000 m (9,800 ft) in the middle level of the troposphere.
Although usually dark at its base, it often appears illuminated from within to
a surface observer.[2] Nimbostratus usually has a thickness of about 2000 m. Though
found worldwide, nimbostratus occurs more commonly in the middle latitudes.[3]
It is coded CM2 on the SYNOP report.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8681028367252808
name: Pearson Cosine
- type: spearman_cosine
value: 0.8960442588011338
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8922209656727235
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8895341585527426
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8913506886125709
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8895474944286376
name: Spearman Euclidean
- type: pearson_dot
value: 0.8578643818026934
name: Pearson Dot
- type: spearman_dot
value: 0.8606696844578128
name: Spearman Dot
- type: pearson_max
value: 0.8922209656727235
name: Pearson Max
- type: spearman_max
value: 0.8960442588011338
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: VitaminC
type: VitaminC
metrics:
- type: cosine_accuracy
value: 0.560546875
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8192525506019592
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6675531914893617
name: Cosine F1
- type: cosine_f1_threshold
value: 0.30620089173316956
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.500998003992016
name: Cosine Precision
- type: cosine_recall
value: 1.0
name: Cosine Recall
- type: cosine_ap
value: 0.5485465805560719
name: Cosine Ap
- type: dot_accuracy
value: 0.5546875
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 308.60137939453125
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6657824933687002
name: Dot F1
- type: dot_f1_threshold
value: 97.275634765625
name: Dot F1 Threshold
- type: dot_precision
value: 0.4990059642147117
name: Dot Precision
- type: dot_recall
value: 1.0
name: Dot Recall
- type: dot_ap
value: 0.5375184580780159
name: Dot Ap
- type: manhattan_accuracy
value: 0.552734375
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 313.34185791015625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6666666666666666
name: Manhattan F1
- type: manhattan_f1_threshold
value: 495.06231689453125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5
name: Manhattan Precision
- type: manhattan_recall
value: 1.0
name: Manhattan Recall
- type: manhattan_ap
value: 0.5475158315491966
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.552734375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 11.976862907409668
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6666666666666666
name: Euclidean F1
- type: euclidean_f1_threshold
value: 23.21343994140625
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5
name: Euclidean Precision
- type: euclidean_recall
value: 1.0
name: Euclidean Recall
- type: euclidean_ap
value: 0.5494925067012235
name: Euclidean Ap
- type: max_accuracy
value: 0.560546875
name: Max Accuracy
- type: max_accuracy_threshold
value: 313.34185791015625
name: Max Accuracy Threshold
- type: max_f1
value: 0.6675531914893617
name: Max F1
- type: max_f1_threshold
value: 495.06231689453125
name: Max F1 Threshold
- type: max_precision
value: 0.500998003992016
name: Max Precision
- type: max_recall
value: 1.0
name: Max Recall
- type: max_ap
value: 0.5494925067012235
name: Max Ap
---
# SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-small-ST-v1-test](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test) on the [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) and [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bobox/DeBERTa-small-ST-v1-test](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test) <!-- at revision 55585e7a71c7a0177a0a8a60c64ab08c0a5f84e3 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- xsum-pairs
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
- openbookqa_pairs
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-test-step2-checkpoints-tmp")
# Run inference
sentences = [
'where did the ice storm of 1998 happen',
'January 1998 North American ice storm The North American Ice Storm of 1998 (also known as Great Ice Storm of 1998) was a massive combination of five smaller successive ice storms in January 1998 that struck a relatively narrow swath of land from eastern Ontario to southern Quebec, New Brunswick and Nova Scotia in Canada, and bordering areas from northern New York to central Maine in the United States. It caused massive damage to trees and electrical infrastructure all over the area, leading to widespread long-term power outages. Millions were left in the dark for periods varying from days to several weeks, and in some instances, months. It led to 35 fatalities, a shutdown of activities in large cities like Montreal and Ottawa, and an unprecedented effort in reconstruction of the power grid. The ice storm led to the largest deployment of Canadian military personnel since the Korean War, with over 16,000 Canadian Forces personnel deployed, 12,000 in Quebec and 4,000 in Ontario at the height of the crisis.[1][2]:16',
'Nimbostratus cloud Nimbostratus is a stratiform genus formerly classified as "Family C" low-level, but now considered by the World Meteorological Organization (WMO) to be a middle- or multi-level stratus type.[1]. Although it is usually a low-based cloud, it actually forms most commonly in the middle level of the troposphere and then spreads vertically into the low and high levels. This change in classification would once have made it a "Family D" cloud, but this style of nomenclature was discontinued by the WMO in 1956. Nimbostratus usually produces precipitation over a wide area. Nimbo- is from the Latin word nimbus, which denotes precipitation. It has a diffuse cloud base generally found anywhere from near surface in the low levels to about 3,000\xa0m (9,800\xa0ft) in the middle level of the troposphere. Although usually dark at its base, it often appears illuminated from within to a surface observer.[2] Nimbostratus usually has a thickness of about 2000 m. Though found worldwide, nimbostratus occurs more commonly in the middle latitudes.[3] It is coded CM2 on the SYNOP report.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.8681 |
| **spearman_cosine** | **0.896** |
| pearson_manhattan | 0.8922 |
| spearman_manhattan | 0.8895 |
| pearson_euclidean | 0.8914 |
| spearman_euclidean | 0.8895 |
| pearson_dot | 0.8579 |
| spearman_dot | 0.8607 |
| pearson_max | 0.8922 |
| spearman_max | 0.896 |
#### Binary Classification
* Dataset: `VitaminC`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.5605 |
| cosine_accuracy_threshold | 0.8193 |
| cosine_f1 | 0.6676 |
| cosine_f1_threshold | 0.3062 |
| cosine_precision | 0.501 |
| cosine_recall | 1.0 |
| cosine_ap | 0.5485 |
| dot_accuracy | 0.5547 |
| dot_accuracy_threshold | 308.6014 |
| dot_f1 | 0.6658 |
| dot_f1_threshold | 97.2756 |
| dot_precision | 0.499 |
| dot_recall | 1.0 |
| dot_ap | 0.5375 |
| manhattan_accuracy | 0.5527 |
| manhattan_accuracy_threshold | 313.3419 |
| manhattan_f1 | 0.6667 |
| manhattan_f1_threshold | 495.0623 |
| manhattan_precision | 0.5 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.5475 |
| euclidean_accuracy | 0.5527 |
| euclidean_accuracy_threshold | 11.9769 |
| euclidean_f1 | 0.6667 |
| euclidean_f1_threshold | 23.2134 |
| euclidean_precision | 0.5 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.5495 |
| max_accuracy | 0.5605 |
| max_accuracy_threshold | 313.3419 |
| max_f1 | 0.6676 |
| max_f1_threshold | 495.0623 |
| max_precision | 0.501 |
| max_recall | 1.0 |
| **max_ap** | **0.5495** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### negation-triplets
* Dataset: [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
* Size: 39,000 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 22.25 tokens</li><li>max: 372 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.64 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.02 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------------------------------------------------------------|
| <code>A young man in white is midair on his bicycle performing a trick.</code> | <code>A young man in white is midair</code> | <code>A young man in white is not midair</code> |
| <code>A bicycle has a red umbrella attached to it.</code> | <code>A parked bicycle with a red umbrella attached to it.</code> | <code>A parked bicycle without a red umbrella attached to it.</code> |
| <code>Tanzania started rationing electricity after a technical problem shut down machinery at the Songas gas-fired power plant in Dar es Salaam, the state-run power utility said.</code> | <code>Tanzania rations electricity after technical problem at plant</code> | <code>Tanzania boosts electricity after upgrade at plant</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 36,000 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.47 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 36.01 tokens</li><li>max: 164 tokens</li></ul> |
* Samples:
| claim | evidence |
|:---------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Candice Crawford participated in 2 beauty pageants .</code> | <code>He has a younger sister , former Miss Missouri USA winner and [ [ Miss USA ] contestant Candice Crawford .</code> |
| <code>Rio Ferdinand plays for Queens Park Rangers on a free transfer .</code> | <code>A centre-back , he is currently plays for Queens Park Rangers on a Free Transfer after leaving Manchester United following twelve years at the club .</code> |
| <code>Matt Damon is credited in Deadpool 2 as Dickie Grrenleaf , in reference to Jude Law 's character from The Talented Mr. Ripley .</code> | <code>This was inspired by a real manifesto written by Reese , which the writers wanted to be discussed in the film by a certain `` calibre '' of actor : the characters are portrayed by Alan Tudyk and a disguised Matt Damon , with the latter credited as `` Dickie Greenleaf '' ( a reference to Jude Law 's character from the 1999 film The Talented Mr. Ripley in which Damon stars ) .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 14,237 training samples
* Columns: <code>sentence2</code> and <code>sentence1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.9 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.07 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence2 | sentence1 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| <code>How ice cores are important to the study of geologic history is best described as they contain evidence showing changes in the atmospheric composition over time.</code> | <code>Which best describes how ice cores are important to the study of geologic history?</code> |
| <code>The lens of the eye is a(n) convex shape.</code> | <code>What shape is the lens of the eye?</code> |
| <code>Most ferns produce the same type of spores and are therefore called homosporous.</code> | <code>Most ferns produce the same type of spores and are therefore called what?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 8,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 24.17 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.66 tokens</li><li>max: 37 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
| <code>The rate of decay is conveniently expressed in terms of an isotope's half-life, or the time it takes for one-half of a particular radioactive isotope in a sample to decay.</code> | <code>The term half-life decribes the amount of time required for half of the original material to decay in an isotope.</code> |
| <code>This rock, called magma, furnishes the heat for the park's geysers and hot springs.</code> | <code>The water in some springs are hot because they're heated by hot magma.</code> |
| <code>Carbon, with four valence electrons, forms covalent bonds to four neighboring carbon atoms arranged toward the corners of a tetrahedron, as shown in the figure below.</code> | <code>Four valence electrons can be found in a carbon atom.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 36,000 training samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
| | document | summary |
|:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 56 tokens</li><li>mean: 219.62 tokens</li><li>max: 371 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 25.36 tokens</li><li>max: 56 tokens</li></ul> |
* Samples:
| document | summary |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Christopher Paul O'Kane, aged 42, from Woodland Avenue, was due to stand trial on Wednesday on 17 Provisional IRA related terrorist offences, including the attempted murder of a police officer more than 20 years ago.<br>However, O'Kane replied "guilty'' to five of the five terror charges when they were put to him in court.<br>These were: assisting an offender in relation to the murder of Constable Michael Ferguson in January 1994, and firing a mortar bomb at a police vehicle in Fanad Drive in October 1993. Planting a bomb at the railway line at Ebrington Barracks in December 1993; placing a bomb at the home of a senior police officer at Prehen in 1994, and planting a bomb at Forge George army base in Derry.<br>Prosecution lawyer Robin Steer asked that the remaining 12 charges "be left on the books" and not to be proceeded without the leave of the Court or the Court of Appeal.<br>O'Kane will be sentenced on December 16.</code> | <code>A Londonderry man has pleaded guilty at Belfast Crown Court to five terrorist offences relating to bomb attacks against security force members.</code> |
| <code>Chase, 31, has made five appearances for the Vikings since the initial temporary move, having been told he was not part of Castleford's 2018 plans.<br>In addition, Widnes have signed hooker Danny Walker to a new four-year contract after his first-grade breakthrough this season.<br>Head coach Denis Betts said: "The deals represent a real statement of intent."<br>New Zealand-born Chase was the 2011 Man of Steel, has played for the Tigers, Salford, Leigh and now Widnes, as well as representing England at senior level.<br>In contrast, Walker, 18, is at the opposite end of his career, with just six professional appearances to his name.<br>"Rangi has made a big impact since his arrival, contributing well both on and off the field," Betts added.<br>"He has exceptional abilities and, as an international standard half-back, adds real quality to the team.<br>"Danny is one of the most promising young players in the Super League. His commitment to a four-year contract shows his belief in what we are building at the Vikings."</code> | <code>Widnes have signed half-back Rangi Chase from Castleford on a permanent deal after a successful loan spell.</code> |
| <code>The characters include Nebula, a blue skinned alien played by Scottish actress Karen Gillan.<br>There was a backlash on social media to merchandise released for the first Guardians film in 2014.<br>Gamora, who is played by Zoe Saldana, did not appear on a t-shirt while her fellow, male leads did.<br>The row saw the hashtag #WheresGamora appear on Twitter.<br>Fans of the film also complained that other merchandise of Gamora, and Gillan's Nebula, who also appeared in the first movie, was harder to find than that featuring male characters.<br>In a post on Facebook on Sunday, the films' director James Gunn confirmed that there was a commitment to raising the profile of the female characters.<br>He wrote: "Guardians of the Galaxy Vol. 2 will have Mantis, Nebula, Gamora and Elizabeth Debicki's character as part of the fray, and we're committed to making sure they're included in more toys and merch than the last go round."<br>Marvel and Disney are involved in making the movies and commissioning the merchandising.<br>Guardians, which topped the US box office in 2014 with ticket sales of $332.8m (£203.9m), also stars Chris Pratt and Dave Bautista and the voices of Vin Diesel and Bradley Cooper.<br>Earlier this year, Gunn revealed that Gillan, from Inverness, has a bigger role in the new movie, which is to be released next year.</code> | <code>Female stars of the new Guardians of the Galaxy movie will feature more prominently in its merchandising, the film's makers have said.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 11,095 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.94 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 80.74 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What branch of science is defined as the study of matter?</code> | <code>1.8 End-of-Chapter Material Chapter Summary To ensure that you understand the material in this chapter, you should review the meanings of the bold terms in the following summary and ask yourself how they relate to the topics in the chapter. Chemistry is the study of matter, which is anything that has mass and takes up space. Chemistry is one branch of science, which is the study of the natural universe. Like all branches of science, chemistry relies on the scientific method, which is a process of Saylor URL: http://www. saylor. org/books.</code> |
| <code>The net effect of aldosterone is to conserve and increase water levels in the plasma by reducing the excretion of what element, and thus water?</code> | <code>Aldosterone Recall that aldosterone increases the excretion of potassium and the reabsorption of sodium in the distal tubule. Aldosterone is released if blood levels of potassium increase, if blood levels of sodium severely decrease, or if blood pressure decreases. Its net effect is to conserve and increase water levels in the plasma by reducing the excretion of sodium, and thus water, from the kidneys. In a negative feedback loop, increased osmolality of the ECF (which follows aldosterone-stimulated sodium absorption) inhibits the release of the hormone (Figure 26.13).</code> |
| <code>What do all chemical sections need to get started?</code> | <code>The bonds between the atoms need to be rearranged. That is the definition of a chemical reaction. And all chemical sections need energy to get started.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 7,727 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.21 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 34.56 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>vertebrates have a complete digestive system and a what?</code> | <code>Chordates have a complete digestive system and a closed circulatory system.. Vertebrates are members of of a larger group, the chordates .. Vertebrates have a complete digestive system and a closed circulatory system</code> |
| <code>What is plasma?</code> | <code>plasma is formed by electrons separating from atoms in stars. Stars shine because they are hot .. plasma is hot</code> |
| <code>Tungsten filaments sealed in a glass bulb are used for what in the dark?</code> | <code>a light bulb is used for seeing in the dark. Incandescent light bulbs use a tungsten filament sealed inside a glass bulb.. Tungsten filament sealed in a glass bulb is used for seeing in the dark.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 4,522 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.8 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.5 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| <code>What is animal competition?</code> | <code>if two animals eat the same prey then those animals compete for that pey</code> |
| <code>If you wanted to make a metal bed frame, where would you start?</code> | <code>alloys are made of two or more metals</code> |
| <code>Places lacking warmth have few what</code> | <code>cold environments contain few organisms</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 33,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.45 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 76.9 tokens</li><li>max: 215 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the salary of hvac service mana</code> | <code>According to the Bureau of Labor Statistics, the median salary for HVAC technician in 2015 is $45,110 per year and approximately $21,69 per hour. Salary variations according to various factors Depending on technicianâs ...</code> |
| <code>caffeine effects on nervous system</code> | <code>Caffeine is a central nervous system stimulant that reduces fatigue and drowsiness. At normal doses, caffeine has variable effects on learning and memory, but it generally improves reaction time, wakefulness, concentration, and motor coordination.</code> |
| <code>cost to flush transmission</code> | <code>1 Flushing a transmission with a pressurized machine can cost $125-$300 or more, and may include pushing a special cleaning compound through the system. 2 The power flush process typically replaces all of the transmission fluid, and can require 12-22 or more quarts.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 33,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.82 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 135.44 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>is watcher in the woods a disney movie</code> | <code>The Watcher in the Woods Filmed at Pinewood Studios and the surrounding areas in Buckinghamshire, England, The Watcher in the Woods was one of several live-action films produced by Walt Disney Productions in the 1980s, when the studio was targeting young adult audiences. The film suffered from various production problems and was pulled from theatres after its initial release in 1980. It was re-released in 1981 after being re-edited and a revised ending added.</code> |
| <code>how much money did the ice bucket challenge raise for als</code> | <code>Ice Bucket Challenge Within weeks of the challenge going viral, The New York Times reported that the ALS Association had received $41.8 million in donations from more than 739,000 new donors from July 29 until August 21, more than double the $19.4 million the association received during the year that ended January 31, 2013.[89] On August 29, the ALS Association announced that their total donations since July 29 had exceeded $100 million.[90] The ALS Association is just one of several ALS-related charities that have benefited from the challenge:</code> |
| <code>last episode of one foot in the grave</code> | <code>Things Aren't Simple Any More "Things Aren't Simple Any More" is the final episode of the British television sitcom One Foot in the Grave. It was written by David Renwick and stars Richard Wilson as Victor Meldrew, Annette Crosbie as his wife Margaret, and features guest appearances by Hannah Gordon and Paul Merton. The episode depicts the death of the series' protagonist, Victor Meldrew, in a hit-and-run road accident, and his wife's efforts to deal with the driver who killed him. Renwick had been struggling to conceive and write new stories for the series and decided to kill off the character. The episode was filmed at Shawford, Hampshire, and at BBC Television Centre in London.[3]</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 30,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 18.69 tokens</li><li>max: 97 tokens</li></ul> | <ul><li>min: 36 tokens</li><li>mean: 458.53 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Which Channel Four game show was remade in the USA under the title Junkyard Wars?</code> | <code>Junkyard Wars Needs A Few Good Contestants - Slashdot Slashdot Follow Slashdot stories on Twitter Check out the new SourceForge HTML5 internet speed test! No Flash necessary and runs on all devices. × 1380727 story on Saturday January 27, 2001 @09:07AM from the gentlemen-start-your-torches dept. Andy B writes: "At long last, we have got an address for aspiring contestants to send their Junkyard Wars applications to (Slashdot slightly jumped the gun last autumn). Hurry to get you applications in, as the deadline for applications is Fri 16th Feb." ← You may like to read: → Yes, but its license states that it must act as a public service broadcaster: This [itc.org.uk] is taken from the ITC [itc.org.uk] website: The main points in the new licence are: redefinition of the remit in relation to all channels, not just ITV, and further commitment to innovation and experiment; a revised and strengthened statement on education; a commitment to provide at least three hours on average per week of multicultural programmes, and also to schedule at least some of these in peak time; a major commitment to the UK film industry, giving some preference to innovative and risky subjects and treatments; a new commitment to programmes for and about people with disabilities; increased requirement of 60 per cent of programmes specially commissioned for the Channel by 1999; a new commitment for production outside the London region, including a minimum requirement of 30 per cent by 2002; new maxima for repeats; a new commitment and new minimum requirement for spending on training; a new requirement for diversity in the peak-time schedule, including news, current affairs, educational, religious and multicultural programmes; revised commitments to subtitling and other provisions for those with hearing and sight impairments. I think it's not fully privatised either - doesn't the government still own a proportion of it and fund it a bit too? by MrP- ( 45616 ) writes: if you watched the last episode of junkyard wars (the rocket one), cathy said you can go to the site and submit an idea for them to build, i forget what site she said, probably either the junkyard wars site, or tlc.com, either way you should submit that, that would be cool to see... but only thing is theyd probably want to fight during the show at the end, unless they go tape the fight at battlebots, show the match during junkyard wars, then battle bots later, like they did with jay lenos chinkilla, they aired the match early on the tonight show then again on battle bots... but i dont know since battle bots is comedy centrals, maybe theyd have to do robot wars, but they dont air robot wars enough in america :( by Uberminky ( 122220 ) writes: The new Junkyard Wars episodes stink. I mean yeah, it's still a cool show, but it's just not what it used to be. I miss the silly Brits, they cracked me up. But yunno... maybe it's just me, but I swear the type of things they do on the show have changed since they got the new host and stuff. I mean.. one of the last episodes the Scrapheap Challenge did was drag racing. And what's the first Junkyard Wars thing? Drag racing. They also did all-terrain vehicles, which Scrapheap Challenge did.. and.. just tons of them. They're all the same sorts of things. Maybe it's just my perception, and the fact that I miss the old show, but it really seems like they've dumbed it down to suit us redneck Americans or something. I dunno... I just wish they'd give me my Scrapheap Challenge... Looking forward to next week's episode.... by ScuzzMonkey ( 208981 ) writes: I haven't seen all that many episodes, but of those I have seen, this seems to be the theme. The team that comes up with the more brilliant, elegant design has it crap out on them almost immediately, because, after all, it's made out of junk. The crowd that bangs together some brute-force job powers through and wins it. Apparently, it doesn't pay to get too creative. Makes it more fun to watch, though. by Uberminky ( 122220 ) writes: that would be so lame. On the one hand, we have people turning scrap met</code> |
| <code>Which 2010 film stars Mila Kunis as Lily and Natalie Portman as Nina Sayers?</code> | <code>Black Swan (2010) - IMDb IMDb There was an error trying to load your rating for this title. Some parts of this page won't work property. Please reload or try later. X Beta I'm Watching This! Keep track of everything you watch; tell your friends. Error From $2.99 (SD) on Amazon Video ON DISC A committed dancer wins the lead role in a production of Tchaikovsky's "Swan Lake" only to find herself struggling to maintain her sanity. Director: a list of 34 titles created 25 Dec 2012 a list of 27 images created 09 Mar 2013 a list of 43 titles created 10 Nov 2013 a list of 26 titles created 05 Nov 2014 a list of 48 titles created 14 Mar 2015 Search for " Black Swan " on Amazon.com Connect with IMDb Want to share IMDb's rating on your own site? Use the HTML below. You must be a registered user to use the IMDb rating plugin. Won 1 Oscar. Another 90 wins & 245 nominations. See more awards » Videos Harvard student Mark Zuckerberg creates the social networking site that would become known as Facebook, but is later sued by two brothers who claimed he stole their idea, and the co-founder who was later squeezed out of the business. Director: David Fincher Two astronauts work together to survive after an accident which leaves them alone in space. Director: Alfonso Cuarón After a stint in a mental institution, former teacher Pat Solitano moves back in with his parents and tries to reconcile with his ex-wife. Things get more challenging when Pat meets Tiffany, a mysterious girl with problems of her own. Director: David O. Russell A Mumbai teen reflects on his upbringing in the slums when he is accused of cheating on the Indian Version of "Who Wants to be a Millionaire?" Directors: Danny Boyle, Loveleen Tandan Stars: Dev Patel, Freida Pinto, Saurabh Shukla A young man who survives a disaster at sea is hurtled into an epic journey of adventure and discovery. While cast away, he forms an unexpected connection with another survivor: a fearsome Bengal tiger. Director: Ang Lee The story of King George VI of the United Kingdom of Great Britain and Northern Ireland, his impromptu ascension to the throne and the speech therapist who helped the unsure monarch become worthy of it. Director: Tom Hooper In 1985 Dallas, electrician and hustler Ron Woodroof works around the system to help AIDS patients get the medication they need after he is diagnosed with the disease. Director: Jean-Marc Vallée A paraplegic marine dispatched to the moon Pandora on a unique mission becomes torn between following his orders and protecting the world he feels is his home. Director: James Cameron A lonely writer develops an unlikely relationship with an operating system designed to meet his every need. Director: Spike Jonze Tells the story of Benjamin Button, a man who starts aging backwards with bizarre consequences. Director: David Fincher A family determined to get their young daughter into the finals of a beauty pageant take a cross-country trip in their VW bus. Directors: Jonathan Dayton, Valerie Faris Stars: Steve Carell, Toni Collette, Greg Kinnear A seventeen-year-old aristocrat falls in love with a kind but poor artist aboard the luxurious, ill-fated R.M.S. Titanic. Director: James Cameron Edit Storyline Nina (Portman) is a ballerina in a New York City ballet company whose life, like all those in her profession, is completely consumed with dance. She lives with her obsessive former ballerina mother Erica (Hershey) who exerts a suffocating control over her. When artistic director Thomas Leroy (Cassel) decides to replace prima ballerina Beth MacIntyre (Ryder) for the opening production of their new season, Swan Lake, Nina is his first choice. But Nina has competition: a new dancer, Lily (Kunis), who impresses Leroy as well. Swan Lake requires a dancer who can play both the White Swan with innocence and grace, and the Black Swan, who represents guile and sensuality. Nina fits the White Swan role perfectly but Lily is the personification of the Black Swan. As the two young dancers expand their rivalry into a twisted friendship, Nina begins to</code> |
| <code>In computing, what is the device which is plugged into a computer which serves as an adapter or to enable the use of certain software?</code> | <code>What Is A Dongle? - Business Insider print 3 Dongles plugged into Google's Chromebook Pixel. Kevin Smith/Business Insider This week two people in the tech industry lost their jobs because of jokes gone awry at a conference. A couple of male developers were joking around about "big" dongles. When a female developer evangelist heard their jokes she tweeted it out with their photo, complaining that they were being rude. One of those developers lost his job, and then eventually, so did the evangelist. In the developers' defense, the word "dongle" is funny. It's nearly impossible to say without giggling or making childish jokes. Some people in our office had heard the word before, but didn't know what a dongle is. Merriam-Webster defines a dongle as a small device that plugs into a computer and serves as an adapter or a security measure to enable the use of certain software. Kevin Smith/Business Insider The term, dongle, was rumored to have originated from a 1992 advertisement for Rainbow Technologies. The ad claimed the word dongle was derived from the name "Don Gall." Though untrue, this has given rise to an urban myth, we learned from Wikipedia . According to the University of Pennsylvania's language log , the earliest citation of the word dongle began appearing in 1982: 1982 MicroComputer Printout Jan. 19/2 The word ‘dongle’ has been appearing in many articles with reference to security systems for computer software [refers to alleged coinage in 1980]. But as the term 'dongle' became more widespread its meaning changed from strictly a scientific term to mainstream. UPenn clarifies: The current meaning for dongle seems to be something like "a self-contained device that plugs into a port on a computer that is normally used for connections to a separate external device". Thus in addition to the original serial-port dongles, and the USB dongles that Suzanne (and Stephen Fry) wrote about, there are also "firewire dongles" , and presumably there could be dongles for any other sort of port as well. Simply put, dongles are computer peripherals that plug into your computer like a USB flash drive or a cord connecting a computer with a printer for example. Dongles are also huge in the video game world because they allow consoles to have added features like increased audio quality. An Xbox 360 Audio Dongle Wikimedia Commons Before USB was the standard in attaching PC peripherals, there were tons of different dongles that came in various shapes and sizes.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 30,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.43 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.57 tokens</li><li>max: 155 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the difference between back off and back down?</code> | <code>You back off by retreating from a confrontation of some kind, but here the other person is not being antagonistic. You back down by giving way when you realise you're losing an argument or fight, but that doesn't apply here either.</code> |
| <code>how many days after lh surge should i have intercourse?</code> | <code>The three days immediately after a positive test represent the best time to have intercourse to increase the probability of getting pregnant. Ovulation generally occurs a day or two after the LH surge.</code> |
| <code>what episode does jane and rafael do it?</code> | <code>Rodriguez's directorial debut was the tenth episode of the season, "Chapter Seventy-Four", which aired on February 9, 2018. The episode was specially selected by showrunner Jennie Snyder-Urman as it featured the characters of Jane (Gina Rodriguez) and Rafael (Justin Baldoni) having sex for the first time.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 21,829 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 25.51 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 25.47 tokens</li><li>max: 57 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Mouhoun is one of the 45 provinces of Boucle du Mouhoun Region and is in Burkina Faso . The capital of Mouhoun is Dédougou .</code> | <code>Mouhoun is one of 45 provinces in the Boucle du Mouhoun region and is located in Burkina Faso , the capital of Mouhoun is Dédougou .</code> |
| <code>Besides Quintin , they had five children : Juan , Phillip , Willie , Patrick and Lucy .</code> | <code>They had five children besides Quintin : Lucy , Phillip , Juan , Patrick and Willie .</code> |
| <code>According to the U.S. Census Bureau , the county is a total area that has land and ( 0.2 % ) of water .</code> | <code>According to the US Census Bureau , the county has a total area of which is land and ( 0.2 % ) of water .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
### Evaluation Datasets
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 108 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.36 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.11 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
| claim | evidence |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### negation-triplets
* Dataset: [negation-triplets](https://huggingface.co/datasets/jinaai/negation-dataset-v2)
* Size: 64 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 13.83 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 13.23 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 13.61 tokens</li><li>max: 19 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:-----------------------------------------------------------------|:-------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| <code>Boy rides skateboard and does trick over stairs.</code> | <code>Man in air on skateboard at night by light of street lamps.</code> | <code>Man on the ground on skateboard during the day by light of street lamps.</code> |
| <code>A small child climbs atop a large motorcycle</code> | <code>A young boy riding a motorcycle next to a silver car.</code> | <code>An adult riding a motorcycle next to a silver car.</code> |
| <code>A group of people skiing down a snow covered slope.</code> | <code>Six people in snow field with ski equipment.</code> | <code>Six people in a desert with no ski equipment.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 54 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 20.81 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> |
| <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code> | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
| <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
| | document | summary |
|:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 51 tokens</li><li>mean: 219.56 tokens</li><li>max: 341 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 25.73 tokens</li><li>max: 47 tokens</li></ul> |
* Samples:
| document | summary |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The five were arrested in Milford Haven and are in police custody.<br>It follows a multi-agency operation between Dyfed-Powys Police, the Gangmasters and Labour Abuse Authority and Pembrokeshire council.<br>Det Ch Insp Ross Evans said: "The victims are our priority and those affected are being fully supported."<br>As part of anti-slavery awareness week, the force said it was raising awareness, identifying offences and supporting victims.<br>He added: "In reality modern slavery can happen anywhere and there is no typical victim of slavery."</code> | <code>Five people in Pembrokeshire have been arrested on suspicion of gangmaster offences following an investigation into "modern slavery".</code> |
| <code>DNA tests showed the bones belonged to the men, who went missing on the mountain in August 1970, police say.<br>The remains were discovered at an altitude of about 2,800m (9,200ft) in the Alps last September.<br>They are the latest to be found on the 4,478-metre (14,692-foot) Matterhorn as ice melts.<br>The Japanese consulate in Geneva identified the climbers as Michio Oikawa and Masayuki Kobayashi, AFP news agency reports. They were 22 and 21 respectively when they went missing.<br>The consulate assisted police to track down family members to help compare their DNA profiles.<br>As Alpine glaciers melt because of global warming, the remains of long-lost climbers have increasingly been emerging from the shrinking mountain ice.<br>A mountain rescue pilot discovered remains and climbing equipment belonging to British climber Jonathan Conville, missing since 1979, in 2013 near the peak of the Matterhorn.<br>Last year the body of a Czech climber who disappeared 40 years ago following an accident was found in the Bernese Alps.</code> | <code>Remains found at the foot of Switzerland's Matterhorn glacier have been identified as two Japanese climbers who disappeared 45 years ago.</code> |
| <code>The song, featuring Charlie Puth, rose 21 places to become the fastest-selling single of the year so far with combined chart sales of 193,000 copies.<br>It also set a new streaming record with 3.68 million streams in seven days.<br>The track features on the Fast & Furious 7 soundtrack and pays tribute to cast member Paul Walker, who died while filming the blockbuster in 2013.<br>It is Khalifa's second number one single after a guest appearance on Maroon 5's Payphone in 2012.<br>Omi's Cheerleader was another high climber, jumping 25 places to number two, according to the Official Charts Company.<br>Last week's number one - Hold My Hand by Jess Glynne - slipped down to three, while Spanish house DJ Dr Kucho's collaboration with Gregor Salto, Can't Stop Playing, was the highest new entry at four.<br>See the UK Top 40 singles chart<br>See the UK Top 40 albums chart<br>BBC Radio 1's Official Chart Show<br>In the album chart, Paul Simon scored his first number one for 25 years with his greatest hits record The Ultimate Collection. His last chart topper was 1990's The Rhythm Of The Saints.<br>James Bay, Ed Sheeran and Sam Smith all held firm, occupying the second to fourth places on the chart.<br>Wombat's third studio album Glitterbug was a new entry at five.<br>All Time Low's Future Hearts, which had topped the album chart last week, fell to 18.</code> | <code>US rapper Wiz Khalifa has topped the UK singles chart with his track, See You Again.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 16.31 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 67.08 tokens</li><li>max: 413 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>During karyogamy, the haploid nuclei contributed by the two parents fuse, which produces what?</code> | <code></code> |
| <code>Every human cell has the same what, and each cell has thousands of them?</code> | <code>There are about 22,000 genes in every human cell. Does every human cell have the same genes? Yes. Does every human cell make the same proteins? No. In a multicellular organism, such as us, cells have specific functions because they have different proteins. They have different proteins because different genes are expressed in different cell types (which is known as gene expression ).</code> |
| <code>Fertilized mollusk eggs develop into what?</code> | <code>Mollusks reproduce sexually. Most species have separate male and female sexes. Fertilization may be internal or external, depending on the species. Fertilized eggs develop into larvae. There may be one or more larval stages. Each one is different from the adult stage.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 11.35 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 34.37 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what happens to fibers after muscle activation?</code> | <code>Muscle contraction occurs when muscle fibers get shorter.. Muscle activation is a prerequisite for muscle contraction.. muscles activate before fibers get shorter</code> |
| <code>What do most streams start with?</code> | <code>Streams may start with runoff or water seeping out of a spring.. Most water comes from precipitation.. most streams start with precipitation</code> |
| <code>Mitosis begins when what unite in fertilization? </code> | <code>Gametes then unite in fertilization and form a diploid zygote.. Mitosis produces diploid cells.. Gametes then unite in fertilization and begin Mitosis</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code> |
| <code>What creates a valley?</code> | <code>a valley is formed by a river flowing</code> |
| <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.81 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 80.79 tokens</li><li>max: 196 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what does perjure mean</code> | <code>Perjure (verb) to cause to violate an oath or a vow; to cause to make oath knowingly to what is untrue; to make guilty of perjury; to forswear; to corrupt; -- often used reflexively; as, he perjured himself. Perjure (verb) to make a false oath to; to deceive by oaths and protestations. Perjure (noun) a perjured person</code> |
| <code>weather in salalah</code> | <code>Average monthly weather in Salalah, Oman. Salalah has an hot and desert climate, however with temperatures that rarely reach above 33 degrees Celsius (91° Fahrenheit). Most rainfall (monsoon) is seen in the months July and August.</code> |
| <code>what is dukan diet plan</code> | <code>The Dukan Diet is a protein based nutritional approach designed by Pierre Dukan, a French nutritionist and dietician. The Dukan Diet, or Dukan method proposes a healthy eating plan which is based on how primitive man used to eat when we were hunter-gatherers.It includes 100 foods, of which 72 are animal sourced and 28 come from plants.And you can eat as much as you like, as long as you stick to those 100 foods.he Dukan Diet, or Dukan method proposes a healthy eating plan which is based on how primitive man used to eat when we were hunter-gatherers. It includes 100 foods, of which 72 are animal sourced and 28 come from plants. And you can eat as much as you like, as long as you stick to those 100 foods.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.45 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 143.7 tokens</li><li>max: 384 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what do you call more than one hypothesis</code> | <code>Hypothesis A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used synonymously, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research.[1]</code> |
| <code>dragons name on how to train your dragon</code> | <code>How to Train Your Dragon (film) Stoick assembles a fleet to find the dragons' nest, leaving Hiccup in a dragon-fighting class taught by Gobber. Hiccup returns to the forest to find the Night Fury still there, and realizes it is unable to fly properly because of its crippled caudal fin. Hiccup gradually tames the dragon and gives it the name "Toothless", for its retractable teeth. Hiccup makes a harness and prosthetic fin that allows him to guide the dragon in free flight. By studying Toothless' behavior, Hiccup becomes proficient in subduing the captive dragons during training. Stoick's fleet arrives home unsuccessful, but he is cheered by Hiccup's unexpected success.</code> |
| <code>was the original pre-modern maya script based on syllabic alphabetic or ideographic principles</code> | <code>Mesoamerican writing systems Maya writing first developed as only utilizing logograms, but later included the use of phonetic complements in order to differentiate between the semantic meanings of the logograms and for context that allows for syllabic spelling of words.[1]</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 19.57 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 41 tokens</li><li>mean: 440.45 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What was heavyweight boxer Joe Louis' nickname?</code> | <code>Joe Louis - Biography - IMDb Joe Louis Jump to: Overview (5) | Mini Bio (1) | Spouse (3) | Trivia (19) | Personal Quotes (3) Overview (5) 6' 1½" (1.87 m) Mini Bio (1) Joe Louis is considered by many fistic experts and fans as the greatest Heavyweight Boxing Champion in the sport's history. Born into a poor family, Joe Louis's mother felt the only way her son could escape poverty was through music. She bought him a violin and sent him off daily to lessons. On his way there, young Joe would pass by a boxing gym. In no time, he was working out at the gym, training for a boxing career. His amateur career started off disastrously, as he was knocked-out down 16 times in losing the fight. However, he was determined to continue and posted an outstanding amateur career with only 5 defeats in 60 fights. He turned professional and quickly racked up one of the most impressive winning streaks in boxing history. He was nicknamed, The Brown Bomber, and became the first boxer to defeat six heavyweight champions ( Primo Carnera , Max Baer , Jack Sharkey , Jimmy Braddock , Max Schmeling , and Jersey Joe Walcott ). After winning the championship, he held it almost 12 years to set a record, plus set another record with 25 successful title defenses. He retired with a 60-1 record, only to make an unsuccessful and very sad comeback at the age of 37. While champion, Joe Louis volunteered to join the U.S. Army at the height of his career. He made two title defenses in which he donated his entire purses to relief funds to help both the Army and the Navy. He spent almost five years in the service and boxed hundreds of exhibitions. However, after the war, he was hounded by the Internal Revenue Service to pay back taxes on the purses he had donated. He suffered terribly through this ordeal. and soon found himself broke. He launched a "controversial" pro-wrestling career and was undefeated in some 20 matches before retiring with a heart problem. He was helped by his good friend Frank Sinatra and acted in a few films, worked as a host in Las Vegas, and made numerous appearances for boxing. He died a few years after suffering a massive stroke. Joe Louis was buried with full-military honors, and it was said that he was "most" proud of his European-African-Middle Eastern Medal and his Victory Medal World War II. In or out of the ring, Joe Louis was a Champion. - IMDb Mini Biography By: angelsunchained Spouse (3) Born at 8:00 a.m. CST. World Heavyweight boxing champion, 1937-1949. Inducted into the International Boxing Hall of Fame, 1990. His reign as heavyweight champion (12 years) is a boxing record that stands in all weight divisions. He fought so many bad opponents that they were dubbed the "Bum of the Month" tour. Inducted into the World Boxing Hall of Fame, 1980. Pictured on a 29¢ US commemorative postage stamp in the Sports series, issued 22 June 1993. The Joe Louis Arena in Detroit, Michigan, is named after him. Has a daughter, Jacquelin (b. 1943), with Marva. Because Louis had been down on his luck in his last years and had died in poverty, his funeral was paid for by his most famous rival (and later friend), German boxer Max Schmeling . Biography in "The Scribner Encyclopedia of American Lives," Volume One, 1981-1985, pages 512-515, New York: Charles Scribner's Sons, 1998. Portrayed by Bernie Casey in Ring of Passion (1978) and Coley Wallace in The Joe Louis Story (1953) and Raging Bull (1980). Buried in Arlington National Cemetery. Americans tend to pronounce Louis's second name - "Lewis" - whereas Europeans tend to pronounce it "Loo-e." Curiously enough, Louis Armstrong is universally referred to as "Loo-e" Armstrong even though, in one of the lines in the lyrics to Armstrong's classic, "Hello Dolly," one can clearly hear Armstrong sing, "Hello Dolly, this is "Lewis" Dolly...". One of his grandmothers was a Native American. Is played by Leonard Roberts , who gained nearly 20 lbs. for the role, in Joe and Max (2002). He was a student of mail order physical culture trainer, Charles Atlas, and a graduate of his course. Served in the U.S. Arm</code> |
| <code>On the human body, exungulation is the trimming of what?</code> | <code>Human Physiology/Integumentary System - Wikibooks, open books for an open world Human Physiology/Integumentary System Introduction[ edit ] The integumentary system consists of the skin, hair, nails, the subcutaneous tissue below the skin,and assorted glands.The most obvious function of the integumentary system is the protection that the skin gives to underlying tissues. The skin not only keeps most harmful substances out, but also prevents the loss of fluids. A major function of the subcutaneous tissue is to connect the skin to underlying tissues such as muscles. Hair on the scalp provides insulation from cold for the head. The hair of eyelashes and eyebrows helps keep dust and perspiration out of the eyes, and the hair in our nostrils helps keep dust out of the nasal cavities. Any other hair on our bodies no longer serves a function, but is an evolutionary remnant. Nails protect the tips of fingers and toes from mechanical injury. Fingernails give the fingers greater ability to pick up small objects. There are four types of glands in the integumentary system: Sudoriferous glands, Sebaceous glands, Ceruminous glands, and Mammary glands. Sudoriferous glands are sweat producing glands. These are important to help maintain body temperature. Sebaceous glands are oil producing glands which help inhibit bacteria, keep us waterproof and prevent our hair and skin from drying out. Ceruminous glands produce earwax which keeps the outer surface of the eardrum pliable and prevents drying. Mammary glands produce milk. Skin[ edit ] In zoology and dermatology, skin is an organ of the integumentary system made up of a layer of tissues that guard underlying muscles and organs. As the interface with the surroundings, it plays the most important role in protecting against pathogens. Its other main functions are insulation and temperature regulation, sensation and vitamin D and B synthesis. Skin is considered one of the most important parts of the body. Skin has pigmentation, melanin, provided by melanocytes, which absorbs some of the potentially dangerous radiation in sunlight. It also contains DNA repair enzymes which reverse UV damage, and people who lack the genes for these enzymes suffer high rates of skin cancer. One form predominantly produced by UV light, malignant melanoma, is particularly invasive, causing it to spread quickly, and can often be deadly. Human skin pigmentation varies among populations in a striking manner. This has sometimes led to the classification of people(s) on the basis of skin color. Damaged skin will try to heal by forming scar tissue, often giving rise to discoloration and depigmentation of the skin. The skin is often known as "the largest organ in the human body". This applies to exterior surface, as it covers the body, appearing to have the largest surface area of all the organs. Moreover, it applies to weight, as it weighs more than any single internal organ, accounting for about 15 percent of body weight. For the average adult human, the skin has a surface area of between 1.5-2.0 square meters, most of it is between 2-3 mm thick. The average square inch of skin holds 650 sweat glands, 20 blood vessels, 60,000 melanocytes, and more than a thousand nerve endings. The use of natural or synthetic cosmetics to treat the appearance of the face and condition of the skin (such as pore control and black head cleansing) is common among many cultures. Layers[ edit ] The skin has two major layers which are made of different tissues and have very different functions. Diagram of the layers of human skin Skin is composed of the epidermis and the dermis. Below these layers lies the hypodermis or subcutaneous adipose layer, which is not usually classified as a layer of skin. The outermost epidermis consists of stratified squamous keratinizing epithelium with an underlying basement membrane. It contains no blood vessels, and is nourished by diffusion from the dermis. The main type of cells which make up the epidermis are keratinocytes, with melanocytes and Langerhans cells also present. The epidermis can be further subd</code> |
| <code>Which disease has the medical term variola?</code> | <code>Smallpox Glossary of Terms with Medical Definitions See the entire definition of Acquired Aerosolization: The production of an aerosol -- a fine mist or spray containing minute par... See the entire definition of Aerosolization Allergy: A misguided reaction to foreign substances by the immune system, the body system ... See the entire definition of Allergy Anthrax: A serious bacterial infection caused by Bacillus anthracis that occurs primarily ... See the entire definition of Anthrax Antiviral: An agent that kills a virus or that suppresses its ability to replicate and, he... See the entire definition of Antiviral Arms: An appendage in anatomy and in clinical trials. See: Arm. Arthritis: Inflammation of a joint. When joints are inflamed they can develop stiffness, w... See the entire definition of Arthritis Assay: An assay is an analysis done to determine: The presence of a substance an... See the entire definition of Assay Asymptomatic: Without symptoms. For example, an asymptomatic infection is an infection wit... See the entire definition of Asymptomatic Atopic: A predisposition toward developing certain allergic hypersensitivity reactions. At... See the entire definition of Atopic Atopic dermatitis: A skin disease characterized by areas of severe itching, redness, scali... See the entire definition of Biotechnology Bioterrorism: Terrorism using biologic agents that are harmful to humans. Biological disea... See the entire definition of Bioterrorism Blindness: Loss of useful sight. Blindness can be temporary or permanent. Damage to any p... See the entire definition of Blindness Blister: A collection of fluid underneath the top layer of skin (epidermis). There are man... See the entire definition of Blister Brain: The portion of the central nervous system that is located within the skull. It func... See the entire definition of Brain Breathing: The process of respiration, during which air is inhaled into the lungs through ... See the entire definition of Breathing Calf: The belly or fleshy hind part of the back of the leg below the knee. The calf is mad... See the entire definition of Calf Cancer: An abnormal growth of cells which tend to proliferate in an uncontrolled way and, ... See the entire definition of Cancer CDC: The Centers for Disease Control and Prevention, the US agency charged with tracking a... See the entire definition of CDC Cell: The basic structural and functional unit of any living thing. Each cell is a small c... See the entire definition of Cell Centers for Disease Control and Prevention: The US agency charged with tracking and invest... See the entire definition of Contagious Contrast: Short for "contrast media." Contrast media are X-ray dyes used to provide contra... See the entire definition of Contrast Cough: A rapid expulsion of air from the lungs, typically in order to clear the lung airwa... See the entire definition of Cough Cowpox: A mild skin disease of milk cows, principally confined to the udder and teats, tha... See the entire definition of Cowpox Depression: An illness that involves the body, mood, and thoughts and that affects the way... See the entire definition of Depression Dermatitis: Inflammation of the skin, either due to an inherent skin defect, direct contac... See the entire definition of Dermatitis Diagnosis: 1 The nature of a disease; the identification of an illness. 2 A ... See the entire definition of Diagnosis DNA: Deoxyribonucleic acid. One of two types of molecules that encode genetic information... See the entire definition of DNA Drain: A device for removing fluid from a cavity or wound. A drain is typically a tube or ... See the entire definition of Drain Eczema (dermatitis): A particular type of inflammatory reaction of the skin in which there... See the entire definition of Eczema Elbow: The juncture of the long bones in the middle portion of the upper extremity. The bo... See the entire definition of Elbow ELISA: Enzyme-linked immunosorbent assay, a rapid immunochemical test that involves an enz... See the entire definition of ELISA Emergency department: T</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.33 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 60.85 tokens</li><li>max: 136 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how much is a destination wedding in italy?</code> | <code>A wedding in Italy usually costs between 20 000 and 80 000 euros, depending on the number of guests and the number of rendered services and their quality. Wedding dresses, ceremony and reception are those three main expenses, which will take the most of your budget.</code> |
| <code>how to transfer files on pc to ipad?</code> | <code>['In iTunes, select the app from the list in the File Sharing section.', 'Drag and drop files from a folder or window onto the Documents list to copy them to your device.']</code> |
| <code>what is difference between saturated and unsaturated compounds?</code> | <code>Saturated vs. ... Unlike saturated hydrocarbons in which all hydrogen atoms and carbon atoms are bonded together with single bonds, unsaturated hydrocarbons have double or even triple bonds between the carbon atoms.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 25.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.55 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>They were there to enjoy us and they were there to pray for us .</code> | <code>They were there for us to enjoy and they were there for us to pray .</code> |
| <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
| <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code> | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 320
- `per_device_eval_batch_size`: 64
- `gradient_accumulation_steps`: 3
- `learning_rate`: 4e-05
- `weight_decay`: 0.0001
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
- `warmup_ratio`: 0.2
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-step2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 320
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 3
- `eval_accumulation_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-step2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | nq pairs loss | vitaminc-pairs loss | openbookqa pairs loss | scitail-pairs-pos loss | xsum-pairs loss | trivia pairs loss | paws-pos loss | qasc pairs loss | sciq pairs loss | msmarco pairs loss | negation-triplets loss | gooaq pairs loss | VitaminC_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:-------------:|:-------------------:|:---------------------:|:----------------------:|:---------------:|:-----------------:|:-------------:|:---------------:|:---------------:|:------------------:|:----------------------:|:----------------:|:---------------:|:------------------------:|
| 0.0031 | 1 | 0.7374 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0063 | 2 | 0.5723 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0094 | 3 | 0.551 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0125 | 4 | 0.7379 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0156 | 5 | 0.5271 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0187 | 6 | 0.5858 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0219 | 7 | 0.6562 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.025 | 8 | 0.8228 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0281 | 9 | 0.9988 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0312 | 10 | 0.5582 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0344 | 11 | 0.8546 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0375 | 12 | 0.4235 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0406 | 13 | 0.6418 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0437 | 14 | 0.6577 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0469 | 15 | 0.8333 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.05 | 16 | 0.4082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0531 | 17 | 0.8101 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0563 | 18 | 0.5259 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0594 | 19 | 0.9015 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0625 | 20 | 1.3915 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0656 | 21 | 0.26 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0688 | 22 | 0.6885 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0719 | 23 | 0.9357 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.075 | 24 | 0.7168 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0781 | 25 | 0.8678 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0813 | 26 | 0.4922 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0844 | 27 | 0.4937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0875 | 28 | 0.5891 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0906 | 29 | 0.6921 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0938 | 30 | 0.8087 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0969 | 31 | 0.805 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1 | 32 | 0.6141 | 0.1978 | 2.3326 | 0.6932 | 0.0776 | 0.0913 | 0.7433 | 0.0248 | 0.1100 | 0.0197 | 0.3269 | 0.8681 | 0.3761 | 0.5467 | 0.8955 |
| 0.1031 | 33 | 0.7783 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1062 | 34 | 0.8746 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1094 | 35 | 0.5085 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1125 | 36 | 0.4842 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1156 | 37 | 0.8097 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1187 | 38 | 0.5325 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1219 | 39 | 0.7221 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.125 | 40 | 0.708 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1281 | 41 | 0.2789 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1313 | 42 | 0.7986 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1344 | 43 | 0.9653 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1375 | 44 | 0.7857 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1406 | 45 | 0.2726 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1437 | 46 | 0.2458 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1469 | 47 | 0.6988 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.15 | 48 | 0.6328 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1531 | 49 | 0.795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1562 | 50 | 0.6163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1594 | 51 | 0.8269 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1625 | 52 | 0.52 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1656 | 53 | 0.7523 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1688 | 54 | 0.6979 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1719 | 55 | 0.7845 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.175 | 56 | 0.9325 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1781 | 57 | 0.8546 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1812 | 58 | 0.6392 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1844 | 59 | 0.5827 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1875 | 60 | 0.5961 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1906 | 61 | 0.3625 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1938 | 62 | 0.2584 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1969 | 63 | 0.4047 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2 | 64 | 0.9429 | 0.2214 | 2.2601 | 0.6793 | 0.0836 | 0.0857 | 0.7304 | 0.0245 | 0.1140 | 0.0197 | 0.3460 | 0.8368 | 0.3801 | 0.5495 | 0.8960 |
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.2
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |