File size: 179,267 Bytes
7008dd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 |
---
base_model: bobox/DeBERTa-small-ST-v1-test-step2
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:279409
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: what is acetylcholinesterase in biochemistry
sentences:
- The Arkansas was the last nuclear powered cruiser built by the United States.
(Click here for detailed information about the USS Arkansas) USS Enterprise (CVN-65)
The USS Enterprise was the Navy's first nuclear powered aircraft carrier and from
1961 to 1972 she was the biggest warship in the world.
- The staph infection may also live on the skin of a dog as a parasite or in the
respiratory system of a dog. In some cases if a dog is not treated right away
the dog could become very ill or even die. In some cases where a dog is infected
with staph a dog may have one or several different symptoms. These signs may be
a reason to have a dog seen by a veterinarian; typically this disease may make
a dog very sick. Some symptoms of staph infection may include but are not limited
to.
- Acetylcholinesterase (HGNC symbol ACHE), also known as AChE or acetylhydrolase,
is the primary cholinesterase in the body.It is an enzyme that catalyzes the breakdown
of acetylcholine and of some other choline esters that function as neurotransmitters.AChE
is found at mainly neuromuscular junctions and in chemical synapses of the cholinergic
type, where its activity serves to terminate synaptic transmission.uring neurotransmission,
ACh is released from the nerve into the synaptic cleft and binds to ACh receptors
on the post-synaptic membrane, relaying the signal from the nerve. AChE, also
located on the post-synaptic membrane, terminates the signal transmission by hydrolyzing
ACh.
- source_sentence: More than 169 countries had reported over 212,000 COVID-19 cases
before March 19 , 2020 .
sentences:
- As of 23 March , more than 341,000 cases of COVID-19 have been reported in 192
countries and territories , resulting in more than 14,700 deaths and 99,000 recoveries
.
- As of 21 March , more than 278,000 cases of COVID-19 have been reported in over
186 countries and territories , resulting in more than 11,500 deaths and 92,000
recoveries. virus seems to mostly spread between people via respiratory droplets
.
- As of 18 March 2020 , more than 212,000 cases of COVID-19 have been reported in
at least 170 countries and territories , with major outbreaks in China , Iran
and the European Union .
- source_sentence: The brain is harmed if you get meningitis.
sentences:
- Which organ of our body is harmed if you get meningitis?
- What is the rate at which a specific allele appears within a population called?
- What is the term for the application of science to solve problems?
- source_sentence: Electrical energy can be converted into kinetic energy and heat
energy by an electric motor.
sentences:
- Solution is the term for a homogeneous mixture of two or more substances.
- Solution is the term for a homogeneous mixture of two or more substances.
- Electric motors transform electrical energy into kinetic energy.
- source_sentence: where was the first hudson bay company post
sentences:
- Hudson's Bay Company Hudson's Bay Company's first inland trading post was established
by Samuel Hearne in 1774 in Cumberland House, Saskatchewan.[38][39]
- Another Mother for Peace Los Angeles artist Lorraine Art Schneider donated the
use of a striking illustration for the Mother's Day peace cards--a sunflower on
yellow background amid the slogan “War is not healthy for children and other living
things.” [1]
- Steven Ogg Steven Ogg is a Canadian actor.[1] He is best known for his roles as
Trevor Philips in the 2013 video game Grand Theft Auto V and Simon in The Walking
Dead.[2] He has also appeared in television series such as Better Call Saul, Law
& Order, Person of Interest, Broad City, and Westworld.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8803067271464453
name: Pearson Cosine
- type: spearman_cosine
value: 0.9038005474254912
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9020751259156048
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8980189529612906
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9023937835918766
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8989733631129851
name: Spearman Euclidean
- type: pearson_dot
value: 0.8698285291814508
name: Pearson Dot
- type: spearman_dot
value: 0.8707897794601254
name: Spearman Dot
- type: pearson_max
value: 0.9023937835918766
name: Pearson Max
- type: spearman_max
value: 0.9038005474254912
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: VitaminC
type: VitaminC
metrics:
- type: cosine_accuracy
value: 0.55859375
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8300318121910095
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6657718120805369
name: Cosine F1
- type: cosine_f1_threshold
value: 0.37456807494163513
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5020242914979757
name: Cosine Precision
- type: cosine_recall
value: 0.9880478087649402
name: Cosine Recall
- type: cosine_ap
value: 0.5514483751609435
name: Cosine Ap
- type: dot_accuracy
value: 0.5546875
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 311.380615234375
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6684709066305818
name: Dot F1
- type: dot_f1_threshold
value: 144.8927001953125
name: Dot F1 Threshold
- type: dot_precision
value: 0.5061475409836066
name: Dot Precision
- type: dot_recall
value: 0.9840637450199203
name: Dot Recall
- type: dot_ap
value: 0.5333497363350208
name: Dot Ap
- type: manhattan_accuracy
value: 0.556640625
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 232.38790893554688
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6649006622516557
name: Manhattan F1
- type: manhattan_f1_threshold
value: 498.126220703125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.498015873015873
name: Manhattan Precision
- type: manhattan_recall
value: 1.0
name: Manhattan Recall
- type: manhattan_ap
value: 0.5515569514532939
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.556640625
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 11.028482437133789
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6649006622516557
name: Euclidean F1
- type: euclidean_f1_threshold
value: 23.38451385498047
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.498015873015873
name: Euclidean Precision
- type: euclidean_recall
value: 1.0
name: Euclidean Recall
- type: euclidean_ap
value: 0.5544340410314673
name: Euclidean Ap
- type: max_accuracy
value: 0.55859375
name: Max Accuracy
- type: max_accuracy_threshold
value: 311.380615234375
name: Max Accuracy Threshold
- type: max_f1
value: 0.6684709066305818
name: Max F1
- type: max_f1_threshold
value: 498.126220703125
name: Max F1 Threshold
- type: max_precision
value: 0.5061475409836066
name: Max Precision
- type: max_recall
value: 1.0
name: Max Recall
- type: max_ap
value: 0.5544340410314673
name: Max Ap
---
# SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-small-ST-v1-test-step2](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step2) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) and [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bobox/DeBERTa-small-ST-v1-test-step2](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step2) <!-- at revision 227c804cec7dd9eaab6a3cd4f9df268d4b5a1ca2 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- negation-triplets
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- xsum-pairs
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
- openbookqa_pairs
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-test-step3-checkpoints-tmp")
# Run inference
sentences = [
'where was the first hudson bay company post',
"Hudson's Bay Company Hudson's Bay Company's first inland trading post was established by Samuel Hearne in 1774 in Cumberland House, Saskatchewan.[38][39]",
'Steven Ogg Steven Ogg is a Canadian actor.[1] He is best known for his roles as Trevor Philips in the 2013 video game Grand Theft Auto V and Simon in The Walking Dead.[2] He has also appeared in television series such as Better Call Saul, Law & Order, Person of Interest, Broad City, and Westworld.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8803 |
| **spearman_cosine** | **0.9038** |
| pearson_manhattan | 0.9021 |
| spearman_manhattan | 0.898 |
| pearson_euclidean | 0.9024 |
| spearman_euclidean | 0.899 |
| pearson_dot | 0.8698 |
| spearman_dot | 0.8708 |
| pearson_max | 0.9024 |
| spearman_max | 0.9038 |
#### Binary Classification
* Dataset: `VitaminC`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.5586 |
| cosine_accuracy_threshold | 0.83 |
| cosine_f1 | 0.6658 |
| cosine_f1_threshold | 0.3746 |
| cosine_precision | 0.502 |
| cosine_recall | 0.988 |
| cosine_ap | 0.5514 |
| dot_accuracy | 0.5547 |
| dot_accuracy_threshold | 311.3806 |
| dot_f1 | 0.6685 |
| dot_f1_threshold | 144.8927 |
| dot_precision | 0.5061 |
| dot_recall | 0.9841 |
| dot_ap | 0.5333 |
| manhattan_accuracy | 0.5566 |
| manhattan_accuracy_threshold | 232.3879 |
| manhattan_f1 | 0.6649 |
| manhattan_f1_threshold | 498.1262 |
| manhattan_precision | 0.498 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.5516 |
| euclidean_accuracy | 0.5566 |
| euclidean_accuracy_threshold | 11.0285 |
| euclidean_f1 | 0.6649 |
| euclidean_f1_threshold | 23.3845 |
| euclidean_precision | 0.498 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.5544 |
| max_accuracy | 0.5586 |
| max_accuracy_threshold | 311.3806 |
| max_f1 | 0.6685 |
| max_f1_threshold | 498.1262 |
| max_precision | 0.5061 |
| max_recall | 1.0 |
| **max_ap** | **0.5544** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### negation-triplets
* Dataset: negation-triplets
* Size: 35,750 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 21.52 tokens</li><li>max: 101 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.34 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.62 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| <code>Brunette woman in a white bikini pouring a drink into a man's cup.</code> | <code>A woman is serving a beverage to a man.</code> | <code>A woman is not serving a beverage to a man.</code> |
| <code>People under a tent at a reception.</code> | <code>People are outside.</code> | <code>People are inside.</code> |
| <code>A man is smoking at sunset.</code> | <code>The time in the picture is probably somewhere between 3PM and 9PM.</code> | <code>The time in the picture is probably not somewhere between 3PM and 9PM.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 34,375 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 18.14 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 37.45 tokens</li><li>max: 192 tokens</li></ul> |
* Samples:
| claim | evidence |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dora and the Lost City of Gold grossed more than $ 58 million in North America , more than $ 40 million in other territories , and more than $ 98 million globally .</code> | <code>, Dora and the Lost City of Gold has grossed $ 58.4 million in the United States and Canada , and $ 40.4 million in other territories , for a worldwide total of $ 98.8 million , against a production budget of $ 49 million .</code> |
| <code>After Juan Antonio and Vicky Cristina have sex , they go to bed .</code> | <code>Afterwards , Juan Antonio lets her know he thinks she 's beautiful , and they make love , and eventually go to bed .</code> |
| <code>Tove Lo 's single `` Disco Tits '' reached number 55 in Sweden .</code> | <code>`` Its lead single , `` '' Disco Tits '' '' , peaked at number 55 in Sweden. ''</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 14,237 training samples
* Columns: <code>sentence2</code> and <code>question</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | question |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.29 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.21 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
| sentence2 | question |
|:--------------------------------------------------------------------------|:--------------------------------------------------------------------|
| <code>When an atom gains or loses an electron it becames a(n) ion.</code> | <code>When an atom gains or loses an electron it becames an?</code> |
| <code>The stratosphere is the layer above the troposphere.</code> | <code>What is the layer above the troposphere?</code> |
| <code>Solar and wind are still expensive compared to fossil fuels.</code> | <code>Solar and wind are still expensive compared to what?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 8,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 23.52 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.54 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>Ozone is a molecule formed of THREE oxygen atoms.</code> | <code>Three oxygen ions make up an ozone molecule.</code> |
| <code>Animals live by eating the energy produced by plants (herbivores), or live by eating animals that eat plants (carnivores) Let's take the human being (a polyhagous animal) as an example and ponder upon it.</code> | <code>Herbivores is the term for animals that eat producers to get energy.</code> |
| <code>Fertilization triggers Meiosis II, and then the sperm nucleus unites with the resulting egg nucleus.</code> | <code>When a sperm penetrates the egg, it triggers the egg to complete meiosis.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 38,500 training samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
| | document | summary |
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 40 tokens</li><li>mean: 223.77 tokens</li><li>max: 443 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 25.9 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
| document | summary |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>William Heath, 12, from Earls Barton, has so far disguised himself as Ali G, Hercule Poirot and Groucho Marx as part of his Movember campaign.<br>He is raising money in memory of his grandfather, who died from cancer in February.<br>William came up with the idea as he cannot grow a moustache himself.<br>His granddad, Robin Wickham, died from pancreatic, testicular and prostate cancer, and William is now asking people to donate to The Movember Foundation, via his own "Mo Space" page.<br>William has already dressed as seven famous moustachioed men, including Biggles, Keith Lemon and Magnum PI.<br>His costumes were sourced from a combination of a local fancy dress shop and items around the home.<br>"My granddad and I were very close," he said. "He used to come on holiday with us and was always having fun."<br>His mum Clare said William had wanted to do something that would help, but was also fun.<br>She said: "We needed to fill 30 days. When you try to think of 30 people with moustaches it is harder than you think.<br>"The overriding thing is that it has been fun, but it has serious implications."<br>William said his favourite character so far had been Ali G, but he had struggled to create a successful Ned Flanders outfit.<br>He said: "I tried to paint my face yellow, but it didn't really work."</code> | <code>A schoolboy has decided to raise money for a men's health charity by dressing up as a different moustachioed famous face every day for a month.</code> |
| <code>Media playback is not supported on this device<br>The Daily Mail claimed a £10m offer was made to owner Owen Oyston despite him stating the club was not for sale at a recent public meeting with fans.<br>Oyston was heckled throughout over the way the club is being run.<br>"The owners of the club have received no approach whatsoever, from any investor or third party," said a statement.<br>The Blackpool Supporters Trust launched a £16m bid to buy the club July 2015 but Oyston, whose son Karl is chairman, eventually ended those takeover talks.<br>The Seasiders, who will play in the fourth tier for the first time since 2000-01 this season, have also announced the signing of midfielder Danny Pugh.<br>The 33-year-old former Manchester United trainee joins on a free transfer after his release by Bury and has signed a one-year deal, with further 12-month option.<br>"He brings a wealth of experience to the team and will be a strong, vocal presence in the middle of the park," said boss Gary Bowyer.</code> | <code>League Two club Blackpool have denied claims they were subject of a new takeover offer.</code> |
| <code>The Cochrane Collaboration carried out a systematic review of eight exercise trials involving more than 300 patients living at home or in care.<br>Exercise did little for patients' moods, the research concluded.<br>But it did help them carry out daily activities such as rising from a chair, and boosted their cognitive skills.<br>Whether these benefits improve quality of life is still unclear, but the study authors say the findings are reason for optimism.<br>Dementia affects some 800,000 people in the UK. And the number of people with the condition is steadily increasing because people are living longer.<br>It is estimated that by 2021, the number of people with dementia in the UK will have increased to around one million.<br>With no cure, ways to improve the lives of those living with the condition are vital.<br>Researcher Dorothy Forbes, of the University of Alberta, and colleagues who carried out the Cochrane review, said: "Clearly, further research is needed to be able to develop best practice guidelines to enable healthcare providers to advise people with dementia living at home or in institutions.<br>"We also need to understand what level and intensity of exercise is beneficial for someone with dementia."<br>Dr Laura Phipps of Alzheimer's Research UK said: "We do know that exercise is an important part of keeping healthy, and though we can't say that exercise will prevent dementia, evidence does suggest it can help reduce the risk of the condition as part of a healthy lifestyle."</code> | <code>People with dementia who exercise improve their thinking abilities and everyday life, a body of medical research concludes.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 11,095 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.92 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 85.56 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The bright color of poison dart frogs serves what purpose?</code> | <code>Poison dart frogs have toxins in their skin. Their bright colors warn potential predators not to take a bite!.</code> |
| <code>What term describes motion that repeats itself at regular time intervals, such as exhibited by a vibrating guitar string?</code> | <code>When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each successive vibration of the string takes the same time as the previous one. We define periodic motion to be a motion that repeats itself at regular time intervals, such as exhibited by the guitar string or by an object on a spring moving up and down. The time to complete one oscillation remains constant and is called the period T . Its units are usually seconds, but may be any convenient unit of time. The word period refers to the time for some event whether repetitive or not; but we shall be primarily interested in periodic motion, which is by definition repetitive. A concept closely related to period is the frequency of an event. For example, if you get a paycheck twice a month, the frequency of payment is two per month and the period between checks is half a month. Frequency f is defined to be the number of events per unit time. For periodic motion, frequency is the number of oscillations per unit time. The relationship between frequency and period is.</code> |
| <code>What do stored fats provide our body with for later use?</code> | <code>Fats are one type of lipid. Stored fat gives your body energy to use for later. It’s like having money in a savings account: it’s there in case you need it. Stored fat also cushions and protects internal organs. In addition, it insulates the body. It helps keep you warm in cold weather.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 7,727 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.4 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 34.47 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What do geologists use to determine the age of rock layers?</code> | <code>radioactive dating is used to determine the age of fossils. Geologists use fossils to determine the age of the rock layer that it was found in.. Geologists use radioactive dating to determine the age of rock layers.</code> |
| <code>Air pollution can cause a decrease in what?</code> | <code>air pollution can cause the pH of soil to decrease. Research has shown that soil pH less than 6.0 can decrease crop yields.. Air pollution can cause a decrease in crop yields. </code> |
| <code>What organism uses their sense of smell to find a mate?</code> | <code>Most salamanders use their sense of smell to find a mate.. Salamanders are a type of amphibian.. Some amphibians use their sense of smell to find a mate.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 4,522 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.8 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.5 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| <code>What is animal competition?</code> | <code>if two animals eat the same prey then those animals compete for that pey</code> |
| <code>If you wanted to make a metal bed frame, where would you start?</code> | <code>alloys are made of two or more metals</code> |
| <code>Places lacking warmth have few what</code> | <code>cold environments contain few organisms</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 30,250 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.65 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 76.38 tokens</li><li>max: 207 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>propria definition</code> | <code>The lamina propria is a constituent of the moist linings known as mucous membranes or mucosa, which line various tubes in the body.The lamina propria is a thin layer of loose connective tissue which lies beneath the epithelium and together with the epithelium constitutes the mucosa.As its Latin name indicates it is a characteristic component of the mucosa, the mucosa's own special layer.he lamina propria is a constituent of the moist linings known as mucous membranes or mucosa, which line various tubes in the body.</code> |
| <code>what family is the common bullfrog in</code> | <code>The American bullfrog (Rana catesbeiana), often simply known as the bullfrog in Canada and the United States, is an aquatic frog, a member of the family Ranidae, or âtrue frogsâ. This frog has an olive green back and sides blotched with brownish markings and a whitish belly spotted with yellow or grey.</code> |
| <code>why does well pump cycle on and off</code> | <code>1 When a well pump turns on every time a water-using fixtureâs valve is opened, or if it turns on and off rapidly while the fixture is in use, thatâs short cycling. It is typically caused by a water pressure tank that has lost it built-in cushion of pressurized air.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 30,250 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.81 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 135.28 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who established the republic of china in 1912 ce</code> | <code>Republic of China (1912–1949) The Republic of China was a sovereign state in East Asia, that occupied the territories of modern China and for part of its history Mongolia and Taiwan. It was founded in 1912, after the Qing dynasty, the last imperial dynasty, was overthrown in the Xinhai Revolution. The Republic's first president, Sun Yat-sen, served only briefly before handing over the position to Yuan Shikai, former leader of the Beiyang Army. His party, then led by Song Jiaoren, won the parliamentary election held in December 1912. Song was assassinated shortly after, and the Beiyang Army led by Yuan Shikai maintained full control of the government in Beijing. Between late 1915 and early 1916, Yuan tried to reinstate the monarchy, before resigning after popular unrest. After Yuan's death in 1916, members of cliques in the former Beiyang Army claimed their autonomy and clashed with each other. During this period, the authority of the republican government was weakened by a restoration of the Qing government.</code> |
| <code>what is the message in john lennon's imagine</code> | <code>Imagine (John Lennon song) "Imagine" is a song written and performed by English musician John Lennon. The best-selling single of his solo career, its lyrics encourage the listener to imagine a world at peace without the barriers of borders or the divisions of religion and nationality, and to consider the possibility that the whole of humanity would live unattached to material possessions.</code> |
| <code>who is the original singer for these boots are made for walking</code> | <code>These Boots Are Made for Walkin' "These Boots Are Made for Walkin'" is a hit song written by Lee Hazlewood and recorded by Nancy Sinatra. It charted January 22, 1966,[3] and reached No. 1 in the United States Billboard Hot 100 and in the UK Singles Chart.[2]</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 12,024 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.49 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 200.72 tokens</li><li>max: 482 tokens</li></ul> |
* Samples:
| query | answer |
|:--------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the name of 'Bob the Builder's' cement mixer?</code> | <code>BOB the BUILDER DIZZY the CEMENT MIXER BOB the BUILDER DIZZY THE CEMENT MIXER Large Friction Action Dizzy the Cement Mixer and clicky noise turn by hand Mixer from the Large Bob The Builder Friction toy Collection Measures 5" x 4" High in EXCELLENT Played with Condition �8.00 .. US $15.60 .. EUROS 12.00 Ref # 0845</code> |
| <code>Which cartoon character, who cooks at the Krusty Krab, lives in a pineapple under the sea?</code> | <code>SpongeBob SquarePants from SpongeBob SquarePants| Cartoon | Nick.com Gary SpongeBob SquarePants Come follow the adventures of the world's most lovable sponge and his starfish sidekick! Though they have the best intentions, SpongeBob and Patrick are always causing trouble… and plenty of laughs! When he's not at the Krusty Krab grilling up some epic Krabby Patties, SpongeBob can be found jellyfishing with Patrick, blowing bubbles, or annoying his favorite neighbor, Squidward! Bikini Bottom is home to the coolest creatures under the sea, and you CAN'T miss out on any of their adventures. Is mayonnaise an instrument? Watch SpongeBob SquarePants to find out! Are you ready, kids? AYE AYE CAPTAIN! ON TV</code> |
| <code>Chinese Democracy was the long awaited 2008 album release of which band?</code> | <code>Guns N Roses 'Chinese Democracy' Set For Wal-Mart Release | Gigwise Guns N Roses 'Chinese Democracy' Set For Wal-Mart Release Band are in talks... Guns N Roses Tickets Buy tickets safely & securely with Seatwave Guns N’ Roses long-awaited new studio album could be released exclusively in retail stores, it’s been reported. Wal-Mart and Best Buy are understood to be leading negotiations to acquire 'Chinese Democracy's' release - possibly before the end of 2008. Industry reports have escalated since Irving Azoff's Front Line Management took over all of the bands business duties. Last year, the company were influential in instigating the release of The Eagles ‘Long Road To Eden’ via Wal-Mart chains. The album enjoyed huge, chart-topping success in the US. According to Billboard, Guns N Roses are also in negotiations for a more traditional release which would take in the rest of the world. As previously reported on Gigwise , Guns N Roses will release their first song in over a decade on the next installment of Rock Band. 'Shackler's Revenge' leads a playlist that spans music releases from the 1960s to today. Guns N Roses – Through The Years.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 30,250 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.37 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 56.7 tokens</li><li>max: 154 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>do namibians need a visa for london?</code> | <code>The Embassy is closed every Friday. Namibia tourist visa is not required for citizens of United Kingdom for a stay up to 90 days. Sounds good!</code> |
| <code>what is the meaning of personal finance?</code> | <code>Personal finance is a term that covers managing your money as well as saving and investing. ... It often refers to the entire industry that provides financial services to individuals and households and advises them about financial and investment opportunities.</code> |
| <code>what are trim tabs for?</code> | <code>Trim tabs are either flat plates or vertical blades fitted either side of the boat and attached to the transom. They are used to trim or level the boat, both fore and aft and side to side. Trim tabs are controlled up and downwards by either a hydraulic, or electric ram system on the transom.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 21,829 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 25.63 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.55 tokens</li><li>max: 68 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Thompson was born in Hendon , North London , Dena Holmes in 1960 and worked for a building society bank .</code> | <code>Thompson was born Dena Holmes in 1960 in Hendon , North London . She worked for a building society .</code> |
| <code>One of his first cousins was Elizabeth , aka Lady Elizabeth Hervey , aka Bess Foster , Duchess of Devonshire . His younger brother married Lord Bishop Foster .</code> | <code>One of his first cousins was Elizabeth , alias Lady Elizabeth Hervey , alias Bess Foster , Duchess of Devonshire , his younger brother married Lord Bishop Foster .</code> |
| <code>At the executive level , EEAA represents the central arm of the Ministry .</code> | <code>At executive level , EEAA represents the central arm of the ministry .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
### Evaluation Datasets
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 108 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.36 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 36.11 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
| claim | evidence |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### negation-triplets
* Dataset: negation-triplets
* Size: 64 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 13.64 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 13.23 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 13.52 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----------------------------------------------------------------|
| <code>Set of toy animals sitting in front of a red wooden wagon.</code> | <code>Several toy animals - a bull, giraffe, deer and parakeet.</code> | <code>Several toy animals - a cow, lion, wolf and canary.</code> |
| <code>A bathroom with a toilette with it's seat down.</code> | <code>A bathroom with a sink and a toilet</code> | <code>A bathroom without a sink or a toilet</code> |
| <code>A striped plane flying up into the sky as the sun shines behind it.</code> | <code>An airplane is ascending into the white sky</code> | <code>An airplane is descending into the black sky</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 54 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 20.81 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> |
| <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code> | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
| <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence2</code> and <code>question</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | question |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.31 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 14.91 tokens</li><li>max: 26 tokens</li></ul> |
* Samples:
| sentence2 | question |
|:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| <code>It takes earth one week to rotate on its axis seven times.</code> | <code>How long does it take for Earth to rotate on its axis seven times?</code> |
| <code>Both hurricanes and tornadoes always have high winds.</code> | <code>Both hurricanes and tornadoes always</code> |
| <code>Seeds of a pine cone are easily carried by the wind and dispersed because seeds have wings.</code> | <code>Why are seeds of a pine cone easily carried by the wind and dispersed?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
| | document | summary |
|:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 63 tokens</li><li>mean: 214.16 tokens</li><li>max: 341 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 25.86 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
| document | summary |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------|
| <code>The rescue on Monday afternoon involved a challenging winch down to the casualty by a coastguard helicopter's paramedic.<br>The Inverness Airport-based helicopter could not be brought too close in case its downdraft blew the man and his fellow walkers off the ridge.<br>The walker was taken to hospital for treatment.<br>The alarm was raised at 14:25 on Monday after the man became unwell on Carn Mor Dearg.<br>He was airlifted to Torlundy and from there was taken to hospital by ambulance.<br>Scott Sharman, paramedic winchman, said: "It was an extremely steep ridge and we needed to make sure we kept at a safe distance because the downdraft could very easily have blown them over the ridge."</code> | <code>A walker had to be rescued from a 1,000m (3,500ft) ridge near Ben Nevis after he became ill.</code> |
| <code>The 23-year-old, who did not make a senior appearances during a year with the Hornets, has signed a two-year deal with the O's.<br>Woods began his career in Cambridge United's youth set-up and subsequently joined Manchester United's academy.<br>He moved to Doncaster Rovers in 2009 and went on to make 82 appearances, before leaving the club last summer.<br>Woods, a former England Under-19 international, will provide competition for fellow new arrival Adam Legzdins.</code> | <code>League One side Leyton Orient have signed goalkeeper Gary Woods following his departure from Watford.</code> |
| <code>The 32-year-old, the number one ranked Test bowler, has been out of action with a groin strain since the first Test against India in early November.<br>But in Cape Town this week he was able to complete two bowling spells at match intensity in the nets, run sprints and do agility tests and fielding drills.<br>The first of the four-match Test series begins in Durban on 26 December.<br>Proteas team manager, Dr Mohammed Moosajee said: "Dale has put a lot of work into his training and rehab since his return from India so we are very happy to have him back from injury.<br>"He was put through a thorough fitness test on Thursday by physiotherapist, Shane Jabaar, he came through the tests without any discomfort and will be available for selection for the first Test match against England."<br>Steyn has taken 402 wickets in 81 Tests at an average of 22.56, including 46 in 11 matches against England.<br>South Africa remain at the top of the Test rankings despite a 3-0 defeat in India this month.</code> | <code>South Africa paceman Dale Steyn will be fit for the Test series with England after passing a fitness test.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 16.72 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 73.28 tokens</li><li>max: 332 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The skull is a part of a vertebrate endoskeleton that encloses and protects what organ?</code> | <code>part of a vertebrate endoskeleton that encloses and protects the brain; also called the skull.</code> |
| <code>The action of sunlight on the skin triggers the body to produce what vitamin?</code> | <code>Milk and other dairy foods are not the only sources of calcium. This important nutrient is also found in green leafy vegetables, broccoli, and intact salmon and canned sardines with their soft bones. Nuts, beans, seeds, and shellfish provide calcium in smaller quantities. Except for fatty fish like salmon and tuna, or fortified milk or cereal, vitamin D is not found naturally in many foods. The action of sunlight on the skin triggers the body to produce its own vitamin D (Figure 6.22), but many people, especially those of darker complexion and those living in northern latitudes where the sun’s rays are not as strong, are deficient in vitamin D. In cases of deficiency, a doctor can prescribe a vitamin D supplement.</code> |
| <code>What phenomenon is essential in order for evolution to occur because it increases genetic variation and the potential for individuals to differ?</code> | <code>Mutations are essential for evolution to occur because they increase genetic variation and the potential for individuals to differ. The majority of mutations are neutral in their effects on the organisms in which they occur. Beneficial mutations may become more common through natural selection. Harmful mutations may cause genetic disorders or cancer.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.34 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 35.58 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What designed for swimming are used for moving faster through water?</code> | <code>webbed feet are used for moving faster through water by aquatic animals. Ducks have webbed feet, designed for swimming.. Feet designed for swimming are used for moving faster through water.</code> |
| <code>what falls making sunlight available to surrounding plants?</code> | <code>if a tree falls then sunlight becomes available to the surrounding plants. Oak trees are found throughout.. if an oak falls then sunlight becomes available to surrounding plants</code> |
| <code>What is the term used for an individual who is learning ethology?</code> | <code>Ethologists usually study how animals behave in their natural environment.. Ethology is the study of behavior.. Ethologists learn ethology</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code> |
| <code>What creates a valley?</code> | <code>a valley is formed by a river flowing</code> |
| <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.91 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 80.7 tokens</li><li>max: 195 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did young american by david bowie come out</code> | <code>Young Americans (song) Young Americans is a single by English singer and songwriter David Bowie, released in 1975. It is included in the album of the same name. The song was a massive breakthrough in the United States, where glam rock had never really become very popular outside the major cities.</code> |
| <code>are investment commissions tax deductible</code> | <code>You typically pay a commission when you buy, and you pay another commission when you sell. The IRS does not consider investment commissions to be a tax-deductible expense. Instead, the commission becomes part of the investment's cost basis, which still provides you with some tax relief.</code> |
| <code>does photosynthesis occur in prokaryotes</code> | <code>Animal cells do not undergo photosynthesis, but in a plant cell, the site of photosynthesis is the chloroplast. Prokaryotes are more primitive-they have no nucleus for a start, and also have no chloroplasts.They are bacterial cells and so do not undergo photosynthesis.ating Newest Oldest. Best Answer: Actually, some procaryotes have photosynthesis. The thing is, as they don't have organelles, it doesn't occur in a differentiated structure, like choroplasts in eucaryotes. It happens along the plasma membrane.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.68 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 31 tokens</li><li>mean: 127.79 tokens</li><li>max: 326 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who played gimli in the lord of the rings movies</code> | <code>John Rhys-Davies John Rhys-Davies (born 5 May 1944) is a Welsh actor and voice actor known for his portrayal of Gimli in The Lord of the Rings trilogy and the charismatic Arab excavator Sallah in the Indiana Jones films. He also played Agent Michael Malone in the 1993 remake of the 1950s television series The Untouchables, Pilot Vasco Rodrigues in the mini-series Shōgun, Professor Maximillian Arturo in Sliders, King Richard I in Robin of Sherwood, General Leonid Pushkin in the James Bond film The Living Daylights, and Macro in I, Claudius. Additionally, he provided the voices of Cassim in Disney's Aladdin and the King of Thieves, Macbeth in Gargoyles, Man Ray in SpongeBob SquarePants, Hades in Justice League and Tobias in the computer game Freelancer.</code> |
| <code>why did the red sea get its name</code> | <code>Red Sea Red Sea is a direct translation of the Greek Erythra Thalassa (Ερυθρὰ Θάλασσα), Latin Mare Rubrum (alternatively Sinus Arabicus, literally "Arabian Gulf"), Arabic: البحر الأحمر, translit. Al-Baḥr Al-Aḥmar (alternatively بحر القلزم Baḥr Al-Qulzum, literally "the Sea of Clysma"), Somali Badda Cas and Tigrinya Qeyyiḥ bāḥrī (ቀይሕ ባሕሪ). The name of the sea may signify the seasonal blooms of the red-coloured Trichodesmium erythraeum near the water's surface.[5] A theory favored by some modern scholars is that the name red is referring to the direction south, just as the Black Sea's name may refer to north. The basis of this theory is that some Asiatic languages used color words to refer to the cardinal directions.[6] Herodotus on one occasion uses Red Sea and Southern Sea interchangeably.[7]</code> |
| <code>when is the new president of mexico announced</code> | <code>Mexican general election, 2018 López Obrador won the election on 1 July 2018 with over 50% of the popular vote. In terms of states won, López Obrador won in a landslide, carrying 31 out of 32 of the country's states,[5] the most states won by a candidate since Ernesto Zedillo won every state in the 1994 election.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 16.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 211.76 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| query | answer |
|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Who sang '99 Red Balloons'?</code> | <code>99 red ballons - Nena - YouTube 99 red ballons - Nena Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Uploaded on Jul 29, 2006 This is the video 99 red ballons (english version) by nena Category</code> |
| <code>Who is the patron saint of doctors, surgeons, painters and artists?</code> | <code>St. Luke Medals St. Luke Medals St. Luke is the Patron Saint of artists, brewers, butchers, doctors, glassworks, painters, physicians and surgeons. Luke is symbolically portrayed as an animal of sacrifice, the ox, because he begins his Gospel with the history of Zachary, the priest offering sacrifice to God, and because throughout his Gospel he accentuates the universal priesthood of Christ. St. Luke�s Gospel includes six miracles and 18 parables not found elsewhere in the Bible.</code> |
| <code>Vande Mataram (I praise thee, Mother) is the national song of which BRIC nation?</code> | <code>'Vande Mataram' Real National Anthem: RSS Leader- The New Indian Express 'Vande Mataram' Real National Anthem: RSS Leader By PTI | Published: 02nd April 2016 01:09 PM | Last Updated: 02nd April 2016 01:09 PM | A+A A- | 0 Share Via Email MUMBAI: Days after RSS chief Mohan Bhagwat's 'Bharat Mata Ki Jai' remarks, a top functionary of the organisation has said that 'Vande Mataram' is the real national anthem as opposed to the 'Constitutionally-mandated' Jana Gana Mana. "Jana Gana Mana is today our national anthem. It has to be respected. There is no reason why it should evoke any other sentiment," RSS General Secretary Bhaiyyaji Joshi said. "But it is the national anthem as decided by the Constitution. If one considers the true meaning, then Vande Mataram is the national anthem," he said yesterday at the Deendayal Upadhyay Research Institute here. "We consider things created due to the Constitution to be national," Joshi said. "When was Jana Gana Mana written? It was written some time back. But the sentiments expressed in Jana Gana Mana have been expressed keeping the state in view," he said. "However, the sentiments expressed in Vande Mataram denote the nation's character and style. This is the difference between the two songs. Both deserve respect," Joshi said. 'Vande Mataram', literally, "I praise thee, Mother", is a poem by Bankim Chandra Chattopadhyay. A hymn to the 'Mother Land', it played a vital role in the Indian independence movement. In 1950, the song's first two verses were given the official status of the "national song", distinct from the national anthem, Jana Gana Mana. O</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.34 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 57.08 tokens</li><li>max: 112 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>which gases are emitted from vehicles?</code> | <code>['Particulate matter (PM). One type of particulate matter is the soot seen in vehicle exhaust. ... ', 'Volatile Organic Compounds (VOCs). ... ', 'Nitrogen oxides (NOx). ... ', 'Carbon monoxide (CO). ... ', 'Sulfur dioxide (SO2). ... ', 'Greenhouse gases.']</code> |
| <code>how long does it take for someone to not be drunk?</code> | <code>It takes 30 minutes to feel the effects of alcohol. Drinking more than one drink every 30 minutes means you are probably drinking too much, too fast. Slow yourself down, and if you find yourself feeling thirsty before those 30 minutes have passed, try a glass of water first.</code> |
| <code>is ssdi taxable in ohio?</code> | <code>Social Security retirement benefits are fully exempt from state income taxes in Ohio. Any income from retirement accounts (like a 401(k) or an IRA) or pensions is taxed as regular income (but there are credits available). Social security benefits, if taxable on the federal return, are deducted on Ohio schedule A.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 25.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.55 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>They were there to enjoy us and they were there to pray for us .</code> | <code>They were there for us to enjoy and they were there for us to pray .</code> |
| <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
| <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code> | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 640
- `per_device_eval_batch_size`: 64
- `learning_rate`: 3.5e-05
- `weight_decay`: 5e-05
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 6.999999999999999e-06}
- `warmup_ratio`: 0.2
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-step3-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 640
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3.5e-05
- `weight_decay`: 5e-05
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 6.999999999999999e-06}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-step3-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | paws-pos loss | trivia pairs loss | scitail-pairs-pos loss | scitail-pairs-qa loss | qasc pairs loss | sciq pairs loss | openbookqa pairs loss | msmarco pairs loss | nq pairs loss | vitaminc-pairs loss | xsum-pairs loss | gooaq pairs loss | negation-triplets loss | VitaminC_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:-------------:|:-----------------:|:----------------------:|:---------------------:|:---------------:|:---------------:|:---------------------:|:------------------:|:-------------:|:-------------------:|:---------------:|:----------------:|:----------------------:|:---------------:|:------------------------:|
| 0.0022 | 1 | 0.8103 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0045 | 2 | 0.8803 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0067 | 3 | 0.8219 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0090 | 4 | 0.0574 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0112 | 5 | 0.3044 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0135 | 6 | 0.3306 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0157 | 7 | 0.759 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0180 | 8 | 0.0472 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0202 | 9 | 0.7782 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0225 | 10 | 0.0757 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0247 | 11 | 0.7778 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0270 | 12 | 0.7111 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0292 | 13 | 0.6598 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0315 | 14 | 0.8901 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0337 | 15 | 0.3206 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0360 | 16 | 0.3408 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0382 | 17 | 0.5623 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0404 | 18 | 0.0758 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0427 | 19 | 0.994 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0449 | 20 | 2.4196 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0472 | 21 | 0.0561 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0494 | 22 | 0.0827 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0517 | 23 | 0.7405 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0539 | 24 | 0.9656 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0562 | 25 | 0.7855 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0584 | 26 | 0.6349 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0607 | 27 | 0.8087 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0629 | 28 | 0.9282 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0652 | 29 | 0.3377 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0674 | 30 | 0.3289 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0697 | 31 | 0.6314 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0719 | 32 | 0.0611 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0742 | 33 | 0.8942 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0764 | 34 | 0.0701 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0787 | 35 | 0.8506 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0809 | 36 | 0.3386 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0831 | 37 | 0.0701 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0854 | 38 | 0.8042 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0876 | 39 | 0.8744 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0899 | 40 | 0.8644 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0921 | 41 | 0.8647 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0944 | 42 | 0.7916 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0966 | 43 | 0.8599 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0989 | 44 | 0.0523 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1011 | 45 | 0.6968 | 0.0245 | 0.5306 | 0.0737 | 0.0016 | 0.0908 | 0.0154 | 0.6755 | 0.1599 | 0.0959 | 1.7274 | 0.0382 | 0.2968 | 0.9175 | 0.5544 | 0.9038 |
| 0.1034 | 46 | 0.3376 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1056 | 47 | 0.5174 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1079 | 48 | 0.8162 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1101 | 49 | 0.3545 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1124 | 50 | 0.315 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1146 | 51 | 0.0627 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1169 | 52 | 0.8851 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1191 | 53 | 0.8382 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1213 | 54 | 0.733 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1236 | 55 | 0.7173 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1258 | 56 | 0.7659 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1281 | 57 | 0.793 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1303 | 58 | 0.5426 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1326 | 59 | 0.7641 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1348 | 60 | 0.0657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1371 | 61 | 0.7836 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1393 | 62 | 0.9306 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1416 | 63 | 0.8673 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1438 | 64 | 0.9296 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1461 | 65 | 0.8211 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1483 | 66 | 0.7685 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1506 | 67 | 0.7139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1528 | 68 | 0.8241 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1551 | 69 | 0.6256 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1573 | 70 | 0.8842 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1596 | 71 | 0.804 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1618 | 72 | 0.0989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1640 | 73 | 0.332 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1663 | 74 | 0.5736 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1685 | 75 | 0.8285 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1708 | 76 | 0.9561 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1730 | 77 | 0.0633 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1753 | 78 | 0.0848 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1775 | 79 | 0.8325 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1798 | 80 | 1.0011 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1820 | 81 | 0.8697 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1843 | 82 | 0.8344 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1865 | 83 | 0.9967 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1888 | 84 | 0.4638 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1910 | 85 | 0.8994 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1933 | 86 | 0.7789 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1955 | 87 | 0.0555 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1978 | 88 | 0.3778 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2 | 89 | 0.708 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |