File size: 227,089 Bytes
4ada72f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
---
base_model: microsoft/deberta-v2-xlarge
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99622
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: does alcohol cause anxiety
  sentences:
  - "Kim Jong Unâ\x80\x99s Wife â\x80\x98Missingâ\x80\x99, Assumed Pregnant. Kim Jong\
    \ Unâ\x80\x99s wife, Ri Sol Ju, has reportedly â\x80\x98gone missingâ\x80\x99\
    \ after not making any public appearances for the last 40 days, according to data\
    \ released by North Korea news-monitoring website NK News."
  - "Japan is the worldâ\x80\x99s largest mobile games market, with $6.2 billion in\
    \ 2015E revenue. Despite having fewer players than China or the U.S., Japan has\
    \ the highest average mobile games spending of any major country. China has 785\
    \ million mobile gamers, 62% of Asiaâ\x80\x99s total."
  - Alcohol Causes Anxiety and Behavior Changes. Frequent alcohol consumption can
    extremely impair several functions of your brain including the area that is responsible
    for controlling your behavior. This is why as you consume alcohol, your behavior,
    conduct and other cognitive abilities will usually be the first to go.
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
    mainland China .
  sentences:
  - 'More than 3,700 people have died : around 3,100 in mainland China and around
    550 in all other countries combined .'
  - 'More than 3,200 people have died : almost 3,000 in mainland China and around
    275 in other countries .'
  - more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: The action of flushing the toilet, performed multiple times daily,
    is the single biggest use of water in the home.
  sentences:
  - What action, performed multiple times daily, is the single biggest use of water
    in the home?
  - Which of these would most likely improve the air quality in large Texas cities?
  - The innermost layer of the sun is known as what?
- source_sentence: You call cellular respiration that does not need oxygen to proceed
    anaerobic respiration.
  sentences:
  - A binary molecular compound is made up of two of what?
  - What do you call cellular respiration that does not need oxygen to proceed?
  - Roots grow in length and width from the primary and secondary what?
- source_sentence: What was the cause of the disqualification of Swedish pentathlete
    Hans-Gunnar Liljenwall at Mexico City in 1968, the first as a result of failing
    a doping test at an Olympic Games?
  sentences:
  - '''Cogito, ergo sum'' - the meaning and origin of this phrase Cogito, ergo sum
    Usually translated from the Latin as ''I think, therefore I am''. Origin Possibly
    the best known of all philosophical quotations; this is from the French philosopher
    René Descartes in Discourse on Method, 1637, where he attempted to prove his existence
    as a thinking being, by thinking. ''I think, therefore I am'' comes to us in English
    via two translations. Descartes'' original statement in French was "Je pense,
    donc je suis". This is such a well-known line that it has spawned humorous alternatives,
    not least: "I''m pink, therefore I''m spam" "René Descartes was a drunken fart
    - I drink therefore I am".'
  - Hans Gunnar Liljenwall - Alchetron, The Free Social Encyclopedia I Love to read
    n write about Interesting People Hans Gunnar Liljenwall Role  Olympic athlete
    Born  9 July 1941 (age 74) (1941-07-09) Hans-Gunnar Liljenwall (born 9 July 1941)
    is a Swedish modern pentathlete who caused the disqualification of the Swedish
    men's team at the 1968 Summer Olympics held in Mexico City for his alcohol use.
    Liljenwall was the first athlete to be disqualified at the Olympics for drug use,
    following the introduction of anti-doping regulations by the International Olympic
    Committee in 1967. Sponsored Links Liljenwall reportedly had "two beers" to calm
    his nerves before the pistol shooting portion of the modern pentathlon. The Swedish
    team eventually had to return their bronze medals.
  - Erstwhile | Definition of Erstwhile by Merriam-Webster Examples of erstwhile in
    a sentence <there's now a store where erstwhile lay green and pleasant pastures>
    Did You Know? The adverb erstwhile has been part of English since the 16th century,
    but it is formed from two words that are much older. It comes from the Old English
    words ær, meaning "early," and hwīl, which has much the same meaning as the modern
    word while. (The English word ere, meaning "before," is also descendant of ær.)
    The adjective erstwhile, as in erstwhile enemies, joined the language around 1900.
    1569 First Known Use of erstwhile 1569
model-index:
- name: SentenceTransformer based on microsoft/deberta-v2-xlarge
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.9106921279068343
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9239059466308052
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9246302028077688
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.9208650089167368
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9256757227724981
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9216089091348462
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8935209770403933
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8917772707787254
      name: Spearman Dot
    - type: pearson_max
      value: 0.9256757227724981
      name: Pearson Max
    - type: spearman_max
      value: 0.9239059466308052
      name: Spearman Max
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: allNLI dev
      type: allNLI-dev
    metrics:
    - type: cosine_accuracy
      value: 0.732421875
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8159675598144531
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6309278350515464
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.6821494102478027
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.49038461538461536
      name: Cosine Precision
    - type: cosine_recall
      value: 0.884393063583815
      name: Cosine Recall
    - type: cosine_ap
      value: 0.5991355834488622
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.736328125
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 879.013916015625
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6206896551724138
      name: Dot F1
    - type: dot_f1_threshold
      value: 740.831787109375
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.4948453608247423
      name: Dot Precision
    - type: dot_recall
      value: 0.8323699421965318
      name: Dot Recall
    - type: dot_ap
      value: 0.5930218788414645
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.734375
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 642.3578491210938
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6324786324786326
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 796.259521484375
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.5016949152542373
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.8554913294797688
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.598127538996714
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.728515625
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 20.647186279296875
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6322869955156951
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 24.933399200439453
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.5164835164835165
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.815028901734104
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.5969327943116731
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.736328125
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 879.013916015625
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6324786324786326
      name: Max F1
    - type: max_f1_threshold
      value: 796.259521484375
      name: Max F1 Threshold
    - type: max_precision
      value: 0.5164835164835165
      name: Max Precision
    - type: max_recall
      value: 0.884393063583815
      name: Max Recall
    - type: max_ap
      value: 0.5991355834488622
      name: Max Ap
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Qnli dev
      type: Qnli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.712890625
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7136298418045044
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.705685618729097
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.6252090930938721
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5828729281767956
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8940677966101694
      name: Cosine Recall
    - type: cosine_ap
      value: 0.7429006619357093
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.689453125
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 764.2352294921875
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.7067137809187279
      name: Dot F1
    - type: dot_f1_threshold
      value: 678.6840209960938
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.6060606060606061
      name: Dot Precision
    - type: dot_recall
      value: 0.847457627118644
      name: Dot Recall
    - type: dot_ap
      value: 0.7164630756489325
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.71875
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 725.244384765625
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.7078039927404719
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 829.4242553710938
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.6190476190476191
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.826271186440678
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.7439472197082637
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.71875
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 23.21845245361328
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.7014388489208634
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 26.616165161132812
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.609375
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.826271186440678
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.7459968056180196
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.71875
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 764.2352294921875
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.7078039927404719
      name: Max F1
    - type: max_f1_threshold
      value: 829.4242553710938
      name: Max F1 Threshold
    - type: max_precision
      value: 0.6190476190476191
      name: Max Precision
    - type: max_recall
      value: 0.8940677966101694
      name: Max Recall
    - type: max_ap
      value: 0.7459968056180196
      name: Max Ap
---

# SentenceTransformer based on microsoft/deberta-v2-xlarge

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) <!-- at revision 1d134961d4db8e7e8eb1bc1ab81cb370244c57f7 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1536 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - negation-triplets
    - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
    - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
    - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
    - xsum-pairs
    - [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
    - [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
    - openbookqa_pairs
    - [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
    - [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
    - [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
    - [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
    - global_dataset
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa2-0.9B-ST-v1-checkpoints-tmp")
# Run inference
sentences = [
    'What was the cause of the disqualification of Swedish pentathlete Hans-Gunnar Liljenwall at Mexico City in 1968, the first as a result of failing a doping test at an Olympic Games?',
    'Hans Gunnar Liljenwall - Alchetron, The Free Social Encyclopedia I Love to read n write about Interesting People Hans Gunnar Liljenwall Role\xa0\xa0Olympic athlete Born\xa0\xa09 July 1941 (age\xa074) (1941-07-09) Hans-Gunnar Liljenwall (born 9 July 1941) is a Swedish modern pentathlete who caused the disqualification of the Swedish men\'s team at the 1968 Summer Olympics held in Mexico City for his alcohol use. Liljenwall was the first athlete to be disqualified at the Olympics for drug use, following the introduction of anti-doping regulations by the International Olympic Committee in 1967. Sponsored Links Liljenwall reportedly had "two beers" to calm his nerves before the pistol shooting portion of the modern pentathlon. The Swedish team eventually had to return their bronze medals.',
    'Erstwhile | Definition of Erstwhile by Merriam-Webster Examples of erstwhile in a sentence <there\'s now a store where erstwhile lay green and pleasant pastures> Did You Know? The adverb erstwhile has been part of English since the 16th century, but it is formed from two words that are much older. It comes from the Old English words ær, meaning "early," and hwīl, which has much the same meaning as the modern word while. (The English word ere, meaning "before," is also descendant of ær.) The adjective erstwhile, as in erstwhile enemies, joined the language around 1900. 1569 First Known Use of erstwhile 1569',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1536]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.9107     |
| **spearman_cosine** | **0.9239** |
| pearson_manhattan   | 0.9246     |
| spearman_manhattan  | 0.9209     |
| pearson_euclidean   | 0.9257     |
| spearman_euclidean  | 0.9216     |
| pearson_dot         | 0.8935     |
| spearman_dot        | 0.8918     |
| pearson_max         | 0.9257     |
| spearman_max        | 0.9239     |

#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.7324     |
| cosine_accuracy_threshold    | 0.816      |
| cosine_f1                    | 0.6309     |
| cosine_f1_threshold          | 0.6821     |
| cosine_precision             | 0.4904     |
| cosine_recall                | 0.8844     |
| cosine_ap                    | 0.5991     |
| dot_accuracy                 | 0.7363     |
| dot_accuracy_threshold       | 879.0139   |
| dot_f1                       | 0.6207     |
| dot_f1_threshold             | 740.8318   |
| dot_precision                | 0.4948     |
| dot_recall                   | 0.8324     |
| dot_ap                       | 0.593      |
| manhattan_accuracy           | 0.7344     |
| manhattan_accuracy_threshold | 642.3578   |
| manhattan_f1                 | 0.6325     |
| manhattan_f1_threshold       | 796.2595   |
| manhattan_precision          | 0.5017     |
| manhattan_recall             | 0.8555     |
| manhattan_ap                 | 0.5981     |
| euclidean_accuracy           | 0.7285     |
| euclidean_accuracy_threshold | 20.6472    |
| euclidean_f1                 | 0.6323     |
| euclidean_f1_threshold       | 24.9334    |
| euclidean_precision          | 0.5165     |
| euclidean_recall             | 0.815      |
| euclidean_ap                 | 0.5969     |
| max_accuracy                 | 0.7363     |
| max_accuracy_threshold       | 879.0139   |
| max_f1                       | 0.6325     |
| max_f1_threshold             | 796.2595   |
| max_precision                | 0.5165     |
| max_recall                   | 0.8844     |
| **max_ap**                   | **0.5991** |

#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value     |
|:-----------------------------|:----------|
| cosine_accuracy              | 0.7129    |
| cosine_accuracy_threshold    | 0.7136    |
| cosine_f1                    | 0.7057    |
| cosine_f1_threshold          | 0.6252    |
| cosine_precision             | 0.5829    |
| cosine_recall                | 0.8941    |
| cosine_ap                    | 0.7429    |
| dot_accuracy                 | 0.6895    |
| dot_accuracy_threshold       | 764.2352  |
| dot_f1                       | 0.7067    |
| dot_f1_threshold             | 678.684   |
| dot_precision                | 0.6061    |
| dot_recall                   | 0.8475    |
| dot_ap                       | 0.7165    |
| manhattan_accuracy           | 0.7188    |
| manhattan_accuracy_threshold | 725.2444  |
| manhattan_f1                 | 0.7078    |
| manhattan_f1_threshold       | 829.4243  |
| manhattan_precision          | 0.619     |
| manhattan_recall             | 0.8263    |
| manhattan_ap                 | 0.7439    |
| euclidean_accuracy           | 0.7188    |
| euclidean_accuracy_threshold | 23.2185   |
| euclidean_f1                 | 0.7014    |
| euclidean_f1_threshold       | 26.6162   |
| euclidean_precision          | 0.6094    |
| euclidean_recall             | 0.8263    |
| euclidean_ap                 | 0.746     |
| max_accuracy                 | 0.7188    |
| max_accuracy_threshold       | 764.2352  |
| max_f1                       | 0.7078    |
| max_f1_threshold             | 829.4243  |
| max_precision                | 0.619     |
| max_recall                   | 0.8941    |
| **max_ap**                   | **0.746** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### negation-triplets

* Dataset: negation-triplets
* Size: 5,025 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | entailment                                                                        | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.27 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.77 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.08 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | anchor                                                                    | entailment                                               | negative                                                     |
  |:--------------------------------------------------------------------------|:---------------------------------------------------------|:-------------------------------------------------------------|
  | <code>A white kitty cat sitting on a bike seat.</code>                    | <code>a cat on top of a bike parked indoors</code>       | <code>a cat underneath a bike parked indoors</code>          |
  | <code>A bathroom with a sink and toilet and a bowl on the counter.</code> | <code>A glass sink that is under a faucet.</code>        | <code>A glass sink that is not under a faucet.</code>        |
  | <code>Seven people are jumping in the air, along the shore.</code>        | <code>People at the shore are jumping in the air.</code> | <code>People at the shore are not jumping in the air.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 5,025 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 16.21 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 37.01 tokens</li><li>max: 187 tokens</li></ul> |
* Samples:
  | claim                                                                           | evidence                                                                                                                                              |
  |:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Boss Key Productions is yet to release the BlueStreak video game .</code> | <code>BlueStreak is an upcoming video game developed by Boss Key Productions and published by Nexon .</code>                                          |
  | <code>Jay-Z appeared on Blue Ivy 's first two albums .</code>                   | <code>Jay-Z appeared on Blue Ivy 's first two albums as well , and the two frequently collaborated .</code>                                           |
  | <code>The film was reviewed by more than 140 critics .</code>                   | <code>On review aggregator Rotten Tomatoes , the film has an approval rating of 80 % based on 142 reviews , with an average rating of 7.1/10 .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 15.97 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.15 tokens</li><li>max: 33 tokens</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                |
  |:-----------------------------------------------------------|:---------------------------------------------------------|
  | <code>The cytoskeleton is the skeleton of the cell.</code> | <code>What is the skeleton of the cell?</code>           |
  | <code>Muscular dystrophy is a a wasting disease.</code>    | <code>What type of disease is muscular dystrophy?</code> |
  | <code>A pumpkin is a fruit.</code>                         | <code>Which food is a fruit?</code>                      |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 23.62 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.74 tokens</li><li>max: 40 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                         | sentence2                                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
  | <code>There have been five mass extinctions in Earth's  history.</code>                                                                                           | <code>Five mass distinctions have radically altered the history of life.</code>                                              |
  | <code>The ultimate source of energy for life on Earth is the sun.</code>                                                                                          | <code>Ultimately, most life forms get their energy from the sun.</code>                                                      |
  | <code>N Neurotransmitter Any one of numerous chemicals in the nervous system that modify or result in the transmission of nerve impulses between synapses.</code> | <code>Like a runner passing a baton, the transmission of nerve impulses between neurons depends on neurotransmitters.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 5,025 training samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
  |         | summary                                                                           | document                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 25.63 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 45 tokens</li><li>mean: 211.46 tokens</li><li>max: 371 tokens</li></ul> |
* Samples:
  | summary                                                                                                                                                 | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Rising British star Hannah Barnes will ride for the newly-formed Canyon//SRAM team in next year's inaugural UCI Women's WorldTour circuit.</code> | <code>Barnes, who has spent two seasons with American team UHC-Healthcare, won the white jersey for the best young rider at this year's Women's Tour.<br>"It's been really good in America but I'm happy to come back to Europe," said the 22-year-old from Northamptonshire.<br>"My whole goal for 2015 was to get some good results and then come back here."<br>Joining Barnes on the team are the overall winner of the Women's Tour, German time trial star Lisa Brennauer, and RideLondon Grand Prix winner, Italy's Barbara Guarischi.<br>The team will ride the full 17-race Women's WorldTour calendar in 2016.<br>Germany's Canyon will supply the bike frames, with American firm SRAM providing the components.<br>The team's nine riders, from six countries, will wear kit from British company Rapha, which has recently announced it will no longer be supplying elite men's outfit Team Sky after 2016.<br>The team will begin its 2016 season when Tiffany Cromwell rides in the Australian national championships in January, with the first full race being the Ladies Tour of Qatar in February.<br>Helping riders qualify for the Rio Olympics will be a focus for the team, as will the big American races, the Tour of California and Philadelphia Cycling Classic, as well as Britain's Women's Tour and the women's race at the Tour de France, La Course.<br>"My main goal for the year is to make the team for the Olympics but with this injury I don't really know," said Barnes, who broke her ankle in August.<br>"I'd like to go back to California and do the Tour there too."</code> |
  | <code>A doctor was injured when a prisoner tried to escape during a routine medical appointment at a hospital in North Lanarkshire.</code>              | <code>The 31-year-old inmate from HMP Shotts was being escorted by G4S security staff when he tried to get away.<br>A doctor who tried to assist the security staff suffered minor injuries during the incident on Friday.<br>The Scottish Prison Service said an investigation had begun into what happened.<br>A spokesman said: "I can confirm there was an incident involving a prisoner from HMP Shotts at Wishaw General Hospital today.<br>"We will be working with Police Scotland in investigating the full circumstances of the incident."<br>A G4S spokesman said: "During a routine hospital appointment a prisoner attempted to evade custody but was immediately apprehended by G4S staff.<br>"The prompt actions of our officers averted a more serious incident and demonstrates the challenging situations our staff can face while carrying out their duties."</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  | <code>West Ham winger Michail Antonio has been ruled out for the rest of the season with a "significant injury", manager Slaven Bilic says.</code>      | <code>The 27-year-old was injured in the Hammers' 1-0 win over Swansea at London Stadium last weekend.<br>"It's a significant injury and he's out for the season," Bilic confirmed.<br>Antonio, who has scored nine goals for the Hammers this season, was called up by England for the first time in August.<br>"It is a big blow. We know what he has been giving. He is one of our best players," Bilic added.<br>He was again called up for England's World Cup qualifier against Lithuania last month but pulled out of the squad with a hamstring injury and has yet to make his international debut.<br>He joined West Ham from Nottingham Forest in 2015 and signed a new four-year deal with the club last summer.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.81 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 83.54 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                    | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  |:-----------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What chemical affects the onset of puberty and duration?</code>                                                        | <code>Puberty lasts from about ages 12 to 18 years and is controlled by hormones.</code>                                                                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>Within the chloroplast, synthesis of what takes place in the fluid inside the inner membrane called the stroma?</code> | <code>Figure 4.17 The chloroplast has an outer membrane, an inner membrane, and membrane structures called thylakoids that are stacked into grana. The space inside the thylakoid membranes is called the thylakoid space. The light harvesting reactions take place in the thylakoid membranes, and the synthesis of sugar takes place in the fluid inside the inner membrane, which is called the stroma. Chloroplasts also have their own genome, which is contained on a single circular chromosome.</code> |
  | <code>What type of scientist uses earth-orbiting telescopes?</code>                                                          | <code>Astronomers use many tools to study things in space. Earth-orbiting telescopes view stars and galaxies from the darkness of space ( Figure below ). They may have optical and radio telescopes to see things that the human eye can't see. Spacecraft travel great distances to send back information on faraway places.</code>                                                                                                                                                                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 11.37 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 33.52 tokens</li><li>max: 64 tokens</li></ul> |
* Samples:
  | sentence1                                                                         | sentence2                                                                                                                                                                                                      |
  |:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What can help decrease emissions?</code>                                    | <code>carpooling decreases the amount of cars used to travel to a place. Cars and gasoline-burning engines are large sources of emissions. <br> Carpooling decreases emissions</code>                          |
  | <code>What can antibodies (large Y-shaped proteins) recognize and bind to?</code> | <code>Antibodies are large, Y-shaped proteins that recognize and bind to antigens.. ALL immunogens are antigens. <br> Antibodies are large, Y-shaped proteins that can recognize and bind to immunogens</code> |
  | <code>What process is needed to support a baby in the womb?</code>                | <code>Oxygen is essential for cellular respiration for all aerobic organisms.. Less oxygen for the mother means less oxygen for the baby. <br> Mothers need respiration for their babies.</code>               |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 3,029 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | fact                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.89 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.54 tokens</li><li>max: 31 tokens</li></ul> |
* Samples:
  | question                                                                  | fact                                                                               |
  |:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | <code>A prickly pear absorbs nutrients from</code>                        | <code>plants absorb nutrients from soil into themselves through their roots</code> |
  | <code>When it's summer in the USA it's winter</code>                      | <code>June is during the winter in the southern hemisphere</code>                  |
  | <code>To move electrical energy around a field, a person would use</code> | <code>metal is an electrical energy conductor</code>                               |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.59 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 75.16 tokens</li><li>max: 208 tokens</li></ul> |
* Samples:
  | sentence1                                           | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:----------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>is switzerland expensive</code>               | <code>Hi Im Swiss and I can answer your question. For us Swiss people Switzerland is not that expensive because out salary makes up for it (we have one of the highest salaries per/person worldwide). For foreigners visiting Switzerland many will find it very expensive, from public transportation to food.</code>                                                                                                                                                                                                                           |
  | <code>what does dhea sulfate do for women</code>    | <code>DHEA, DHEA-S. This test measures the level of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) in your blood. It may also be used to check how well your adrenal glands are working. DHEA is a hormone made by your adrenal glands and to a lesser degree by the ovaries and testes. DHEA is changed into DHEA-S in your adrenal glands and liver. In both men and women, the sex hormones estrogen and testosterone depend on DHEA. DHEA also has a role in the making of insulin growth factor-1 (IGF-1).</code> |
  | <code>how long do i need to keep tax returns</code> | <code>After filing your late taxes, remember you will keep your tax return three years from the date you file rather than three years from that tax year. For those that have old tax returns on file, don’t be in a rush to shred them. While fall cleaning, organize and file away tax returns.</code>                                                                                                                                                                                                                                        |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.81 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 129.07 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                   | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who owns the rights to call of duty</code>            | <code>Call of Duty The Call of Duty games are published and owned by Activision. While Infinity Ward is still a developer, Treyarch and Sledgehammer Games also develop several of the titles with the release of the studios' games alternating with each other. Some games have been developed by Gray Matter Interactive, Nokia, Exakt Entertainment, Spark Unlimited, Amaze Entertainment, n-Space, Aspyr, Rebellion Developments, Ideaworks Game Studio, and nStigate Games. The games use a variety of engines, including the id Tech 3, the Treyarch NGL, and the IW engine.</code>                                                                                                                                                                                                                                                                                                                             |
  | <code>who sings i wanna get next to you</code>              | <code>I Wanna Get Next to You "I Wanna Get Next to You" is a 1976 soul single written, composed and produced by American songwriter and producer Norman Whitfield, and most famously sung by American R&B band Rose Royce. It is the third official single from the Car Wash soundtrack. The song has also become a staple on oldies radio and on adult contemporary stations.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>when was the birth control pill made available</code> | <code>Birth control In 1909, Richard Richter developed the first intrauterine device made from silkworm gut, which was further developed and marketed in Germany by Ernst Gräfenberg in the late 1920s.[152] In 1951, a chemist, named Carl Djerassi from Mexico City made the hormones in progesterone pills using Mexican yams.[153] Djerassi had chemically created the pill but was not equipped to distribute it to patients. Meanwhile, Gregory Pincus and John Rock with help from the Planned Parenthood Federation of America developed the first birth control pills in the 1950s, such as mestranol/noretynodrel, which became publicly available in the 1960s through the Food and Drug Administration under the name Enovid.[146][154] Medical abortion became an alternative to surgical abortion with the availability of prostaglandin analogs in the 1970s and mifepristone in the 1980s.[155]</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 5,025 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | answer                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 16.85 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 202.22 tokens</li><li>max: 411 tokens</li></ul> |
* Samples:
  | query                                                                          | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What famous London building is officially called 1 Canada Square?</code> | <code>One Canada Square, London, England Tourist Information Locals and travelers to connect with About London Borough of Tower Hamlets, London, England 51.505-0.0196 One Canada Square (often incorrectly called Canary Wharf , after its location) is a skyscraper in Canary Wharf, London . It was the tallest building in the United Kingdom from 1990 to 2010, standing at 235 metres (770 ft) above ground level and containing 50 storeys. In late 2010, it was surpassed by The Shard (completed in July 2012) which stands at 309.6 metres (1,016 ft). One Canada Square was designed by principal architect Cesar Pelli, who based the design and shape mainly on the World Financial Center and the Elizabeth Tower. The building is clad with expensive stainless steel. One of the predominant features of the building is the pyramid roof which contains a flashing aircraft warning light, a rare feature for buildings in the United Kingdom. The distinctive pyramid pinnacle is at 240 metres (800 ft) above sea level. One Canada Square is primarily used for offices, though there are some retail units on the lower ground floor. It is a prestigious location for offices and as of January 2013 was 100% let. The building is recognised as a London landmark and it has gained much attention through film, television and other media when its status was the tallest building in the United Kingdom and continues to gain attention. Map</code>                                                       |
  | <code>Who is the patron saint of dentists?</code>                              | <code>St. Apollonia - Saints & Angels - Catholic Online Saints & Angels Author and Publisher - Catholic Online Facts Take the Saints Trivia Quiz now! St. Apollonia, who died in the year 249, was martyred for not renouncing her faith during the reign of Emperor Philip. The account of the life of St. Apollonia was written by St. Dionysius to Fabian, Bishop of Antioch. Apollonia had all her teeth knocked out after being hit in the face by a Christian persecutor under the reign of Emperor Philip. After she was threatened with fire unless she renounced her faith, Apollonia jumped into the flames voluntarily. She is considered the patron of dental diseases and is often invoked by those with toothaches. Ancient art depicts her with a golden tooth at the end of her necklace. Also in art, she is seen with pincers holding a tooth.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  | <code>Which country has the international vehicle registration CDN?</code>     | <code>Why does Canada have the letters CDN as its international car registration plate? Surely it would be more logical to have CND? | Notes and Queries | guardian.co.uk Why does Canada have the letters CDN as its international car registration plate? Surely it would be more logical to have CND? THE DN stands for Dominion. The abbreviation was created when Canada was one. Bob Hammarberg, Minneapolis, US. CDN for Canada is no more idiotic than CH for Switzerland, proof that it is time to standardize the spelling of place names around the globe. If we call "Livorno" "Leghorn," is it possible that Hispanics say, "Neuva Yorca," and the French transmogrify "Little Rock" into "La Petite Roche"? Nancy Belck ([email protected]) , Canada still is the Dominion of Canada. And if D did stand for Dominion why were Australia, New Zealand and South Africa not also given a D? Keith Mills, Alne, Yorks There is nothing idiotic about Switzerland's use of CH for her international designation. CH is Latin and it stands for "Confoederatio Helvetica". Switzerland is a country of four official languages - so choosing Latin was the most neutral choice. What is idiotic is that, by law, all Swiss cars have to display the CH plate - even if they never leave the country. This even applies to police cars, road sweepers and public buses. These vehicles clearly rarely leave the country (although there are cross border bus routes in some areas). Mark Butcher, Geneva, Switzerland</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.43 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 55.2 tokens</li><li>max: 126 tokens</li></ul> |
* Samples:
  | sentence1                                                    | sentence2                                                                                                                                                                                                                                                                                |
  |:-------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what are fettuccine used for?</code>                   | <code>Long flattish noodle-shaped pasta, similar to tagliatelle. A very good pasta to serve with oil or butter-based sauces, as the sauce goes a long way, coats the pasta evenly and also helps to prevent the strands of pasta from clumping together.</code>                          |
  | <code>can you drink lemon water after brushing teeth?</code> | <code>DO NOT brush your teeth for at least 30 minutes after drinking the lemon water. Use a soft toothbrush and fluoridated toothpaste (fluoride toughens your enamel) and do not brush aggressively. Acid softens the enamel and makes it more prone to erosion during brushing.</code> |
  | <code>is ui ux front end?</code>                             | <code>User experience (UX) design is centered around the satisfaction the user experiences with your software. Front-end development is the technical implementation of the software's user interface (UI). UI design is the graphical bridge that connects the two.</code>              |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 25.54 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.51 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                      | sentence2                                                                                                                                                                     |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>A railway station of the same name on the Golitsyno -- Minsk railway , is located in Moscow .</code>                                                                     | <code>A railway station of the same name on the Golitsyno -- Minsk railway line is located in Moscow .</code>                                                                 |
  | <code>To calculate such a point mass , an integration is carried out over the entire range of the continuous variable , on the probability density of the random part .</code> | <code>In order to calculate such a point mass , an integration over the entire range of continuous size is carried out on the probability density of the random part .</code> |
  | <code>It also has representation at the local and regional level .</code>                                                                                                      | <code>It also has a representation at regional and local level .</code>                                                                                                       |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### global_dataset

* Dataset: global_dataset
* Size: 36,293 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 29.83 tokens</li><li>max: 328 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 52.56 tokens</li><li>max: 479 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sentence2                                                                                                                                                 |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>An autotroph ( from Greek autos = self and trophe = nutrition ) is an organism that makes organic compounds from simple molecules .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>The word autotroph comes from the Greek autos = self and trophe = nutrition , related to trephein = to make solid , congeal , thicken</code>        |
  | <code>Nonrenewable resources cannot be replaced as easily as it is consumed.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>What type of resource cannot be replaced as easily as it is consumed?</code>                                                                        |
  | <code>The data included email addresses and passwords that had been stored without any protection, a security firm said.<br>Leaked Source said the massive cache of credentials dated from 2012 but had only now been leaked and put online.<br>And it had come from a hacker who had supplied security firms with 43 million user names from music service Last.fm.<br>Rambler has been described as the Russian equivalent of Yahoo as it offers email services as well as acting as a news and content hub for its users.<br>"We know about that database," said the service in a statement.<br>"It was leaked March 2014 and contained millions of accounts. Right after the accident we forced our users to change their passwords.<br>"We also have forbidden to use the previously used passwords for the same account."<br>Leaked Source broke the news about the breach and said it had verified some of the data with the help of Russian journalists. .<br>Leaked Source said passwords associated with login names had been stored with "no encryption or hashing". Instead, it said, they had been listed in plain text.<br>Analysis of the long list of passwords showed that "asdasd" was the most popular string, used by more than 723,000 people, it said.<br>The second most popular password among the 98 million users was "asdasd123".<br>In June this year, details of more than 100 million users of the Russian VK.com service were shared online.<br>Copies of the long list of login names and passwords was offered online at a price of one bitcoin (£456).</code> | <code>Login names and passwords for more than 98 million users of the Russian Rambler.ru email service have reportedly been stolen and put online.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Evaluation Datasets

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 128 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           |
  | details | <ul><li>min: 9 tokens</li><li>mean: 19.71 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 32.5 tokens</li><li>max: 78 tokens</li></ul> |
* Samples:
  | claim                                                                               | evidence                                                                                                                                                                                                                                                                                                                                               |
  |:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Dragon Con had over 5000 guests .</code>                                      | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code>                                                                                                          |
  | <code>COVID-19 has reached more than 185 countries .</code>                         | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code>                                                                                                                                                                                                   |
  | <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### negation-triplets

* Dataset: negation-triplets
* Size: 128 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | entailment                                                                        | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 14.11 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.27 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.65 tokens</li><li>max: 19 tokens</li></ul> |
* Samples:
  | anchor                                                                    | entailment                                                   | negative                                                      |
  |:--------------------------------------------------------------------------|:-------------------------------------------------------------|:--------------------------------------------------------------|
  | <code>a bike leaning on a metal fence next to some flowing water. </code> | <code>A bicycle parked next to a flooded river</code>        | <code>A bicycle parked far away from a flooded river.</code>  |
  | <code>A woman is painting a mural of a woman's face.</code>               | <code>There is a woman painting.</code>                      | <code>There is no woman painting.</code>                      |
  | <code>A woman sitting at a table while holding a pair of scissors.</code> | <code>A woman smiles and holds up a pair of scissors.</code> | <code>A woman frowns and puts down a pair of scissors.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 20.13 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                     | sentence2                                                                              |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>humans normally have 23 pairs of chromosomes.</code>                                                                                                                                    | <code>Humans typically have 23 pairs pairs of chromosomes.</code>                      |
  | <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code>                                                                                       | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
  | <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code>     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.09 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 14.87 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
  | sentence1                                                                               | sentence2                                                                        |
  |:----------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | <code>The field of study known as mathematics is called the language of science.</code> | <code>What field of study is called the language of science?</code>              |
  | <code>Roots grow in length and width from the primary and secondary meristem.</code>    | <code>Roots grow in length and width from the primary and secondary what?</code> |
  | <code>Muscle groups are controlled by the motor cortex .</code>                         | <code>Muscle groups are controlled by what mechanism?</code>                     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
  |         | summary                                                                            | document                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 14 tokens</li><li>mean: 25.09 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 58 tokens</li><li>mean: 230.7 tokens</li><li>max: 342 tokens</li></ul> |
* Samples:
  | summary                                                                                                                                                                 | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>A diamond ring that belonged to former child star Shirley Temple is going up for auction next month at a starting price of $25m (£17.3m), Sotheby's says.</code> | <code>The auction house said the 9.54-carat "Fancy Deep Blue" ring was bought by Temple's father in 1940 for $7,210.<br>Temple, one of Hollywood's most popular stars in the 1930s, died in 2014 at the age of 85.<br>A private buyer bought the ring from her estate and is now putting it up for auction, Sotheby's said.<br>It is estimated to be worth up to $35 million.<br>Temple pursued a career in politics after leaving the entertainment industry, serving as US ambassador to Ghana and Czechoslovakia.<br>A selection of her belongings, including a dress worn at the 1935 Oscars, has previously been auctioned off by her family.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  | <code>A cybersecurity researcher working for anti-virus firm Kaspersky Lab in Russia has been arrested.</code>                                                          | <code>Ruslan Stoyanov, a member of Kasperksy's investigations team, was arrested in December but news of his apprehension has only just surfaced.<br>He was arrested as part of an investigation into payments he allegedly received from foreign firms.<br>At Kaspersky, Mr Stoyanov helped look into hack attacks and breaches at Russian companies.<br>In a statement, Kaspkersy Lab said the arrest had nothing to do with his work for the security firm.<br>"Ruslan Stoyanov is under investigation for a period predating his employment at Kaspersky Lab," said the company in a statement. Mr Stoyanov joined Kaspersky in 2012.<br>It added: "We do not possess details of the investigation."<br>Prior to working for Kaspersky, Mr Stoyanov was employed at other security firms. From 2000 to 2006 he was a major in the Russian Ministry of Interior's Moscow cybercrime unit.<br>Information about the reasons for the arrest are scant, but one Russian newspaper linked it to a probe into Sergei Mikhailov - a senior official at Russia's FSB intelligence service.<br>Forbes reported that Mr Stoyanov has been arrested under Article 275 of Russia's criminal code which lets prosecutors charge people for treason for "providing financial, technical, advisory, or other assistance" to other countries or non-Russian organisations seen as hostile.</code>                                                                                                                                                          |
  | <code>Scotland's Russell Knox won the Travelers Championship after Jim Furyk became the first player in PGA Tour history to shoot a round of 58.</code>                 | <code>Knox, 31, closed with a two-under 68 to beat Jerry Kelly by one shot.<br>Daniel Berger went into the final round as leader but carded a four-over-par 74 to end tied for fifth with Furyk, Robert Garrigus and Tyrone van Aswegen.<br>American Furyk, 46, carded 10 birdies and an eagle in his bogey-free round of 12 under par to finish on 11 under.<br>Knox, who also won in Shanghai in November 2015, becomes the fifth player to have multiple wins in the 2015-16 PGA Tour season.<br>The others are the current top three players in the world - Jason Day, Dustin Johnson and Jordan Spieth - and world number eight Adam Scott.<br>The victory lifts the Scot into contention for at least a wildcard place in the European Ryder Cup team for the biennial tournament against the United States, which takes place at the end of September.<br>"It's been an incredible year for me," said Knox.<br>"I keep believing in myself, I tell myself every day that I'm good enough to be up there and win tournaments. It's been an enjoyable ride."<br>Set to move inside the top 20 in the world rankings, he added that winning this tournament would make it difficult for European captain Darren Clarke "not to pick me".<br>Furyk, who was already one of only six men to have recorded a score of 59 for 18 holes, said: "A million and a half rounds played in the history of the PGA Tour and you look at the great names ahead of me.<br>"It's humbling. To stand alone at 58 is really a cool accomplishment."</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.28 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 72.52 tokens</li><li>max: 400 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                             | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Internal resistance, or (electrical) resistance in general, involves the resistance of the flow of what?</code> | <code>Internal Resistance As noted before, a 12-V truck battery is physically larger, contains more charge and energy, and can deliver a larger current than a 12-V motorcycle battery. Both are lead-acid batteries with identical emf, but, because of its size, the truck battery has a smaller internal resistance r . Internal resistance is the inherent resistance to the flow of current within the source itself. Figure 21.9 is a schematic representation of the two fundamental parts of any voltage source. The emf (represented by a script E in the figure) and internal resistance r are in series. The smaller the internal resistance for a given emf, the more current and the more power the source can supply.</code> |
  | <code>If a solute is a gas, increasing the temperature will do what?</code>                                           | <code>If a solute is a gas, increasing the temperature decreases its solubility. For example, less carbon dioxide can dissolve in warm ocean water than in cold ocean water.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>What are usually planted in rows with bare soil in between the rows?</code>                                     | <code>The problem doesn’t stop with plowing. Crops are usually planted in rows with bare soil in between the rows. In places where crops grow only during part of the year, the land may be bare for a few months.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 33.07 tokens</li><li>max: 60 tokens</li></ul> |
* Samples:
  | sentence1                                                                      | sentence2                                                                                                                                                                                                                                                               |
  |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What kind of organism use cellulose for their cell walls?</code>         | <code>Plants use cellulose for their cell walls.. If the plant is green, it is a producer. <br> Producers use cellulose for their cell walls.</code>                                                                                                                    |
  | <code>Energy enters what in the form of sunlight or chemical compounds.</code> | <code>Energy enters ecosystems in the form of sunlight or chemical compounds.. Biomes are global ecosystems. <br> Energy enters biomes in the form of sunlight or chemical compounds.</code>                                                                            |
  | <code>What does heat and pressure change into natural gas?</code>              | <code>heat and pressure change the remains of prehistoric living things into natural gas. Dinosaurs and Other Prehistoric Creatures Dinosaurs are just one group of prehistoric animals. <br> heat and pressure change the remains of dinosaurs into natural gas</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | fact                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.96 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
  | question                                                               | fact                                                                         |
  |:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code>                      |
  | <code>What creates a valley?</code>                                    | <code>a valley is formed by a river flowing</code>                           |
  | <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.45 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 72.06 tokens</li><li>max: 227 tokens</li></ul> |
* Samples:
  | sentence1                                                | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  |:---------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how long is flight from vegas to california</code> | <code>Flying time from Las Vegas, NV to Los Angeles, CA. The total flight duration from Las Vegas, NV to Los Angeles, CA is 41 minutes. This is the average in-air flight time (wheels up to wheels down on the runway) based on actual flights taken over the past year, including routes like LAS to LAX.</code>                                                                                                                                                                                            |
  | <code>tangible net worth calculation meaning</code>      | <code>A measure of the physical worth of a company, which does not include any value derived from intangible assets such as copyrights, patents and intellectual property. Tangible net worth is calculated by taking a firm's total assets and subtracting the value of all liabilities and intangible assets.Next Up.REAKING DOWN 'Tangible Net Worth'. In terms of a consumer, tangible net worth is the sum of all your tangible assets (cash, home, cars, etc) less any liabilities you may have.</code> |
  | <code>who is father ferdinand</code>                     | <code>Ferdinand does indeed fall in love with Prospero's daughter Miranda, aided by the magic of Ariel. Prospero does also have a plan for Ferdinand, which is for him to marry his daughter and cement the reconciliation between Prospero, right Duke of Milan and Alonso, Ferdinand's father and King of Milan. It is interesting to note that Ferdinand is presented as more passive than his romantic counterpart, Miranda.</code>                                                                       |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.92 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 133.38 tokens</li><li>max: 416 tokens</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:-----------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who owns the rights to guns and roses</code>         | <code>Guns N' Roses Slash was replaced by Nine Inch Nails touring guitarist Robin Finck in January 1997, who signed a two-year contract with the band in August 1997, making him an official member.[130] Finck was originally recommended by Matt Sorum to Rose a year earlier as a possible second guitarist to complement Slash.[122] Slash's departure was followed shortly thereafter by Matt Sorum in April 1997, who was fired by Rose after getting in an argument about Tobias's inclusion in the band.[131] Sorum later stated Tobias was the "Yoko Ono of Guns N' Roses".[122] McKagan was the last of the Appetite lineup to leave, resigning as bassist in August 1997.[132] McKagan had recently become a father and wrote about his decision to leave in his autobiography, stating "Guns had been paying rent on studios for three years now—from 1994 to 1997—and still did not have a single song. The whole operation was so erratic that it didn't seem to fit with my hopes for parenthood, for stability."[132] McKagan was replaced later that year by former Replacements bassist Tommy Stinson.[133] An actual break-up of Guns N' Roses never occurred, as new players were brought in as the old ones left. Rose reportedly purchased the full rights to the Guns N' Roses name in 1997.[129][134] Slash claimed he and bandmates signed over the name in duress, stating "Axl refused to go onstage one night during the Use Your Illusion tour in 1992 unless the band signed away the name rights to the band. Unfortunately, we signed it. I didn't think he'd go on stage otherwise."[135] Rose denied the claim, saying "(it) Never happened, all made up, fallacy and fantasy. Not one single solitary thread of truth to it. Had that been the case I would have been cremated years ago legally, could've cleaned me out for the name and damages. It's called under duress with extenuating circumstances."[135]</code> |
  | <code>what is red hot chili peppers otherside about</code> | <code>Otherside "Otherside" refers to former band member Hillel Slovak, who died of a heroin overdose on June 25, 1988. The song talks about his struggles from this addiction.[1]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  | <code>when do you have to pay death duties</code>          | <code>Estate tax in the United States If an asset is left to a spouse or a federally recognized charity, the tax usually does not apply. In addition, a maximum amount, varying year by year, can be given by an individual, before and/or upon their death, without incurring federal gift or estate taxes:[2] $5,340,000 for estates of persons dying in 2014[3] and 2015,[4] $5,450,000 (effectively $10.90 million per married couple) for estates of persons dying in 2016.[5] Because of these exemptions, it is estimated that only the largest 0.2% of estates in the U.S. will pay the tax.[6]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | answer                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.31 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 206.09 tokens</li><li>max: 385 tokens</li></ul> |
* Samples:
  | query                                                                                      | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:-------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Which musical features the song Sit Down You’re Rockin’ The Boat?</code>             | <code>GUYS & DOLLS (Broadway) - "Sit Down, You're Rockin' the Boat" [LIVE @ The 2009 Tony Awards] - YouTube GUYS & DOLLS (Broadway) - "Sit Down, You're Rockin' the Boat" [LIVE @ The 2009 Tony Awards] Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Published on Jun 19, 2013 The cast of the Broadway revival of the musical GUYS & DOLLS, perform the number "Sit Down, You're Rockin' the Boat" live at the 2009 Tony Awards Category</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>"John Wayne played the lead role of whom in the 1958 film ""The Conqueror""?"</code> | <code>The movie so toxic it killed John Wayne: the tragedy of The Conqueror The movie so toxic it killed John Wayne: the tragedy of The Conqueror John Wayne and Susan Hayward in The Conqueror Credit: Rex Chris Bell 17 January 2017 • 6:24pm The Duke playing Genghis Khan in yellowface, filming on a nuclear testing ground? Chris Bell on why nobody escaped the fallout from The Conqueror Towards the end of his life, Howard Hughes – the billionaire tycoon, aviator and filmmaker – had become a recluse. Locked in the penthouse suite at his Xanadu Princess Resort hotel in the Bahamas, he refused to bathe, cut his nails or hair, use a toilet or even open the curtains. Instead, he would sit for hours in his darkened bedroom, naked except for a pink hotel napkin, eating nothing but chocolate bars and chicken, surrounded by dozens of Kleenex boxes that he continuously stacked and rearranged.  But another ritual obsession would come dominate his final few months in 1976: two movies, played continually via a projector on the wall, that he watched over and over again. The first was his favourite film , Ice Station Zebra – Rock Hudson’s tense... Premium</code>              |
  | <code>Which country has won the most soccer World Cups?</code>                             | <code>Brazil may have won the most World Cup titles, but Germany has been the most consistent team | For The Win Brazil may have won the most World Cup titles, but Germany has been the most consistent team Brazil may have won the most World Cup titles, but Germany has been the most consistent team By Micah Peters July 13, 2014 7:22 pm Follow   @micahpeters_ 6.1k shares Follow @micahpeters_ Germany just became the third country to win four World Cup titles, behind Italy, who also has four, and the most winningest, Brazil, which has 5. Brazil may have won 5 World Cup titles, but throughout the competition’s long history, Germany has been more consistent. They have never been eliminated in the group stage, and have consistently featured in the later stages. Since Germany began playing as a unified country in 1994, they have not gone out before the third round of the competition. #GER in WC: '54 Win '58 SF '62 QF '66 Final '70 SF '74 Win '78 QF '82 Final '86 Final '90 Win '94 QF '98 QF '02 Final '06 SF '10 SF '14 Win — The Football Café (@thefootballcafe) July 13, 2014 They’re also the first European team to win a World Cup title on South American soil.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.65 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 57.55 tokens</li><li>max: 129 tokens</li></ul> |
* Samples:
  | sentence1                                                      | sentence2                                                                                                                                                                                                                                                                                                                     |
  |:---------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>do nz residents need a visa to work in australia?</code> | <code>Most NZ citizens can visit, live and work in Australia without applying for a tourist or work visa. NZ permanent residents need to apply for visas to Australia.</code>                                                                                                                                                 |
  | <code>is clep testing worth it?</code>                         | <code>Money is a valuable resource, but time is even more valuable. CLEP tests can help you get a degree much faster than the traditional college path. The conventional amount of time to get an undergraduate degree is 4 years, though it can take many students as long as six years.</code>                              |
  | <code>does someone know if you block them on iphone?</code>    | <code>If you block someone, they do not receieve any notification that they have been blocked. The only way for them to know would be for you to tell them. Furthermore, if they send you an iMessage, it will say that it was delivered on their phone, so they won't even know that you're not seeing their message.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 10 tokens</li><li>mean: 25.58 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.4 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                      | sentence2                                                                                                                                                      |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>They were there to enjoy us and they were there to pray for us .</code>                                                                                  | <code>They were there for us to enjoy and they were there for us to pray .</code>                                                                              |
  | <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
  | <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code>                                        | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code>                                            |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### global_dataset

* Dataset: global_dataset
* Size: 325 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 31.63 tokens</li><li>max: 324 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 58.18 tokens</li><li>max: 416 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sentence2                                                                                                                                                                                                                                                                            |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what height should a floating vanity be</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>If the piece measures 20 inches high and you want a height of 31 inches, you must mount it 11 inches above the floor. If you want the look of a floating sink with the entire vanity raised 12 inches or higher above the floor, you want a vanity of a smaller height.</code> |
  | <code>Owner Steve Hayes has been actively trying to sell the club since October and four parties were interested back in February.<br>But in a statement the High Wycombe-based outfit said they were seeking fresh interest following stalled talks.<br>Hayes announced his desire to sell up after Wycombe District Council decided not to back plans for a new stadium.<br>Wasps chairman Mark Rigby added: "London Wasps has a long and successful history and is one of the best known brands in the game, and the board is convinced that the right backer exists.<br>"With a great squad in place and the excellent Dai Young at the helm, we believe we are set to make a strong impact next season.<br>"Time is however short and we urgently need a new investor or consortium to back this belief."<br>The statement said the board, after independent advice, could confirm that London Wasps Holdings Limited remained a going concern.<br>Wasps are enduring a torrid domestic season. They have won just two of their last 12 Premiership fixtures and sit second from bottom in the table.<br>In addition Hayes, who also owns League One football club Wycombe Wanderers, is currently<br>The 50-year-old businessman was one of two men arrested in February as part of Operation Tuleta, the investigation running alongside Operation Weeting, which was set up to probe alleged law-breaking at News International.<br>He is currently on bail until June, subject to further enquiries.</code> | <code>An 'imminent takeover' of London Wasps has fallen through, the Premiership strugglers have confirmed.</code>                                                                                                                                                                   |
  | <code>can apple cider vinegar cure urinary infection?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>The takeaway Apple cider vinegar may have many health benefits, but it's not a cure for UTIs. If you have a UTI, make an appointment with your doctor. A short course of medication should relieve your symptoms within a few days.</code>                                     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `weight_decay`: 0.001
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 5e-06}
- `warmup_ratio`: 0.3
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 5e-06}
- `warmup_ratio`: 0.3
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | sciq pairs loss | trivia pairs loss | msmarco pairs loss | scitail-pairs-qa loss | openbookqa pairs loss | nq pairs loss | global dataset loss | vitaminc-pairs loss | scitail-pairs-pos loss | gooaq pairs loss | paws-pos loss | qasc pairs loss | xsum-pairs loss | negation-triplets loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:-----------------:|:------------------:|:---------------------:|:---------------------:|:-------------:|:-------------------:|:-------------------:|:----------------------:|:----------------:|:-------------:|:---------------:|:---------------:|:----------------------:|:---------------:|:-----------------:|:------------------------:|
| 0.0102 | 16   | 7.1882        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.0205 | 32   | 9.1489        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.0307 | 48   | 8.805         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.0409 | 64   | 5.7489        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.0512 | 80   | 4.7163        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.0614 | 96   | 3.176         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.0716 | 112  | 2.034         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.0818 | 128  | 1.1278        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.0921 | 144  | 0.7996        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1004 | 157  | -             | 0.1090          | 0.4664            | 0.7974             | 0.1105                | 0.7853                | 1.1498        | 0.4867              | 3.8214              | 0.0780                 | 0.7758           | 0.0375        | 0.8442          | 0.1444          | 1.2527                 | 0.6672          | 0.5230            | 0.8776                   |
| 0.1023 | 160  | 0.54          | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1125 | 176  | 0.6267        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1228 | 192  | 0.401         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1330 | 208  | 0.455         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1432 | 224  | 0.308         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1535 | 240  | 0.2808        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1637 | 256  | 0.319         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1739 | 272  | 0.3241        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1841 | 288  | 0.2181        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.1944 | 304  | 0.3247        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2008 | 314  | -             | 0.0483          | 0.1067            | 0.1743             | 0.0014                | 0.4045                | 0.1814        | 0.2370              | 3.3627              | 0.0271                 | 0.2038           | 0.0234        | 0.1129          | 0.0382          | 0.7010                 | 0.7243          | 0.5918            | 0.9171                   |
| 0.2046 | 320  | 0.233         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2148 | 336  | 0.1946        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2251 | 352  | 0.2393        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2353 | 368  | 0.1476        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2455 | 384  | 0.1976        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2558 | 400  | 0.1139        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2660 | 416  | 0.1986        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2762 | 432  | 0.2405        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2864 | 448  | 0.1519        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.2967 | 464  | 0.1508        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3012 | 471  | -             | 0.0414          | 0.0961            | 0.0865             | 0.0004                | 0.3847                | 0.1033        | 0.1735              | 2.4167              | 0.0062                 | 0.1280           | 0.0252        | 0.0391          | 0.0329          | 0.6828                 | 0.7293          | 0.6023            | 0.9200                   |
| 0.3069 | 480  | 0.1457        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3171 | 496  | 0.1086        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3274 | 512  | 0.1412        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3376 | 528  | 0.1538        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3478 | 544  | 0.1013        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3581 | 560  | 0.1007        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3683 | 576  | 0.0853        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3785 | 592  | 0.0696        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3887 | 608  | 0.1468        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.3990 | 624  | 0.1314        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4015 | 628  | -             | 0.0295          | 0.0647            | 0.0976             | 0.0001                | 0.3722                | 0.0893        | 0.2361              | 3.2355              | 0.0099                 | 0.1432           | 0.0264        | 0.0721          | 0.0172          | 0.6764                 | 0.7428          | 0.6036            | 0.9153                   |
| 0.4092 | 640  | 0.149         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4194 | 656  | 0.1402        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4297 | 672  | 0.1056        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4399 | 688  | 0.0932        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4501 | 704  | 0.0534        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4604 | 720  | 0.2175        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4706 | 736  | 0.1107        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4808 | 752  | 0.2301        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.4910 | 768  | 0.2317        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5013 | 784  | 0.1084        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5019 | 785  | -             | 0.0324          | 0.0932            | 0.1156             | 0.0001                | 0.4128                | 0.1071        | 0.2526              | 3.9009              | 0.0121                 | 0.1237           | 0.0254        | 0.0729          | 0.0098          | 0.6337                 | 0.7422          | 0.6029            | 0.9171                   |
| 0.5115 | 800  | 0.0799        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5217 | 816  | 0.1466        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5320 | 832  | 0.1208        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5422 | 848  | 0.1021        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5524 | 864  | 0.1391        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5627 | 880  | 0.185         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5729 | 896  | 0.1108        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5831 | 912  | 0.0926        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.5934 | 928  | 0.157         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6023 | 942  | -             | 0.0307          | 0.0858            | 0.0844             | 0.0025                | 0.3581                | 0.1235        | 0.1544              | 2.8148              | 0.0050                 | 0.1563           | 0.0268        | 0.0460          | 0.0177          | 0.5489                 | 0.7193          | 0.6065            | 0.9218                   |
| 0.6036 | 944  | 0.126         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6138 | 960  | 0.1416        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6240 | 976  | 0.157         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6343 | 992  | 0.076         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6445 | 1008 | 0.0956        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6547 | 1024 | 0.1297        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6650 | 1040 | 0.1673        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6752 | 1056 | 0.0801        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6854 | 1072 | 0.1508        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.6957 | 1088 | 0.082         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7027 | 1099 | -             | 0.0361          | 0.0896            | 0.0879             | 0.0001                | 0.4053                | 0.0798        | 0.3097              | 4.5101              | 0.0260                 | 0.1373           | 0.0255        | 0.0795          | 0.0101          | 0.6732                 | 0.7434          | 0.5941            | 0.9084                   |
| 0.7059 | 1104 | 0.112         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7161 | 1120 | 0.0565        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7263 | 1136 | 0.1297        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7366 | 1152 | 0.1792        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7468 | 1168 | 0.1376        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7570 | 1184 | 0.1362        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7673 | 1200 | 0.1589        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7775 | 1216 | 0.0846        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7877 | 1232 | 0.1241        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.7980 | 1248 | 0.1532        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8031 | 1256 | -             | 0.0304          | 0.0667            | 0.1060             | 0.0003                | 0.3666                | 0.1305        | 0.2140              | 3.1243              | 0.0114                 | 0.2109           | 0.0277        | 0.0328          | 0.0213          | 0.5495                 | 0.7479          | 0.5907            | 0.9194                   |
| 0.8082 | 1264 | 0.0859        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8184 | 1280 | 0.0872        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8286 | 1296 | 0.0685        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8389 | 1312 | 0.0729        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8491 | 1328 | 0.0679        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8593 | 1344 | 0.0752        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8696 | 1360 | 0.1651        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8798 | 1376 | 0.0975        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.8900 | 1392 | 0.166         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9003 | 1408 | 0.079         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9035 | 1413 | -             | 0.0356          | 0.0784            | 0.0609             | 0.0003                | 0.4281                | 0.0720        | 0.2313              | 3.4939              | 0.0141                 | 0.2300           | 0.0268        | 0.0522          | 0.0061          | 0.5946                 | 0.7379          | 0.6052            | 0.9102                   |
| 0.9105 | 1424 | 0.09          | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9207 | 1440 | 0.0777        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9309 | 1456 | 0.1623        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9412 | 1472 | 0.08          | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9514 | 1488 | 0.0628        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9616 | 1504 | 0.1695        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9719 | 1520 | 0.0715        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9821 | 1536 | 0.1493        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 0.9923 | 1552 | 0.0431        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0026 | 1568 | 0.0549        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0038 | 1570 | -             | 0.0429          | 0.0583            | 0.0681             | 0.0019                | 0.4316                | 0.1454        | 0.1614              | 2.8374              | 0.0053                 | 0.0735           | 0.0250        | 0.0282          | 0.0120          | 0.5641                 | 0.7139          | 0.6081            | 0.9289                   |
| 1.0128 | 1584 | 0.102         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0230 | 1600 | 0.0806        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0332 | 1616 | 0.0643        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0435 | 1632 | 0.2551        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0537 | 1648 | 0.1509        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0639 | 1664 | 0.0928        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0742 | 1680 | 0.1388        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0844 | 1696 | 1.2414        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.0946 | 1712 | 4.1558        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1042 | 1727 | -             | 0.0589          | 0.2021            | 9.6693             | 0.6669                | 3.1183                | 1.2794        | 1.6158              | 3.3692              | 0.0116                 | 5.4553           | 0.0264        | 4.7383          | 0.0407          | 0.9119                 | 0.7052          | 0.5709            | 0.9119                   |
| 1.1049 | 1728 | 1.8742        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1151 | 1744 | 1.7176        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1253 | 1760 | 0.3091        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1355 | 1776 | 0.3178        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1458 | 1792 | 0.173         | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1560 | 1808 | 0.1028        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1662 | 1824 | 0.1533        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1765 | 1840 | 0.2395        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1867 | 1856 | 0.2036        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.1969 | 1872 | 0.2104        | -               | -                 | -                  | -                     | -                     | -             | -                   | -                   | -                      | -                | -             | -               | -               | -                      | -               | -                 | -                        |
| 1.2046 | 1884 | -             | 0.0323          | 0.0504            | 0.0626             | 0.0001                | 0.3769                | 0.0541        | 0.1662              | 2.7120              | 0.0100                 | 0.0981           | 0.0282        | 0.0162          | 0.0219          | 0.5891                 | 0.7460          | 0.5991            | 0.9239                   |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->