File size: 179,267 Bytes
7008dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
---
base_model: bobox/DeBERTa-small-ST-v1-test-step2
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:279409
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: what is acetylcholinesterase in biochemistry
  sentences:
  - The Arkansas was the last nuclear powered cruiser built by the United States.
    (Click here for detailed information about the USS Arkansas) USS Enterprise (CVN-65)
    The USS Enterprise was the Navy's first nuclear powered aircraft carrier and from
    1961 to 1972 she was the biggest warship in the world.
  - The staph infection may also live on the skin of a dog as a parasite or in the
    respiratory system of a dog. In some cases if a dog is not treated right away
    the dog could become very ill or even die. In some cases where a dog is infected
    with staph a dog may have one or several different symptoms. These signs may be
    a reason to have a dog seen by a veterinarian; typically this disease may make
    a dog very sick. Some symptoms of staph infection may include but are not limited
    to.
  - Acetylcholinesterase (HGNC symbol ACHE), also known as AChE or acetylhydrolase,
    is the primary cholinesterase in the body.It is an enzyme that catalyzes the breakdown
    of acetylcholine and of some other choline esters that function as neurotransmitters.AChE
    is found at mainly neuromuscular junctions and in chemical synapses of the cholinergic
    type, where its activity serves to terminate synaptic transmission.uring neurotransmission,
    ACh is released from the nerve into the synaptic cleft and binds to ACh receptors
    on the post-synaptic membrane, relaying the signal from the nerve. AChE, also
    located on the post-synaptic membrane, terminates the signal transmission by hydrolyzing
    ACh.
- source_sentence: More than 169 countries had reported over 212,000 COVID-19 cases
    before March 19 , 2020 .
  sentences:
  - As of 23 March , more than 341,000 cases of COVID-19 have been reported in 192
    countries and territories , resulting in more than 14,700 deaths and 99,000 recoveries
    .
  - As of 21 March , more than 278,000 cases of COVID-19 have been reported in over
    186 countries and territories , resulting in more than 11,500 deaths and 92,000
    recoveries.  virus seems to mostly spread between people via respiratory droplets
    .
  - As of 18 March 2020 , more than 212,000 cases of COVID-19 have been reported in
    at least 170 countries and territories , with major outbreaks in China , Iran
    and the European Union .
- source_sentence: The brain is harmed if you get meningitis.
  sentences:
  - Which organ of our body is harmed if you get meningitis?
  - What is the rate at which a specific allele appears within a population called?
  - What is the term for the application of science to solve problems?
- source_sentence: Electrical energy can be converted into kinetic energy and heat
    energy by an electric motor.
  sentences:
  - Solution is the term for a homogeneous mixture of two or more substances.
  - Solution is the term for a homogeneous mixture of two or more substances.
  - Electric motors transform electrical energy into kinetic energy.
- source_sentence: where was the first hudson bay company post
  sentences:
  - Hudson's Bay Company Hudson's Bay Company's first inland trading post was established
    by Samuel Hearne in 1774 in Cumberland House, Saskatchewan.[38][39]
  - Another Mother for Peace Los Angeles artist Lorraine Art Schneider donated the
    use of a striking illustration for the Mother's Day peace cards--a sunflower on
    yellow background amid the slogan “War is not healthy for children and other living
    things.” [1]
  - Steven Ogg Steven Ogg is a Canadian actor.[1] He is best known for his roles as
    Trevor Philips in the 2013 video game Grand Theft Auto V and Simon in The Walking
    Dead.[2] He has also appeared in television series such as Better Call Saul, Law
    & Order, Person of Interest, Broad City, and Westworld.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.8803067271464453
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9038005474254912
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9020751259156048
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8980189529612906
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9023937835918766
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8989733631129851
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8698285291814508
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8707897794601254
      name: Spearman Dot
    - type: pearson_max
      value: 0.9023937835918766
      name: Pearson Max
    - type: spearman_max
      value: 0.9038005474254912
      name: Spearman Max
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: VitaminC
      type: VitaminC
    metrics:
    - type: cosine_accuracy
      value: 0.55859375
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8300318121910095
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6657718120805369
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.37456807494163513
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5020242914979757
      name: Cosine Precision
    - type: cosine_recall
      value: 0.9880478087649402
      name: Cosine Recall
    - type: cosine_ap
      value: 0.5514483751609435
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.5546875
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 311.380615234375
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6684709066305818
      name: Dot F1
    - type: dot_f1_threshold
      value: 144.8927001953125
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.5061475409836066
      name: Dot Precision
    - type: dot_recall
      value: 0.9840637450199203
      name: Dot Recall
    - type: dot_ap
      value: 0.5333497363350208
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.556640625
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 232.38790893554688
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6649006622516557
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 498.126220703125
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.498015873015873
      name: Manhattan Precision
    - type: manhattan_recall
      value: 1.0
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.5515569514532939
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.556640625
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 11.028482437133789
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6649006622516557
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 23.38451385498047
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.498015873015873
      name: Euclidean Precision
    - type: euclidean_recall
      value: 1.0
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.5544340410314673
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.55859375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 311.380615234375
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6684709066305818
      name: Max F1
    - type: max_f1_threshold
      value: 498.126220703125
      name: Max F1 Threshold
    - type: max_precision
      value: 0.5061475409836066
      name: Max Precision
    - type: max_recall
      value: 1.0
      name: Max Recall
    - type: max_ap
      value: 0.5544340410314673
      name: Max Ap
---

# SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-small-ST-v1-test-step2](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step2) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) and [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bobox/DeBERTa-small-ST-v1-test-step2](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step2) <!-- at revision 227c804cec7dd9eaab6a3cd4f9df268d4b5a1ca2 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - negation-triplets
    - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
    - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
    - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
    - xsum-pairs
    - [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
    - [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
    - openbookqa_pairs
    - [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
    - [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
    - [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
    - [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-test-step3-checkpoints-tmp")
# Run inference
sentences = [
    'where was the first hudson bay company post',
    "Hudson's Bay Company Hudson's Bay Company's first inland trading post was established by Samuel Hearne in 1774 in Cumberland House, Saskatchewan.[38][39]",
    'Steven Ogg Steven Ogg is a Canadian actor.[1] He is best known for his roles as Trevor Philips in the 2013 video game Grand Theft Auto V and Simon in The Walking Dead.[2] He has also appeared in television series such as Better Call Saul, Law & Order, Person of Interest, Broad City, and Westworld.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8803     |
| **spearman_cosine** | **0.9038** |
| pearson_manhattan   | 0.9021     |
| spearman_manhattan  | 0.898      |
| pearson_euclidean   | 0.9024     |
| spearman_euclidean  | 0.899      |
| pearson_dot         | 0.8698     |
| spearman_dot        | 0.8708     |
| pearson_max         | 0.9024     |
| spearman_max        | 0.9038     |

#### Binary Classification
* Dataset: `VitaminC`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.5586     |
| cosine_accuracy_threshold    | 0.83       |
| cosine_f1                    | 0.6658     |
| cosine_f1_threshold          | 0.3746     |
| cosine_precision             | 0.502      |
| cosine_recall                | 0.988      |
| cosine_ap                    | 0.5514     |
| dot_accuracy                 | 0.5547     |
| dot_accuracy_threshold       | 311.3806   |
| dot_f1                       | 0.6685     |
| dot_f1_threshold             | 144.8927   |
| dot_precision                | 0.5061     |
| dot_recall                   | 0.9841     |
| dot_ap                       | 0.5333     |
| manhattan_accuracy           | 0.5566     |
| manhattan_accuracy_threshold | 232.3879   |
| manhattan_f1                 | 0.6649     |
| manhattan_f1_threshold       | 498.1262   |
| manhattan_precision          | 0.498      |
| manhattan_recall             | 1.0        |
| manhattan_ap                 | 0.5516     |
| euclidean_accuracy           | 0.5566     |
| euclidean_accuracy_threshold | 11.0285    |
| euclidean_f1                 | 0.6649     |
| euclidean_f1_threshold       | 23.3845    |
| euclidean_precision          | 0.498      |
| euclidean_recall             | 1.0        |
| euclidean_ap                 | 0.5544     |
| max_accuracy                 | 0.5586     |
| max_accuracy_threshold       | 311.3806   |
| max_f1                       | 0.6685     |
| max_f1_threshold             | 498.1262   |
| max_precision                | 0.5061     |
| max_recall                   | 1.0        |
| **max_ap**                   | **0.5544** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### negation-triplets

* Dataset: negation-triplets
* Size: 35,750 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | entailment                                                                        | negative                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 21.52 tokens</li><li>max: 101 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.34 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.62 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
  | anchor                                                                          | entailment                                                                      | negative                                                                            |
  |:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | <code>Brunette woman in a white bikini pouring a drink into a man's cup.</code> | <code>A woman is serving a beverage to a man.</code>                            | <code>A woman is not serving a beverage to a man.</code>                            |
  | <code>People under a tent at a reception.</code>                                | <code>People are outside.</code>                                                | <code>People are inside.</code>                                                     |
  | <code>A man is smoking at sunset.</code>                                        | <code>The time in the picture is probably somewhere between 3PM and 9PM.</code> | <code>The time in the picture is probably not somewhere between 3PM and 9PM.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 34,375 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 18.14 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 37.45 tokens</li><li>max: 192 tokens</li></ul> |
* Samples:
  | claim                                                                                                                                                                             | evidence                                                                                                                                                                                                                                     |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Dora and the Lost City of Gold grossed more than $ 58 million in North America , more than $ 40 million in other territories , and more than $ 98 million globally .</code> | <code>, Dora and the Lost City of Gold has grossed $ 58.4 million in the United States and Canada , and $ 40.4 million in other territories , for a worldwide total of $ 98.8 million , against a production budget of $ 49 million .</code> |
  | <code>After Juan Antonio and Vicky Cristina have sex , they go to bed .</code>                                                                                                    | <code>Afterwards , Juan Antonio lets her know he thinks she 's beautiful , and they make love , and eventually go to bed .</code>                                                                                                            |
  | <code>Tove Lo 's single `` Disco Tits '' reached number 55 in Sweden .</code>                                                                                                     | <code>`` Its lead single , `` '' Disco Tits '' '' , peaked at number 55 in Sweden.  ''</code>                                                                                                                                                |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 14,237 training samples
* Columns: <code>sentence2</code> and <code>question</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence2                                                                         | question                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.29 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.21 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
  | sentence2                                                                 | question                                                            |
  |:--------------------------------------------------------------------------|:--------------------------------------------------------------------|
  | <code>When an atom gains or loses an electron it becames a(n) ion.</code> | <code>When an atom gains or loses an electron it becames an?</code> |
  | <code>The stratosphere is the layer above the troposphere.</code>         | <code>What is the layer above the troposphere?</code>               |
  | <code>Solar and wind are still expensive compared to fossil fuels.</code> | <code>Solar and wind are still expensive compared to what?</code>   |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 8,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 23.52 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.54 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                 | sentence2                                                                              |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>Ozone is a molecule formed of THREE oxygen atoms.</code>                                                                                                                                                            | <code>Three oxygen ions make up an ozone molecule.</code>                              |
  | <code>Animals live by eating the energy produced by plants (herbivores), or live by eating animals that eat plants (carnivores) Let's take the human being (a polyhagous animal) as an example and ponder upon it.</code> | <code>Herbivores is the term for animals that eat producers to get energy.</code>      |
  | <code>Fertilization triggers Meiosis II, and then the sperm nucleus unites with the resulting egg nucleus.</code>                                                                                                         | <code>When a sperm penetrates the egg, it triggers the egg to complete meiosis.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 38,500 training samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
  |         | document                                                                             | summary                                                                           |
  |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                            |
  | details | <ul><li>min: 40 tokens</li><li>mean: 223.77 tokens</li><li>max: 443 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 25.9 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
  | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | summary                                                                                                                                                      |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>William Heath, 12, from Earls Barton, has so far disguised himself as Ali G, Hercule Poirot and Groucho Marx as part of his Movember campaign.<br>He is raising money in memory of his grandfather, who died from cancer in February.<br>William came up with the idea as he cannot grow a moustache himself.<br>His granddad, Robin Wickham, died from pancreatic, testicular and prostate cancer, and William is now asking people to donate to The Movember Foundation, via his own "Mo Space" page.<br>William has already dressed as seven famous moustachioed men, including Biggles, Keith Lemon and Magnum PI.<br>His costumes were sourced from a combination of a local fancy dress shop and items around the home.<br>"My granddad and I were very close," he said. "He used to come on holiday with us and was always having fun."<br>His mum Clare said William had wanted to do something that would help, but was also fun.<br>She said: "We needed to fill 30 days. When you try to think of 30 people with moustaches it is harder than you think.<br>"The overriding thing is that it has been fun, but it has serious implications."<br>William said his favourite character so far had been Ali G, but he had struggled to create a successful Ned Flanders outfit.<br>He said: "I tried to paint my face yellow, but it didn't really work."</code>                                                                                                                                                                                                       | <code>A schoolboy has decided to raise money for a men's health charity by dressing up as a different moustachioed famous face every day for a month.</code> |
  | <code>Media playback is not supported on this device<br>The Daily Mail claimed a £10m offer was made to owner Owen Oyston despite him stating the club was not for sale at a recent public meeting with fans.<br>Oyston was heckled throughout over the way the club is being run.<br>"The owners of the club have received no approach whatsoever, from any investor or third party," said a statement.<br>The Blackpool Supporters Trust launched a £16m bid to buy the club July 2015 but Oyston, whose son Karl is chairman, eventually ended those takeover talks.<br>The Seasiders, who will play in the fourth tier for the first time since 2000-01 this season, have also announced the signing of midfielder Danny Pugh.<br>The 33-year-old former Manchester United trainee joins on a free transfer after his release by Bury and has signed a one-year deal, with further 12-month option.<br>"He brings a wealth of experience to the team and will be a strong, vocal presence in the middle of the park," said boss Gary Bowyer.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>League Two club Blackpool have denied claims they were subject of a new takeover offer.</code>                                                         |
  | <code>The Cochrane Collaboration carried out a systematic review of eight exercise trials involving more than 300 patients living at home or in care.<br>Exercise did little for patients' moods, the  research concluded.<br>But it did help them carry out daily activities such as rising from a chair, and boosted their cognitive skills.<br>Whether these benefits improve quality of life is still unclear, but the study authors say the findings are reason for optimism.<br>Dementia affects some 800,000 people in the UK. And the number of people with the condition is steadily increasing because people are living longer.<br>It is estimated that by 2021, the number of people with dementia in the UK will have increased to around one million.<br>With no cure, ways to improve the lives of those living with the condition are vital.<br>Researcher Dorothy Forbes, of the University of Alberta, and colleagues who carried out the Cochrane review, said: "Clearly, further research is needed to be able to develop best practice guidelines to enable healthcare providers to advise people with dementia living at home or in institutions.<br>"We also need to understand what level and intensity of exercise is beneficial for someone with dementia."<br>Dr Laura Phipps of Alzheimer's Research UK said: "We do know that exercise is an important part of keeping healthy, and though we can't say that exercise will prevent dementia, evidence does suggest it can help reduce the risk of the condition as part of a healthy lifestyle."</code> | <code>People with dementia who exercise improve their thinking abilities and everyday life, a body of medical research concludes.</code>                     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 11,095 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.92 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 85.56 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                              | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:---------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The bright color of poison dart frogs serves what purpose?</code>                                                                | <code>Poison dart frogs have toxins in their skin. Their bright colors warn potential predators not to take a bite!.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  | <code>What term describes motion that repeats itself at regular time intervals, such as exhibited by a vibrating guitar string?</code> | <code>When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each successive vibration of the string takes the same time as the previous one. We define periodic motion to be a motion that repeats itself at regular time intervals, such as exhibited by the guitar string or by an object on a spring moving up and down. The time to complete one oscillation remains constant and is called the period T . Its units are usually seconds, but may be any convenient unit of time. The word period refers to the time for some event whether repetitive or not; but we shall be primarily interested in periodic motion, which is by definition repetitive. A concept closely related to period is the frequency of an event. For example, if you get a paycheck twice a month, the frequency of payment is two per month and the period between checks is half a month. Frequency f is defined to be the number of events per unit time. For periodic motion, frequency is the number of oscillations per unit time. The relationship between frequency and period is.</code> |
  | <code>What do stored fats provide our body with for later use?</code>                                                                  | <code>Fats are one type of lipid. Stored fat gives your body energy to use for later. It’s like having money in a savings account: it’s there in case you need it. Stored fat also cushions and protects internal organs. In addition, it insulates the body. It helps keep you warm in cold weather.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 7,727 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 11.4 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 34.47 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
  | sentence1                                                                | sentence2                                                                                                                                                                                                                            |
  |:-------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What do geologists use to determine the age of rock layers?</code> | <code>radioactive dating is used to determine the age of fossils. Geologists use fossils to determine the age of the rock layer that it was found in.. Geologists use radioactive dating to determine the age of rock layers.</code> |
  | <code>Air pollution can cause a decrease in what?</code>                 | <code>air pollution can cause the pH of soil to decrease. Research has shown that soil pH less than 6.0 can decrease crop yields.. Air pollution can cause a decrease in crop yields. </code>                                        |
  | <code>What organism uses their sense of smell to find a mate?</code>     | <code>Most salamanders use their sense of smell to find a mate.. Salamanders are a type of amphibian.. Some amphibians use their sense of smell to find a mate.</code>                                                               |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 4,522 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                         | fact                                                                             |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.8 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.5 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
  | question                                                                     | fact                                                                                  |
  |:-----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
  | <code>What is animal competition?</code>                                     | <code>if two animals eat the same prey then those animals compete for that pey</code> |
  | <code>If you wanted to make a metal bed frame, where would you start?</code> | <code>alloys are made of two or more metals</code>                                    |
  | <code>Places lacking warmth have few what</code>                             | <code>cold environments contain few organisms</code>                                  |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 30,250 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.65 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 76.38 tokens</li><li>max: 207 tokens</li></ul> |
* Samples:
  | sentence1                                          | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>propria definition</code>                    | <code>The lamina propria is a constituent of the moist linings known as mucous membranes or mucosa, which line various tubes in the body.The lamina propria is a thin layer of loose connective tissue which lies beneath the epithelium and together with the epithelium constitutes the mucosa.As its Latin name indicates it is a characteristic component of the mucosa, the mucosa's own special layer.he lamina propria is a constituent of the moist linings known as mucous membranes or mucosa, which line various tubes in the body.</code> |
  | <code>what family is the common bullfrog in</code> | <code>The American bullfrog (Rana catesbeiana), often simply known as the bullfrog in Canada and the United States, is an aquatic frog, a member of the family Ranidae, or “true frogs”. This frog has an olive green back and sides blotched with brownish markings and a whitish belly spotted with yellow or grey.</code>                                                                                                                                                                                                                      |
  | <code>why does well pump cycle on and off</code>   | <code>1 When a well pump turns on every time a water-using fixture’s valve is opened, or if it turns on and off rapidly while the fixture is in use, that’s short cycling. It is typically caused by a water pressure tank that has lost it built-in cushion of pressurized air.</code>                                                                                                                                                                                                                                                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 30,250 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.81 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 135.28 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                    | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:-----------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who established the republic of china in 1912 ce</code>                | <code>Republic of China (1912–1949) The Republic of China was a sovereign state in East Asia, that occupied the territories of modern China and for part of its history Mongolia and Taiwan. It was founded in 1912, after the Qing dynasty, the last imperial dynasty, was overthrown in the Xinhai Revolution. The Republic's first president, Sun Yat-sen, served only briefly before handing over the position to Yuan Shikai, former leader of the Beiyang Army. His party, then led by Song Jiaoren, won the parliamentary election held in December 1912. Song was assassinated shortly after, and the Beiyang Army led by Yuan Shikai maintained full control of the government in Beijing. Between late 1915 and early 1916, Yuan tried to reinstate the monarchy, before resigning after popular unrest. After Yuan's death in 1916, members of cliques in the former Beiyang Army claimed their autonomy and clashed with each other. During this period, the authority of the republican government was weakened by a restoration of the Qing government.</code> |
  | <code>what is the message in john lennon's imagine</code>                    | <code>Imagine (John Lennon song) "Imagine" is a song written and performed by English musician John Lennon. The best-selling single of his solo career, its lyrics encourage the listener to imagine a world at peace without the barriers of borders or the divisions of religion and nationality, and to consider the possibility that the whole of humanity would live unattached to material possessions.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  | <code>who is the original singer for these boots are made for walking</code> | <code>These Boots Are Made for Walkin' "These Boots Are Made for Walkin'" is a hit song written by Lee Hazlewood and recorded by Nancy Sinatra. It charted January 22, 1966,[3] and reached No. 1 in the United States Billboard Hot 100 and in the UK Singles Chart.[2]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 12,024 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | answer                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.49 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 200.72 tokens</li><li>max: 482 tokens</li></ul> |
* Samples:
  | query                                                                                                   | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:--------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the name of 'Bob the Builder's' cement mixer?</code>                                      | <code>BOB the BUILDER DIZZY the CEMENT MIXER BOB the BUILDER DIZZY THE CEMENT MIXER Large Friction Action Dizzy         the Cement Mixer and clicky noise turn by hand Mixer         from the Large Bob The Builder Friction toy Collection  Measures 5" x  4" High  in EXCELLENT Played with Condition �8.00 .. US $15.60  .. EUROS 12.00 Ref # 0845</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>Which cartoon character, who cooks at the Krusty Krab, lives in a pineapple under the sea?</code> | <code>SpongeBob SquarePants from SpongeBob SquarePants| Cartoon | Nick.com Gary SpongeBob SquarePants Come follow the adventures of the world's most lovable sponge and his starfish sidekick! Though they have the best intentions, SpongeBob and Patrick are always causing trouble… and plenty of laughs! When he's not at the Krusty Krab grilling up some epic Krabby Patties, SpongeBob can be found jellyfishing with Patrick, blowing bubbles, or annoying his favorite neighbor, Squidward! Bikini Bottom is home to the coolest creatures under the sea, and you CAN'T miss out on any of their adventures. Is mayonnaise an instrument? Watch SpongeBob SquarePants to find out! Are you ready, kids? AYE AYE CAPTAIN! ON TV</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>Chinese Democracy was the long awaited 2008 album release of which band?</code>                   | <code>Guns N Roses 'Chinese Democracy' Set For Wal-Mart Release | Gigwise Guns N Roses 'Chinese Democracy' Set For Wal-Mart Release Band are in talks... Guns N Roses Tickets Buy tickets safely & securely with Seatwave Guns N’ Roses long-awaited new studio album could be released exclusively in retail stores, it’s been reported. Wal-Mart and Best Buy are understood to be leading negotiations to acquire 'Chinese Democracy's' release - possibly before the end of 2008. Industry reports have escalated since Irving Azoff's Front Line Management took over all of the bands business duties. Last year, the company were influential in instigating the release of The Eagles ‘Long Road To Eden’ via Wal-Mart chains. The album enjoyed huge, chart-topping success in the US. According to Billboard, Guns N Roses are also in negotiations for a more traditional release which would take in the rest of the world. As previously reported on Gigwise , Guns N Roses will release their first song in over a decade on the next installment of Rock Band. 'Shackler's Revenge' leads a playlist that spans music releases from the 1960s to today. Guns N Roses – Through The Years.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 30,250 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.37 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 56.7 tokens</li><li>max: 154 tokens</li></ul> |
* Samples:
  | sentence1                                             | sentence2                                                                                                                                                                                                                                                                                                         |
  |:------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>do namibians need a visa for london?</code>     | <code>The Embassy is closed every Friday. Namibia tourist visa is not required for citizens of United Kingdom for a stay up to 90 days. Sounds good!</code>                                                                                                                                                       |
  | <code>what is the meaning of personal finance?</code> | <code>Personal finance is a term that covers managing your money as well as saving and investing. ... It often refers to the entire industry that provides financial services to individuals and households and advises them about financial and investment opportunities.</code>                                 |
  | <code>what are trim tabs for?</code>                  | <code>Trim tabs are either flat plates or vertical blades fitted either side of the boat and attached to the transom. They are used to trim or level the boat, both fore and aft and side to side. Trim tabs are controlled up and downwards by either a hydraulic, or electric ram system on the transom.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 21,829 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 25.63 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.55 tokens</li><li>max: 68 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                    | sentence2                                                                                                                                                                        |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Thompson was born in Hendon , North London , Dena Holmes in 1960 and worked for a building society bank .</code>                                                       | <code>Thompson was born Dena Holmes in 1960 in Hendon , North London . She worked for a building society .</code>                                                                |
  | <code>One of his first cousins was Elizabeth , aka Lady Elizabeth Hervey , aka Bess Foster , Duchess of Devonshire . His younger brother married Lord Bishop Foster .</code> | <code>One of his first cousins was Elizabeth , alias Lady Elizabeth Hervey , alias Bess Foster , Duchess of Devonshire , his younger brother married Lord Bishop Foster .</code> |
  | <code>At the executive level , EEAA represents the central arm of the Ministry .</code>                                                                                      | <code>At executive level , EEAA represents the central arm of the ministry .</code>                                                                                              |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

### Evaluation Datasets

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 108 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 21.36 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.11 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
  | claim                                                                               | evidence                                                                                                                                                                                                                                                                                                                                               |
  |:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Dragon Con had over 5000 guests .</code>                                      | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code>                                                                                                          |
  | <code>COVID-19 has reached more than 185 countries .</code>                         | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code>                                                                                                                                                                                                   |
  | <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### negation-triplets

* Dataset: negation-triplets
* Size: 64 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | entailment                                                                        | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 11 tokens</li><li>mean: 13.64 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 13.23 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 13.52 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
  | anchor                                                                           | entailment                                                             | negative                                                         |
  |:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----------------------------------------------------------------|
  | <code>Set of toy animals sitting in front of a red wooden wagon.</code>          | <code>Several toy animals - a bull, giraffe, deer and parakeet.</code> | <code>Several toy animals - a cow, lion, wolf and canary.</code> |
  | <code>A bathroom with a toilette with it's seat down.</code>                     | <code>A bathroom with a sink and a toilet</code>                       | <code>A bathroom without a sink or a toilet</code>               |
  | <code>A striped plane flying up into the sky as the sun shines behind it.</code> | <code>An airplane is ascending into the white sky</code>               | <code>An airplane is descending into the black sky</code>        |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 54 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 20.81 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                     | sentence2                                                                              |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>humans normally have 23 pairs of chromosomes.</code>                                                                                                                                    | <code>Humans typically have 23 pairs pairs of chromosomes.</code>                      |
  | <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code>                                                                                       | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
  | <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code>     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence2</code> and <code>question</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence2                                                                         | question                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 15.31 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 14.91 tokens</li><li>max: 26 tokens</li></ul> |
* Samples:
  | sentence2                                                                                                | question                                                                            |
  |:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | <code>It takes earth one week to rotate on its axis seven times.</code>                                  | <code>How long does it take for Earth to rotate on its axis seven times?</code>     |
  | <code>Both hurricanes and tornadoes always have high winds.</code>                                       | <code>Both hurricanes and tornadoes always</code>                                   |
  | <code>Seeds of a pine cone are easily carried by the wind and dispersed because seeds have wings.</code> | <code>Why are seeds of a pine cone easily carried by the wind and dispersed?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
  |         | document                                                                             | summary                                                                            |
  |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                             |
  | details | <ul><li>min: 63 tokens</li><li>mean: 214.16 tokens</li><li>max: 341 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 25.86 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
  | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | summary                                                                                                                 |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------|
  | <code>The rescue on Monday afternoon involved a challenging winch down to the casualty by a coastguard helicopter's paramedic.<br>The Inverness Airport-based helicopter could not be brought too close in case its downdraft blew the man and his fellow walkers off the ridge.<br>The walker was taken to hospital for treatment.<br>The alarm was raised at 14:25 on Monday after the man became unwell on Carn Mor Dearg.<br>He was airlifted to Torlundy and from there was taken to hospital by ambulance.<br>Scott Sharman, paramedic winchman, said: "It was an extremely steep ridge and we needed to make sure we kept at a safe distance because the downdraft could very easily have blown them over the ridge."</code>                                                                                                                                                                                                                                                                                                                  | <code>A walker had to be rescued from a 1,000m (3,500ft) ridge near Ben Nevis after he became ill.</code>               |
  | <code>The 23-year-old, who did not make a senior appearances during a year with the Hornets, has signed a two-year deal with the O's.<br>Woods began his career in Cambridge United's youth set-up and subsequently joined Manchester United's academy.<br>He moved to Doncaster Rovers in 2009 and went on to make 82 appearances, before leaving the club last summer.<br>Woods, a former England Under-19 international, will provide competition for fellow new arrival Adam Legzdins.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <code>League One side Leyton Orient have signed goalkeeper Gary Woods following his departure from Watford.</code>      |
  | <code>The 32-year-old, the number one ranked Test bowler, has been out of action with a groin strain since the first Test against India in early November.<br>But in Cape Town this week he was able to complete two bowling spells at match intensity in the nets, run sprints and do agility tests and fielding drills.<br>The first of the four-match Test series begins in Durban on 26 December.<br>Proteas team manager, Dr Mohammed Moosajee said: "Dale has put a lot of work into his training and rehab since his return from India so we are very happy to have him back from injury.<br>"He was put through a thorough fitness test on Thursday by physiotherapist, Shane Jabaar, he came through the tests without any discomfort and will be available for selection for the first Test match against England."<br>Steyn has taken 402 wickets in 81 Tests at an average of 22.56, including 46 in 11 matches against England.<br>South Africa remain at the top of the Test rankings despite a 3-0 defeat in India this month.</code> | <code>South Africa paceman Dale Steyn will be fit for the Test series with England after passing a fitness test.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 16.72 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 73.28 tokens</li><li>max: 332 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                     | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The skull is a part of a vertebrate endoskeleton that encloses and protects what organ?</code>                                                          | <code>part of a vertebrate endoskeleton that encloses and protects the brain; also called the skull.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  | <code>The action of sunlight on the skin triggers the body to produce what vitamin?</code>                                                                    | <code>Milk and other dairy foods are not the only sources of calcium. This important nutrient is also found in green leafy vegetables, broccoli, and intact salmon and canned sardines with their soft bones. Nuts, beans, seeds, and shellfish provide calcium in smaller quantities. Except for fatty fish like salmon and tuna, or fortified milk or cereal, vitamin D is not found naturally in many foods. The action of sunlight on the skin triggers the body to produce its own vitamin D (Figure 6.22), but many people, especially those of darker complexion and those living in northern latitudes where the sun’s rays are not as strong, are deficient in vitamin D. In cases of deficiency, a doctor can prescribe a vitamin D supplement.</code> |
  | <code>What phenomenon is essential in order for evolution to occur because it increases genetic variation and the potential for individuals to differ?</code> | <code>Mutations are essential for evolution to occur because they increase genetic variation and the potential for individuals to differ. The majority of mutations are neutral in their effects on the organisms in which they occur. Beneficial mutations may become more common through natural selection. Harmful mutations may cause genetic disorders or cancer.</code>                                                                                                                                                                                                                                                                                                                                                                                    |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 11.34 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 35.58 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
  | sentence1                                                                         | sentence2                                                                                                                                                                                                  |
  |:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What designed for swimming are used for moving faster through water?</code> | <code>webbed feet are used for moving faster through water by aquatic animals. Ducks have webbed feet, designed for swimming.. Feet designed for swimming are used for moving faster through water.</code> |
  | <code>what falls making sunlight available to surrounding plants?</code>          | <code>if a tree falls then sunlight becomes available to the surrounding plants. Oak trees are found throughout.. if an oak falls then sunlight becomes available to surrounding plants</code>             |
  | <code>What is the term used for an individual who is learning ethology?</code>    | <code>Ethologists usually study how animals behave in their natural environment.. Ethology is the study of behavior.. Ethologists learn ethology</code>                                                    |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | fact                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
  | question                                                               | fact                                                                         |
  |:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code>                      |
  | <code>What creates a valley?</code>                                    | <code>a valley is formed by a river flowing</code>                           |
  | <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.91 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 80.7 tokens</li><li>max: 195 tokens</li></ul> |
* Samples:
  | sentence1                                                    | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  |:-------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>when did young american by david bowie come out</code> | <code>Young Americans (song) Young Americans is a single by English singer and songwriter David Bowie, released in 1975. It is included in the album of the same name. The song was a massive breakthrough in the United States, where glam rock had never really become very popular outside the major cities.</code>                                                                                                                                                                                                                         |
  | <code>are investment commissions tax deductible</code>       | <code>You typically pay a commission when you buy, and you pay another commission when you sell. The IRS does not consider investment commissions to be a tax-deductible expense. Instead, the commission becomes part of the investment's cost basis, which still provides you with some tax relief.</code>                                                                                                                                                                                                                                   |
  | <code>does photosynthesis occur in prokaryotes</code>        | <code>Animal cells do not undergo photosynthesis, but in a plant cell, the site of photosynthesis is the chloroplast. Prokaryotes are more primitive-they have no nucleus for a start, and also have no chloroplasts.They are bacterial cells and so do not undergo photosynthesis.ating Newest Oldest. Best Answer: Actually, some procaryotes have photosynthesis. The thing is, as they don't have organelles, it doesn't occur in a differentiated structure, like choroplasts in eucaryotes. It happens along the plasma membrane.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.68 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 31 tokens</li><li>mean: 127.79 tokens</li><li>max: 326 tokens</li></ul> |
* Samples:
  | sentence1                                                     | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:--------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who played gimli in the lord of the rings movies</code> | <code>John Rhys-Davies John Rhys-Davies (born 5 May 1944) is a Welsh actor and voice actor known for his portrayal of Gimli in The Lord of the Rings trilogy and the charismatic Arab excavator Sallah in the Indiana Jones films. He also played Agent Michael Malone in the 1993 remake of the 1950s television series The Untouchables, Pilot Vasco Rodrigues in the mini-series Shōgun, Professor Maximillian Arturo in Sliders, King Richard I in Robin of Sherwood, General Leonid Pushkin in the James Bond film The Living Daylights, and Macro in I, Claudius. Additionally, he provided the voices of Cassim in Disney's Aladdin and the King of Thieves, Macbeth in Gargoyles, Man Ray in SpongeBob SquarePants, Hades in Justice League and Tobias in the computer game Freelancer.</code>                                            |
  | <code>why did the red sea get its name</code>                 | <code>Red Sea Red Sea is a direct translation of the Greek Erythra Thalassa (Ερυθρὰ Θάλασσα), Latin Mare Rubrum (alternatively Sinus Arabicus, literally "Arabian Gulf"), Arabic: البحر الأحمر‎, translit. Al-Baḥr Al-Aḥmar (alternatively بحر القلزم Baḥr Al-Qulzum, literally "the Sea of Clysma"), Somali Badda Cas and Tigrinya Qeyyiḥ bāḥrī (ቀይሕ ባሕሪ). The name of the sea may signify the seasonal blooms of the red-coloured Trichodesmium erythraeum near the water's surface.[5] A theory favored by some modern scholars is that the name red is referring to the direction south, just as the Black Sea's name may refer to north. The basis of this theory is that some Asiatic languages used color words to refer to the cardinal directions.[6] Herodotus on one occasion uses Red Sea and Southern Sea interchangeably.[7]</code> |
  | <code>when is the new president of mexico announced</code>    | <code>Mexican general election, 2018 López Obrador won the election on 1 July 2018 with over 50% of the popular vote. In terms of states won, López Obrador won in a landslide, carrying 31 out of 32 of the country's states,[5] the most states won by a candidate since Ernesto Zedillo won every state in the 1994 election.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | answer                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 16.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 211.76 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | query                                                                                         | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Who sang '99 Red Balloons'?</code>                                                      | <code>99 red ballons - Nena - YouTube 99 red ballons - Nena Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Uploaded on Jul 29, 2006 This is the video 99 red ballons (english version) by nena Category</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  | <code>Who is the patron saint of doctors, surgeons, painters and artists?</code>              | <code>St. Luke Medals St. Luke Medals St. Luke is the Patron Saint of artists, brewers, butchers, doctors, glassworks, painters, physicians and surgeons. Luke is symbolically portrayed as an animal of sacrifice, the ox, because he begins his Gospel with the history of Zachary, the priest offering sacrifice to God, and because throughout his Gospel he accentuates the universal priesthood of Christ. St. Luke�s Gospel includes six miracles and 18 parables not found elsewhere in the Bible.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>Vande Mataram (I praise thee, Mother) is the national song of which BRIC nation?</code> | <code>'Vande Mataram' Real National Anthem: RSS Leader- The New Indian Express 'Vande Mataram' Real National Anthem: RSS Leader By PTI   |   Published: 02nd April 2016 01:09 PM  |   Last Updated: 02nd April 2016 01:09 PM  |   A+A A-   |   0 Share Via Email MUMBAI: Days after RSS chief Mohan Bhagwat's 'Bharat Mata Ki Jai' remarks, a top functionary of the organisation has said that 'Vande Mataram' is the real national anthem as opposed to the 'Constitutionally-mandated' Jana Gana Mana. "Jana Gana Mana is today our national anthem. It has to be respected. There is no reason why it should evoke any other sentiment," RSS General Secretary Bhaiyyaji Joshi said. "But it is the national anthem as decided by the Constitution. If one considers the true meaning, then Vande Mataram is the national anthem," he said yesterday at the Deendayal Upadhyay Research Institute here. "We consider things created due to the Constitution to be national," Joshi said. "When was Jana Gana Mana written? It was written some time back. But the sentiments expressed in Jana Gana Mana have been expressed keeping the state in view," he said. "However, the sentiments expressed in Vande Mataram denote the nation's character and style. This is the difference between the two songs. Both deserve respect," Joshi said. 'Vande Mataram', literally, "I praise thee, Mother", is a poem by Bankim Chandra Chattopadhyay. A hymn to the 'Mother Land', it played a vital role in the Indian independence movement. In 1950, the song's first two verses were given the official status of the "national song", distinct from the national anthem, Jana Gana Mana. O</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.34 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 57.08 tokens</li><li>max: 112 tokens</li></ul> |
* Samples:
  | sentence1                                                       | sentence2                                                                                                                                                                                                                                                                                                                               |
  |:----------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>which gases are emitted from vehicles?</code>             | <code>['Particulate matter (PM). One type of particulate matter is the soot seen in vehicle exhaust. ... ', 'Volatile Organic Compounds (VOCs). ... ', 'Nitrogen oxides (NOx). ... ', 'Carbon monoxide (CO). ... ', 'Sulfur dioxide (SO2). ... ', 'Greenhouse gases.']</code>                                                           |
  | <code>how long does it take for someone to not be drunk?</code> | <code>It takes 30 minutes to feel the effects of alcohol. Drinking more than one drink every 30 minutes means you are probably drinking too much, too fast. Slow yourself down, and if you find yourself feeling thirsty before those 30 minutes have passed, try a glass of water first.</code>                                        |
  | <code>is ssdi taxable in ohio?</code>                           | <code>Social Security retirement benefits are fully exempt from state income taxes in Ohio. Any income from retirement accounts (like a 401(k) or an IRA) or pensions is taxed as regular income (but there are credits available). Social security benefits, if taxable on the federal return, are deducted on Ohio schedule A.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 25.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.55 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                      | sentence2                                                                                                                                                      |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>They were there to enjoy us and they were there to pray for us .</code>                                                                                  | <code>They were there for us to enjoy and they were there for us to pray .</code>                                                                              |
  | <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
  | <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code>                                        | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code>                                            |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 640
- `per_device_eval_batch_size`: 64
- `learning_rate`: 3.5e-05
- `weight_decay`: 5e-05
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 6.999999999999999e-06}
- `warmup_ratio`: 0.2
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-step3-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 640
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3.5e-05
- `weight_decay`: 5e-05
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 6.999999999999999e-06}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-step3-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | paws-pos loss | trivia pairs loss | scitail-pairs-pos loss | scitail-pairs-qa loss | qasc pairs loss | sciq pairs loss | openbookqa pairs loss | msmarco pairs loss | nq pairs loss | vitaminc-pairs loss | xsum-pairs loss | gooaq pairs loss | negation-triplets loss | VitaminC_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:-------------:|:-----------------:|:----------------------:|:---------------------:|:---------------:|:---------------:|:---------------------:|:------------------:|:-------------:|:-------------------:|:---------------:|:----------------:|:----------------------:|:---------------:|:------------------------:|
| 0.0022 | 1    | 0.8103        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0045 | 2    | 0.8803        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0067 | 3    | 0.8219        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0090 | 4    | 0.0574        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0112 | 5    | 0.3044        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0135 | 6    | 0.3306        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0157 | 7    | 0.759         | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0180 | 8    | 0.0472        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0202 | 9    | 0.7782        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0225 | 10   | 0.0757        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0247 | 11   | 0.7778        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0270 | 12   | 0.7111        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0292 | 13   | 0.6598        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0315 | 14   | 0.8901        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0337 | 15   | 0.3206        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0360 | 16   | 0.3408        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0382 | 17   | 0.5623        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0404 | 18   | 0.0758        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0427 | 19   | 0.994         | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0449 | 20   | 2.4196        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0472 | 21   | 0.0561        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0494 | 22   | 0.0827        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0517 | 23   | 0.7405        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0539 | 24   | 0.9656        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0562 | 25   | 0.7855        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0584 | 26   | 0.6349        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0607 | 27   | 0.8087        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0629 | 28   | 0.9282        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0652 | 29   | 0.3377        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0674 | 30   | 0.3289        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0697 | 31   | 0.6314        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0719 | 32   | 0.0611        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0742 | 33   | 0.8942        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0764 | 34   | 0.0701        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0787 | 35   | 0.8506        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0809 | 36   | 0.3386        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0831 | 37   | 0.0701        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0854 | 38   | 0.8042        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0876 | 39   | 0.8744        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0899 | 40   | 0.8644        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0921 | 41   | 0.8647        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0944 | 42   | 0.7916        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0966 | 43   | 0.8599        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.0989 | 44   | 0.0523        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1011 | 45   | 0.6968        | 0.0245        | 0.5306            | 0.0737                 | 0.0016                | 0.0908          | 0.0154          | 0.6755                | 0.1599             | 0.0959        | 1.7274              | 0.0382          | 0.2968           | 0.9175                 | 0.5544          | 0.9038                   |
| 0.1034 | 46   | 0.3376        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1056 | 47   | 0.5174        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1079 | 48   | 0.8162        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1101 | 49   | 0.3545        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1124 | 50   | 0.315         | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1146 | 51   | 0.0627        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1169 | 52   | 0.8851        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1191 | 53   | 0.8382        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1213 | 54   | 0.733         | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1236 | 55   | 0.7173        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1258 | 56   | 0.7659        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1281 | 57   | 0.793         | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1303 | 58   | 0.5426        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1326 | 59   | 0.7641        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1348 | 60   | 0.0657        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1371 | 61   | 0.7836        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1393 | 62   | 0.9306        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1416 | 63   | 0.8673        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1438 | 64   | 0.9296        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1461 | 65   | 0.8211        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1483 | 66   | 0.7685        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1506 | 67   | 0.7139        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1528 | 68   | 0.8241        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1551 | 69   | 0.6256        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1573 | 70   | 0.8842        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1596 | 71   | 0.804         | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1618 | 72   | 0.0989        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1640 | 73   | 0.332         | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1663 | 74   | 0.5736        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1685 | 75   | 0.8285        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1708 | 76   | 0.9561        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1730 | 77   | 0.0633        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1753 | 78   | 0.0848        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1775 | 79   | 0.8325        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1798 | 80   | 1.0011        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1820 | 81   | 0.8697        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1843 | 82   | 0.8344        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1865 | 83   | 0.9967        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1888 | 84   | 0.4638        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1910 | 85   | 0.8994        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1933 | 86   | 0.7789        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1955 | 87   | 0.0555        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.1978 | 88   | 0.3778        | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |
| 0.2    | 89   | 0.708         | -             | -                 | -                      | -                     | -               | -               | -                     | -                  | -             | -                   | -               | -                | -                      | -               | -                        |


### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->