File size: 177,363 Bytes
4b4d7d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 |
---
base_model: microsoft/deberta-v2-xlarge
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:123245
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: how long does it take to recover from total knee replacement surgery
sentences:
- Sweets and Oily Foods. Snacks or desserts are generally okay to eat on a bland
diet, provided you do so in moderation. For example, most cakes, cookies, gelatin
desserts, puddings and hard candies are acceptable. However, chocolate and minty
treats cause digestion issues.
- Since the spring of 2004, when Estonia became a member of the European Union,
Estonia has demonstrated that it is an active and constructive partner and continues
with these pragmatic policies in its further integration into the EU.
- Of course, every person is different and recovery periods can vary, depending
on a number of factors. A typical full recovery from a total knee replacement
is three to 12 months. However, know that the harder you work rehabbing, the more
likely you are to enjoy a faster and fuller recovery. Knee replacement.
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
mainland China .
sentences:
- 'More than 3,700 people have died : around 3,100 in mainland China and around
550 in all other countries combined .'
- 'More than 3,200 people have died : almost 3,000 in mainland China and around
275 in other countries .'
- more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: Humans possess a(n) endoskeleton.
sentences:
- Of the three types of skeleton designs - hydrostatic skeletons, exoskeletons,
and endoskeletons - which do humans possess?
- Electrons always result in what?
- What do we call the recycling of inorganic matter between living organisms and
their environment?
- source_sentence: Birds have four limbs.
sentences:
- How many dimensions can humans see in?
- How many limbs to birds have?
- Community interactions are important factors in what?
- source_sentence: The dodo was a native bird of which island?
sentences:
- '1000+ images about Medusa (jellyfish) on Pinterest | Fish swimming, Darth vader
and Swimming In pictures: The world''s best underwater photographs 2010 ''Inner
glow'' - jellyfish in Ningaloo Reef, Australia More'
- The Dodo Bird | History, Story and Resources for Dodobirds The Story of the Dodo
Bird A Reference Site for The Dodo Bird and it's History The Dodo bird or Raphus
Cucullatus was a flightless bird native to the island of Mauritius, near the island
of Madagascar in the Indian Ocean. The closest relatives to the dodo bird are
pigeons and doves, even though dodo birds were much larger in size. On average,
dodo birds stood 3 feet tall and weighted about 40 lb. Unfortunately, due to aggressive
human population, dodo birds became extinct in late 17th century. The Dodo Bird
Location Dodo Birds, while now extinct, were found only on the small island of
Mauritius, some 500 miles east of Madagascar, and 1200 miles east of Africa. The
complete isolation of this island let the Dodo Birds grow and evolve without natural
predators, unfortunately to a fault that led to their extinction.
- Ludwig van Beethoven - Symphony No. 6 in F major, op. 68 "Pastorale" - YouTube
Ludwig van Beethoven - Symphony No. 6 in F major, op. 68 "Pastorale" Want to watch
this again later? Sign in to add this video to a playlist. Need to report the
video? Sign in to report inappropriate content. Rating is available when the video
has been rented. This feature is not available right now. Please try again later.
Published on Mar 8, 2012 Ludwig van Beethoven - Symphony No. 6 in F major, op.
68 "Pastorale" Category
model-index:
- name: SentenceTransformer based on microsoft/deberta-v2-xlarge
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9021470099112117
name: Pearson Cosine
- type: spearman_cosine
value: 0.907700664607013
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9142235212520329
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9078543851898925
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9135854372994908
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9072292995707775
name: Spearman Euclidean
- type: pearson_dot
value: 0.8917251782363848
name: Pearson Dot
- type: spearman_dot
value: 0.8887621545424798
name: Spearman Dot
- type: pearson_max
value: 0.9142235212520329
name: Pearson Max
- type: spearman_max
value: 0.9078543851898925
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allNLI dev
type: allNLI-dev
metrics:
- type: cosine_accuracy
value: 0.7109375
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8685251474380493
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.5822222222222222
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6784489154815674
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.4729241877256318
name: Cosine Precision
- type: cosine_recall
value: 0.7572254335260116
name: Cosine Recall
- type: cosine_ap
value: 0.5715847909509861
name: Cosine Ap
- type: dot_accuracy
value: 0.705078125
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 886.351318359375
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.5940170940170941
name: Dot F1
- type: dot_f1_threshold
value: 659.7857666015625
name: Dot F1 Threshold
- type: dot_precision
value: 0.4711864406779661
name: Dot Precision
- type: dot_recall
value: 0.8034682080924855
name: Dot Recall
- type: dot_ap
value: 0.5644148142455192
name: Dot Ap
- type: manhattan_accuracy
value: 0.712890625
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 551.571533203125
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.5863453815261045
name: Manhattan F1
- type: manhattan_f1_threshold
value: 831.1856689453125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.4492307692307692
name: Manhattan Precision
- type: manhattan_recall
value: 0.8439306358381503
name: Manhattan Recall
- type: manhattan_ap
value: 0.5708799354607844
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.708984375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 15.756305694580078
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.5840000000000001
name: Euclidean F1
- type: euclidean_f1_threshold
value: 26.798587799072266
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.44648318042813456
name: Euclidean Precision
- type: euclidean_recall
value: 0.8439306358381503
name: Euclidean Recall
- type: euclidean_ap
value: 0.5670650775218166
name: Euclidean Ap
- type: max_accuracy
value: 0.712890625
name: Max Accuracy
- type: max_accuracy_threshold
value: 886.351318359375
name: Max Accuracy Threshold
- type: max_f1
value: 0.5940170940170941
name: Max F1
- type: max_f1_threshold
value: 831.1856689453125
name: Max F1 Threshold
- type: max_precision
value: 0.4729241877256318
name: Max Precision
- type: max_recall
value: 0.8439306358381503
name: Max Recall
- type: max_ap
value: 0.5715847909509861
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Qnli dev
type: Qnli-dev
metrics:
- type: cosine_accuracy
value: 0.69140625
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.677927553653717
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7079037800687284
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6066854000091553
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5953757225433526
name: Cosine Precision
- type: cosine_recall
value: 0.8728813559322034
name: Cosine Recall
- type: cosine_ap
value: 0.7135273513673487
name: Cosine Ap
- type: dot_accuracy
value: 0.669921875
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 615.3697509765625
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6946308724832215
name: Dot F1
- type: dot_f1_threshold
value: 583.5701293945312
name: Dot F1 Threshold
- type: dot_precision
value: 0.575
name: Dot Precision
- type: dot_recall
value: 0.8771186440677966
name: Dot Recall
- type: dot_ap
value: 0.6697900654196967
name: Dot Ap
- type: manhattan_accuracy
value: 0.705078125
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 754.4404296875
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.701168614357262
name: Manhattan F1
- type: manhattan_f1_threshold
value: 882.8988037109375
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5785123966942148
name: Manhattan Precision
- type: manhattan_recall
value: 0.8898305084745762
name: Manhattan Recall
- type: manhattan_ap
value: 0.7236352677013607
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.70703125
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 24.364826202392578
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7003367003367004
name: Euclidean F1
- type: euclidean_f1_threshold
value: 28.203102111816406
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5810055865921788
name: Euclidean Precision
- type: euclidean_recall
value: 0.8813559322033898
name: Euclidean Recall
- type: euclidean_ap
value: 0.720573540901372
name: Euclidean Ap
- type: max_accuracy
value: 0.70703125
name: Max Accuracy
- type: max_accuracy_threshold
value: 754.4404296875
name: Max Accuracy Threshold
- type: max_f1
value: 0.7079037800687284
name: Max F1
- type: max_f1_threshold
value: 882.8988037109375
name: Max F1 Threshold
- type: max_precision
value: 0.5953757225433526
name: Max Precision
- type: max_recall
value: 0.8898305084745762
name: Max Recall
- type: max_ap
value: 0.7236352677013607
name: Max Ap
---
# SentenceTransformer based on microsoft/deberta-v2-xlarge
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) <!-- at revision 1d134961d4db8e7e8eb1bc1ab81cb370244c57f7 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1536 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- negation-triplets
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- xsum-pairs
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
- openbookqa_pairs
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
- global_dataset
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa2-0.9B-ST-v1-checkpoints-tmp")
# Run inference
sentences = [
'The dodo was a native bird of which island?',
"The Dodo Bird | History, Story and Resources for Dodobirds The Story of the Dodo Bird A Reference Site for The Dodo Bird and it's History The Dodo bird or Raphus Cucullatus was a flightless bird native to the island of Mauritius, near the island of Madagascar in the Indian Ocean. The closest relatives to the dodo bird are pigeons and doves, even though dodo birds were much larger in size. On average, dodo birds stood 3 feet tall and weighted about 40 lb. Unfortunately, due to aggressive human population, dodo birds became extinct in late 17th century. The Dodo Bird Location Dodo Birds, while now extinct, were found only on the small island of Mauritius, some 500 miles east of Madagascar, and 1200 miles east of Africa. The complete isolation of this island let the Dodo Birds grow and evolve without natural predators, unfortunately to a fault that led to their extinction.",
'Ludwig van Beethoven - Symphony No. 6 in F major, op. 68 "Pastorale" - YouTube Ludwig van Beethoven - Symphony No. 6 in F major, op. 68 "Pastorale" Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Published on Mar 8, 2012 Ludwig van Beethoven - Symphony No. 6 in F major, op. 68 "Pastorale" Category',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1536]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.9021 |
| **spearman_cosine** | **0.9077** |
| pearson_manhattan | 0.9142 |
| spearman_manhattan | 0.9079 |
| pearson_euclidean | 0.9136 |
| spearman_euclidean | 0.9072 |
| pearson_dot | 0.8917 |
| spearman_dot | 0.8888 |
| pearson_max | 0.9142 |
| spearman_max | 0.9079 |
#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.7109 |
| cosine_accuracy_threshold | 0.8685 |
| cosine_f1 | 0.5822 |
| cosine_f1_threshold | 0.6784 |
| cosine_precision | 0.4729 |
| cosine_recall | 0.7572 |
| cosine_ap | 0.5716 |
| dot_accuracy | 0.7051 |
| dot_accuracy_threshold | 886.3513 |
| dot_f1 | 0.594 |
| dot_f1_threshold | 659.7858 |
| dot_precision | 0.4712 |
| dot_recall | 0.8035 |
| dot_ap | 0.5644 |
| manhattan_accuracy | 0.7129 |
| manhattan_accuracy_threshold | 551.5715 |
| manhattan_f1 | 0.5863 |
| manhattan_f1_threshold | 831.1857 |
| manhattan_precision | 0.4492 |
| manhattan_recall | 0.8439 |
| manhattan_ap | 0.5709 |
| euclidean_accuracy | 0.709 |
| euclidean_accuracy_threshold | 15.7563 |
| euclidean_f1 | 0.584 |
| euclidean_f1_threshold | 26.7986 |
| euclidean_precision | 0.4465 |
| euclidean_recall | 0.8439 |
| euclidean_ap | 0.5671 |
| max_accuracy | 0.7129 |
| max_accuracy_threshold | 886.3513 |
| max_f1 | 0.594 |
| max_f1_threshold | 831.1857 |
| max_precision | 0.4729 |
| max_recall | 0.8439 |
| **max_ap** | **0.5716** |
#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6914 |
| cosine_accuracy_threshold | 0.6779 |
| cosine_f1 | 0.7079 |
| cosine_f1_threshold | 0.6067 |
| cosine_precision | 0.5954 |
| cosine_recall | 0.8729 |
| cosine_ap | 0.7135 |
| dot_accuracy | 0.6699 |
| dot_accuracy_threshold | 615.3698 |
| dot_f1 | 0.6946 |
| dot_f1_threshold | 583.5701 |
| dot_precision | 0.575 |
| dot_recall | 0.8771 |
| dot_ap | 0.6698 |
| manhattan_accuracy | 0.7051 |
| manhattan_accuracy_threshold | 754.4404 |
| manhattan_f1 | 0.7012 |
| manhattan_f1_threshold | 882.8988 |
| manhattan_precision | 0.5785 |
| manhattan_recall | 0.8898 |
| manhattan_ap | 0.7236 |
| euclidean_accuracy | 0.707 |
| euclidean_accuracy_threshold | 24.3648 |
| euclidean_f1 | 0.7003 |
| euclidean_f1_threshold | 28.2031 |
| euclidean_precision | 0.581 |
| euclidean_recall | 0.8814 |
| euclidean_ap | 0.7206 |
| max_accuracy | 0.707 |
| max_accuracy_threshold | 754.4404 |
| max_f1 | 0.7079 |
| max_f1_threshold | 882.8988 |
| max_precision | 0.5954 |
| max_recall | 0.8898 |
| **max_ap** | **0.7236** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### negation-triplets
* Dataset: negation-triplets
* Size: 6,700 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 21.95 tokens</li><li>max: 174 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.84 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.09 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:-----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|
| <code>Wetherby is a town in West Yorkshire , England .</code> | <code>Wetherby Athletic play in the West Yorkshire League .</code> | <code>Wetherby Athletic play in the East Yorkshire League .</code> |
| <code>vulnerability and exploitation of such workers and the need for legal representation to give meaning to their legal rights.</code> | <code>These workers have legal rights, and they will need legal representation to avoid being exploited.</code> | <code>These workers have no legal rights, and they will not need legal representation to avoid being exploited.</code> |
| <code>A man in a green t-shirt stands at a rail with a woman in a gray t-shirt and a wrist tattoo.</code> | <code>A man stand at a rail with a woman.</code> | <code>A man does not stand at a rail with a woman.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 6,700 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.06 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 37.3 tokens</li><li>max: 145 tokens</li></ul> |
* Samples:
| claim | evidence |
|:-------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Maze Runner : The Death Cure made over $ 260 million worldwide , and over $ 205 outside the US and Canada .</code> | <code>, Maze Runner : The Death Cure has grossed $ 55million in the United States and Canada , and $ 206.3million in other territories , for a worldwide total of $ 261.3million , against a production budget of $ 62million .</code> |
| <code>The Score 's average rating on Rotten Tomatoes is 6.6/10 .</code> | <code>The review aggregator Rotten Tomatoes gives the film a rating of 73 % based on 128 reviews , and a rating average of 6.6/10 .</code> |
| <code>Shaan Rahman released his album Coffee in 2008 .</code> | <code>He got the chance to work in Ee Pattanathil Bhootham after the wide acceptance and popularity of his 2008 music album Coffee at MG Road which he did along with his friend , singer , and director Vineeth Srinivasan .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 6,700 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.19 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.29 tokens</li><li>max: 34 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The endoplasmic reticulum is the name of the organelle that helps make and transport proteins and lipids.</code> | <code>What is the name of the organelle that helps make and transport proteins and lipids?</code> |
| <code>Character displacement is the concept by which two species within the same area to coexist by adapting by developing different specializations.</code> | <code>What is the concept by which two species within the same area to coexist by adapting by developing different specializations?</code> |
| <code>Of the three basic types of radioactive emissions, the gamma particle is the most penetrating.</code> | <code>Of the three basic types of radioactive emissions, what particle is the most penetrating?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 5,762 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 23.51 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.68 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| <code>The cation comes first, both in the name and in the formula for an ionic compound.</code> | <code>In naming ternary compounds, the cation is stated first.</code> |
| <code>For example, the Earth completes one rotation about its axis about every 24 hours, but it completes one revolution around the Sun about every 365 days.</code> | <code>It takes 24 hours for the earth to make a complete rotation of its axis.</code> |
| <code>Stress is the force applied to a body.</code> | <code>The force applied to an object is called stress.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 6,700 training samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
| | document | summary |
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 58 tokens</li><li>mean: 213.23 tokens</li><li>max: 385 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 25.47 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
| document | summary |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|
| <code>Mathew Sears in the US state of Oregon adopted one-year-old Silky just days after the BBC had published her story.<br>"Silky likes people and is super friendly and outgoing," said Mr Sears.<br>He added that he was also "hair-challenged" and he joked that he imagined Silky would say, "There's Daddy!" when they first met.<br>The "live feed from space" that wasn't<br>Is this photograph Tom Hanks or Bill Murray?<br>US liver donor weds the stranger he saved<br>The Oregon Humane Society (OHS) in Portland had been caring for Silky after her original owners, who were moving away, said they would no longer be able to cater for her.<br>A staff member had knitted the sweater to help Silky stay warm because she was often cold. The hamster had been born hairless due to a genetic mutation, except for short curly whiskers on her snout.<br>"She does need to be kept in a heated environment," especially in winter, said Diana Gabaldon from the OHS.<br>"While she isn't fluffy like a normal hamster, she is just as cuddly and playful as any other hamster," Ms Gabaldon added.<br>The OHS said Sears had contacted them "right away" after reading the hamster's story over the weekend.<br>"He went straight to OHS and met Silky, and it was a match," the charity said on its website.<br>Sears said of his visit to the shelter: "Even if I had not adopted, it was a good experience, there was so much love."<br>The OHS sent Silky to her new home with a care package including her habitat and her tiny sweater.</code> | <code>A tiny hairless hamster who got a custom-made sweater to keep warm is adapting to her new home, her adopter has said.</code> |
| <code>McKinnon, 45, led the Kirkcaldy club to five victories last month, including notable wins over promotion rivals Hibernian and Greenock Morton.<br>Rovers, who drew 3-3 with league leaders Rangers on Saturday, are fourth in the Championship and have all but secured a place in the play-offs.<br>Ex-Brechin City manager McKinnon took charge at Stark's Park last year.</code> | <code>Raith Rovers' Ray McKinnon has been named Scottish Championship manager of the month for March.</code> |
| <code>The pundit and radio host was ordered to pay £24,000 in damages to food blogger Jack Monroe earlier this month.<br>Ms Monroe sued Ms Hopkins over two tweets posted in May 2015 which accused her of vandalising a war memorial.<br>Mr Justice Warby said the grounds of Ms Hopkins' appeal would not have "a real prospect of success" in his view.<br>Ms Hopkins has also been ordered to pay £107,000 towards the campaigner's legal costs within 28 days.<br>He ruled that the tweets had caused "Ms Monroe real and substantial distress" and she was entitled to "fair and reasonable compensation".<br>The final costs figure has yet to be assessed.<br>Mail Online columnist Ms Hopkins could appeal directly to the Court of Appeal.<br>Following the original verdict, she argued that libel and defamation laws should be applied differently to cases involving social media.</code> | <code>Columnist Katie Hopkins has been told she cannot appeal against a libel action which landed her with a six-figure bill.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 6,700 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.85 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 86.94 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
| <code>What neutralizes the acidity of chyme and acts as a buffer?</code> | <code></code> |
| <code>Some protists absorb nutrients from decaying matter like a what?</code> | <code>Some protists absorb nutrients from decaying matter like a fungus.</code> |
| <code>What is the exchange of energy from one part of the universe to another called?</code> | <code>Heat is the exchange of energy from one part of the universe to another. Heat and energy have the same units.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 5,177 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.16 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 33.66 tokens</li><li>max: 69 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What can regrow sections that they have lost?</code> | <code>Annelids have the amazing capacity to regrow segments that break off.. Annelids include earthworms and leeches. <br> Leeches have the amazing capacity to regrow segments that break off.</code> |
| <code>What does glass do to light?</code> | <code>glass cause refraction of light. Refraction Refraction is the bending of light rays. <br> glass bends light</code> |
| <code>Chemotherapy and radiotherapy target cells dividing how?</code> | <code>Cancer cells divide more often than normal cells, and grow out of control.. Chemotherapy and radiotherapy target the rapidly dividing cancer cells. <br> Chemotherapy and radiotherapy target cells dividing out of control</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 3,029 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 13.65 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.24 tokens</li><li>max: 27 tokens</li></ul> |
* Samples:
| question | fact |
|:-------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|
| <code>Which is a cause of greenhouse gases?</code> | <code>animals exhale carbon dioxide from their lungs into the air</code> |
| <code>Which would provide the greatest benefit to animals in an ecoystem?</code> | <code>a tree is a source of food for animals in an ecosystem</code> |
| <code>Which of the following likely make up a path for electrical energy to travel to a device?</code> | <code>a closed circuit has continuous path</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 6,700 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.6 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 74.11 tokens</li><li>max: 192 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how did germany's use of unrestricted submarine warfare lead to american entry into ww1</code> | <code>On April 4, 1917, the U.S. Senate voted in support of the measure to declare war on Germany. The House concurred two days later. The United States later declared war on Austria-Hungary on December 7, 1917.Germany's resumption of submarine attacks on passenger and merchant ships in 1917 was the primary motivation behind Wilson's decision to lead the United States into World War I.n April 4, 1917, the U.S. Senate voted in support of the measure to declare war on Germany. The House concurred two days later. The United States later declared war on Austria-Hungary on December 7, 1917.</code> |
| <code>definition of malodorous</code> | <code>The definition of malodorous is something with a very unpleasant smell or odor. Sour and rotten milk is an example of something that would be described as malodorous.</code> |
| <code>how long after surgery do you put ice on the wound?</code> | <code>However, do not put the ice directly on top of the wound until it is completely healed (at least 14 days). 1 Place ice in a clean plastic bag. (You can use a small bag of frozen peas instead. 2 Put a single layer of towel between the ice bag and your skin. 3 Check your skin under the ice. It should be a little bit pink.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 6,700 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 11.76 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 125.75 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>original artist of if you don know me by now</code> | <code>If You Don't Know Me by Now "If You Don't Know Me by Now" is a song written by Kenny Gamble and Leon Huff, and recorded by the Philly soul musical group Harold Melvin & the Blue Notes. It became their first hit after being released as a single in 1972, topping the US R&B chart and peaking at number three on the US Pop chart.[1]</code> |
| <code>where is potassium located in the human body</code> | <code>Potassium Potassium ions are necessary for the function of all living cells. The transfer of potassium ions through nerve cell membranes is necessary for normal nerve transmission; potassium deficiency and excess can each result in numerous abnormalities, including an abnormal heart rhythm and various electrocardiographic (ECG) abnormalities. Fresh fruits and vegetables are good dietary sources of potassium. The body responds to the influx of dietary potassium, which raises serum potassium levels, with a shift of potassium from outside to inside cells and an increase in potassium excretion by the kidneys.</code> |
| <code>who sang the theme song to empty nest</code> | <code>Empty Nest The show's theme song was "Life Goes On", written by John Bettis and George Tipton and performed by Billy Vera. For the first three seasons, the song was presented in a slower, more melancholy yet comical arrangement. The original opening titles sequence showed Harry Weston taking Dreyfuss for a walk around town, with still images of the other regular cast members shown as they were credited.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 3,749 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 16.9 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 203.09 tokens</li><li>max: 461 tokens</li></ul> |
* Samples:
| query | answer |
|:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What was the name of the cow in ‘The Woodentops’?</code> | <code>The Woodentops 1958 - YouTube The Woodentops 1958 Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Uploaded on Jun 20, 2009 Idyllic life down on the farm with Mummy, Daddy, Jenny, Willy and Baby Woodentop. Buttercup the cow and Spotty Dog also made appearances Category</code> |
| <code>What is the currency of Argentina?</code> | <code>ARS - Argentine Peso rates, news, and tools ARS - Argentine Peso Argentina, Peso The Argentine Peso is the currency of Argentina. Our currency rankings show that the most popular Argentina Peso exchange rate is the USD to ARS rate . The currency code for Pesos is ARS, and the currency symbol is $. Below, you'll find Argentine Peso rates and a currency converter. You can also subscribe to our currency newsletters with daily rates and analysis, read the XE Currency Blog , or take ARS rates on the go with our XE Currency Apps and website.</code> |
| <code>Lorenzo, Tubal and Jessica are all characters in which Shakespeare play?</code> | <code>Tubal Tubal Tubal is a wealthy Jew of Venice, who lends Shylock enough to make up the full three thousand ducats the latter lends to Antonio. Shylock sends him to track down Jessica, though he is unable to do so, only being able to make a list of all the bills she has run up over the course of her flight. He also brings Shylock news that Antonio is on the verge of bankruptcy.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 6,700 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.49 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 55.56 tokens</li><li>max: 124 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how much does it cost to put a car in your name in washington?</code> | <code>The cost to transfer a title is $15.50 plus sales/use tax on purchase price. Purchase price must be within $2,000 of fair market value. Sales tax is not charged on gift transactions as long as DOL gift requirements are met. License subagents charge an extra fee of $12.00 to provide licensing services to your community.</code> |
| <code>why do birds fly in v formations?</code> | <code>Anyone watching the autumn sky knows that migrating birds fly in a V formation, but scientists have long debated why. A new study of ibises finds that these big-winged birds carefully position their wingtips and sync their flapping, presumably to catch the preceding bird's updraft—and save energy during flight.</code> |
| <code>what are some major differences between prokaryotes and eukaryotes?</code> | <code>There are several differences between the two, but the biggest distinction between them is that eukaryotic cells have a distinct nucleus containing the cell's genetic material, while prokaryotic cells don't have a nucleus and have free-floating genetic material instead.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 6,700 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 25.7 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 25.68 tokens</li><li>max: 56 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
| <code>Bay County is a civil township of Garfield Township in the U.S. state of Michigan .</code> | <code>Bay County is a civil community of the Garfield Township in the U.S. state of Michigan .</code> |
| <code>San Lorenzo Axocomanitla is a municipality in Mexico in the south-eastern Tlaxcala .</code> | <code>San Lorenzo Axocomanitla is a municipality in Mexico in south-eastern Tlaxcala .</code> |
| <code>Markovac is a village in the Croatia region of Slavonia , located east of Daruvar . The population is 80 ( census 2011 ) .</code> | <code>The population is 80 ( census 2011 ) is a village in the Croatian region of Slavonia , located east of Daruvar .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### global_dataset
* Dataset: global_dataset
* Size: 45,228 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 28.66 tokens</li><li>max: 318 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 50.83 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how tall dana loesch</code> | <code>Dana Loesch stands with the height of 5 feet 7 inches and weighs about 62 kg. The exact amount of her net worth and salary are not made public by herself. Further information about her career can be found on several social medias on the internet. Last modified : 24 August, 2016.</code> |
| <code>Sissi units have more weapons served by the crew and fewer sniper rifles than regular infantry .</code> | <code>Sissi units have more crew served weapons and fewer sniper rifles than regular infantry .</code> |
| <code>A miscreant was killed while planting a bomb near CD shop at Chato Chowk early Monday.</code> | <code>Miscreant killed while planting bomb</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Evaluation Datasets
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 128 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 19.71 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 32.5 tokens</li><li>max: 78 tokens</li></ul> |
* Samples:
| claim | evidence |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### negation-triplets
* Dataset: negation-triplets
* Size: 128 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 14.48 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.4 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.66 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:----------------------------------------------------------------------|:-------------------------------------------------------------------------|:--------------------------------------------------------------------------|
| <code>A beautiful dessert waiting to be shared by two people</code> | <code>There is a piece of cake on a plate with decorations on it.</code> | <code>There is no piece of cake on a plate with decorations on it.</code> |
| <code>A stone building with a clock displayed on the outside. </code> | <code>A tall multi-story building with a large clock atop it.</code> | <code>A short single-story building with a small clock atop it.</code> |
| <code>The back door with a window in the kitchen.</code> | <code>The kitchen has a white door with a window.</code> | <code>The kitchen has a black door with no window.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 20.13 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> |
| <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code> | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
| <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.05 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 14.33 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
| <code>Most red algae species live in oceans.</code> | <code>Where do most red algae species live?</code> |
| <code>The innate immune system serves as a first responder to pathogenic threats that bypass natural physical and chemical barriers of the body.</code> | <code>What serves as a first responder to pathogenic threats that bypass natural physical and chemical barriers of the body?</code> |
| <code>We call the recycling of inorganic matter between living organisms and their environment biogeochemical cycle.</code> | <code>What do we call the recycling of inorganic matter between living organisms and their environment?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>document</code> and <code>summary</code>
* Approximate statistics based on the first 1000 samples:
| | document | summary |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 67 tokens</li><li>mean: 199.9 tokens</li><li>max: 346 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 24.8 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
| document | summary |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Daniel Aimson, of Ullswater Road in Astley, Wigan, is also charged with misconduct in public office.<br>The 35-year-old Greater Manchester Police officer was named alongside eight other men charged with conspiracy to produce cannabis.<br>All are due to appear at Manchester City Magistrates Court on 20 October.<br>A 26-year-old woman from Astley who was arrested on suspicion of money laundering and conspiracy to produce cannabis remains on bail.<br>Greater Manchester Police said the charges are related to an investigation into the "large scale" production of cannabis.<br>The force's anti-corruption unit is also involved.</code> | <code>A police officer has been charged with conspiracy to produce cannabis as part of an investigation into drugs supply in Greater Manchester.</code> |
| <code>Weston, 28, was airlifted to hospital after falling on Benbane Head in the Fulke Walwyn Kim Muir Chase.<br>Trainer Martin Keighley said: "The main thing is that his head is OK as the head injury was the main concern.<br>"He has punctured both lungs so he will be in intensive care for two days just so they can keep a close eye on that."<br>An official statement from the Injured Jockeys' Fund said Weston was stable in Southmead Hospital, Bristol.<br>Weston's mount was not badly hurt in the fall, which took place during the sixth race of the day (16:40 GMT), but the 11-year-old has been taken out of Saturday's Betfred Midlands Grand National Chase at Uttoxeter.<br>Two years ago, jockey JT McNamara was paralysed after a fall in the same race.<br>The start of the concluding charity race was delayed by about 15 minutes while Weston was being treated on the course.<br>Weston is an experienced amateur jockey from Worcestershire.<br>He won the Fox Hunters' Chase on 50-1 chance Silver Adonis at Aintree's Grand National meeting in 2010 for trainer Dr Richard Newland.</code> | <code>Amateur jockey Tom Weston is being detained in intensive care after suffering two punctured lungs in a fall at the Cheltenham Festival on Thursday.</code> |
| <code>The Foxes travel to St Mary's on Saturday seeking a fifth win in nine league games since Ranieri took charge.<br>Ranieri said he spoke with the Saints before they appointed current boss Ronald Koeman in June 2014.<br>"I was interested, but after that there was also the Greece job - and I made a mistake," said the Italian.<br>Ranieri was appointed Greece manager in July 2014 but presided over three defeats and a draw in Euro 2016 qualifying before being replaced four months later.<br>The 63-year-old has made a fine start since taking charge of Leicester in July, with the Foxes starting the weekend fifth in the Premier League table, three points behind leaders Manchester City.</code> | <code>Leicester City manager Claudio Ranieri says he held talks about becoming Southampton's boss before he took charge of Greece.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 16.1 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 82.93 tokens</li><li>max: 417 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is an attitude of doubt about the truthfulness of claims that lack empirical evidence?</code> | <code>Skepticism is an attitude of doubt about the truthfulness of claims that lack empirical evidence. Scientific skepticism , also referred to as skeptical inquiry, questions claims based on their scientific verifiability rather than simply accepting claims based on faith or anecdotes. Scientific skepticism uses critical thinking to analyze such claims and opposes claims which lack scientific evidence.</code> |
| <code>What are variants of genes called?</code> | <code>Recall that our DNA is wound into chromosomes . Each of our chromosomes contains a long chain of DNA that encodes hundreds, if not thousands, of genes. Each of these genes can have slightly different versions from individual to individual. These variants of genes are called alleles . Each parent only donates one allele for each gene to an offspring.</code> |
| <code>What is the separation of compounds on the basis of their solubilities in a given solvent?</code> | <code>temperature. In fact, the magnitudes of the changes in both enthalpy and entropy for dissolution are temperature dependent. Because the solubility of a compound is ultimately determined by relatively small differences between large numbers, there is generally no good way to predict how the solubility will vary with temperature. The variation of solubility with temperature has been measured for a wide range of compounds, and the results are published in many standard reference books. Chemists are often able to use this information to separate the components of a mixture byfractional crystallization, the separation of compounds on the basis of their solubilities in a given solvent. For example, if we have a mixture of 150 g of sodium acetate (CH3CO2Na) and 50 g of KBr, we can separate the two compounds by dissolving the mixture in 100 g of water at 80°C and then cooling the solution slowly to 0°C. According to the temperature curves in Figure 13.9 "Solubilities of Several Inorganic and Organic Solids in Water as a Function of Temperature", both compounds dissolve in water at 80°C, and all 50 g of KBr remains in solution at 0°C. Only about 36 g of CH3CO2Na are soluble in 100 g of water at 0°C, however, so approximately 114 g (150 g − 36 g) of CH3CO2Na crystallizes out on cooling. The crystals can then be separated by filtration. Thus fractional crystallization allows us to recover about 75% of the original CH3CO2Na in essentially pure form in only one step. Fractional crystallization is a common technique for purifying compounds as diverse as those shown in Figure 13.9 "Solubilities of Several Inorganic and Organic Solids in Water as a Function of Temperature" and from antibiotics to enzymes. For the technique to work properly, the compound of interest must be more soluble at high temperature than at low temperature, so that lowering the temperature causes it to crystallize out of solution. In addition, the impurities must be more soluble than the compound of interest (as was KBr in this example) and preferably present in relatively small amounts.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.53 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 32.97 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Mammals can also generate little bursts of heat by</code> | <code>Mammals can also generate little bursts of heat by shivering.. Shivering causes muscle contractions to warm the body. <br> Mammals can also generate little bursts of heat by muscle contractions</code> |
| <code>where are the key cells involved in the immune response made?</code> | <code>Lymphocytes are the key cells involved in the immune response.. Lymphocytes are produced in the bone marrow. <br> the key cells involved in the immune response are produced in the bone marrow</code> |
| <code>what do proteins fight?</code> | <code>Antibodies are large, Y-shaped proteins that recognize and bind to antigens.. Antibodies are produced to fight antigens. <br> proteins fight antigens</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.96 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code> |
| <code>What creates a valley?</code> | <code>a valley is formed by a river flowing</code> |
| <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.73 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 75.49 tokens</li><li>max: 174 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>lion of judah rasta meaning</code> | <code>Lion of Judah. In the Rastafarian religion, the Lion of Judah is an emblem of Ras Tafari, otherwise known as former Ethiopian Emperor Haile Selassie. According to Rastafarian belief, Selassie was the Messiah, the second coming of Christ referenced in the Book of Revelation:</code> |
| <code>what's the horn?</code> | <code>The tsungi horn is a musical instrument used in the traditional music of the four nations. The... The tsungi horn is a musical instrument used in the traditional music of the four nations. The curved and highly polished horn is cast from metal, and is believed to have originated in the Fire...</code> |
| <code>african nations where slaves were taken from</code> | <code>Black slaves that were taken to America were mainly from the West African countries that have a coastline on the Atlantic ocean. In some cases slaves were captured from other countries that are further inland then sent away on boats from the coastal towns. Three countries where most slaves are known to have come from are Sierra Leone, Liberia and Ghana. Other slaves from East African countries like Mozambique, Tanzania and Congo were sent to Europe and Asia.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.64 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 119.62 tokens</li><li>max: 339 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did the newest macbook air come out</code> | <code>MacBook Air On June 10, 2013, Apple released another update in the same form factor as the 2012 model during the company's Worldwide Developer Conference (WWDC). The 11" and 13" models have a minimum standard 4 GB RAM, with a maximum configuration of 8 GB. Both models are powered by the Haswell ULT 1.3 GHz dual-core Intel Core i5 processors, with Turbo Boost up to 2.6 GHz, while a 1.7 GHz Dual-Core i7, with Turbo Boost up to 3.3 GHz, option is also available. Each model's storage standard is 128 GB SSD, upgradeable to 256 GB and 512 GB SSD. Due to Haswell CPUs, battery life has considerably improved from the previous generation, and the mid-2013 models are capable of 9 hours on the 11" model and 12 hours on the 13" model; a team of reviewers exceeded expected battery life ratings during their test.[18]</code> |
| <code>when does emma turn into the dark one</code> | <code>Emma Swan The daughter of Snow White and Prince Charming,[3] an ex-bail bonds collector, town sheriff of Storybrooke[4] and Henry Mills' biological mother.[4] Morrison described her character at the beginning of the first season as "broken, damaged and worldly".[4] During the fourth season finale, "Operation Mongoose", Emma absorbs the power of the Dark One into herself to save Storybrooke.[5] In order to successfully create a dark version of Emma, Morrison explained that "In order to build Dark Emma, I've been doing a bunch of research there with some of their mythology books and old fairy tale books and just looking back through the history of swans and the etymology of 'Swan'" and explained that Emma's rate of evolution "challenged [her] on a daily basis".[6] Emma became the primary antagonist of the fifth season's first half, until the end of the season's eighth episode when her real plans are revealed.</code> |
| <code>who is the girl in justin timberlake what goes around comes around</code> | <code>What Goes Around... Comes Around The music video for the "What Goes Around... Comes Around" was produced as a short movie.[33][34] The video was directed by Samuel Bayer, who had first directorial works with Nirvana's 1991 single "Smells Like Teen Spirit".[33][34] The video features dialogues written by Alpha Dog writer and director Nick Cassavetes, who had previously worked with Timberlake in the film.[33][34] Timberlake and Bayer enlisted American actress Scarlett Johansson after deciding on using "real" actors.[33] The shooting went for three days between Christmas and New Year's Eve in Los Angeles.[33] The dawn scene was shot on January 8, after the original sessions were done.[33]</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 18.34 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 204.34 tokens</li><li>max: 466 tokens</li></ul> |
* Samples:
| query | answer |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>By what name is Mrs Montagu Barstow better known?</code> | <code>Baroness Emmuska Orczy - Biography - IMDb Baroness Emmuska Orczy Jump to: Overview (3) | Spouse (1) | Trivia (5) Overview (3) Emmuska Magdalena Rosalia Maria Josepha Barbara Orczy Spouse (1) The name Orczy is pronounced Ort-zee. Her most famous work, "The Scarlet Pimpernel", was written as a play in 1904. The language she wrote in, English, was not her mother tongue, rather, it was her third language - she had been exiled from her native land as a girl. Gave birth to her only child at age 33, a son John Montague Orczy-Barstow on February 25, 1899. Child's father is her then husband, Montagu Barstow . Also known as Mrs. Montagu Barstow. See also</code> |
| <code>Which French singer and actress has been in a relationship with American actor Johnny Depp since 1998, with whom she has a daughter and a son?</code> | <code>Vanessa Paradis - YouTube Vanessa Paradis Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. The interactive transcript could not be loaded. Loading... Rating is available when the video has been rented. This feature is not available right now. Please try again later. Uploaded on Dec 11, 2009 http://www.youtube.com/watch?v=l3VwFr... Vanessa Chantal Paradis (born 22 December 1972) is a French singer and actress. She became a child star at 14 with the huge worldwide success of her single "Joe le taxi". Since then, she has accomplished a career in music, movies and modelling. Vanessa Paradis has been in a relationship with American actor Johnny Depp since 1998. They have a daughter, Lily-Rose Melody Depp (born 27 May 1999), and a son, John Christopher "Jack" Depp III (born 9 April 2002). They divide their time between houses in the Hollywood Hills and their farm in Île-de-France, South of France, a house in the village of Timsbury, Somerset, and also own apartments in Paris, Manhattan and an island in the Bahamas. Paradis' 2000 album Bliss, another French chart topper, was dedicated to Depp and their daughter. Paradis has a sister, actress Alysson Paradis, who is younger by 10 years and has starred in many French horror films. The actor and film producer, Didier Pain, is their uncle. Category</code> |
| <code>Who is the co-director and co-writer of British television shows with Ricky Gervais?</code> | <code>Stephen Merchant wishes America a Happy 4th of July…sort of. | Tellyspotting Stephen Merchant wishes America a Happy 4th of July…sort of. On: July 4, 2016, By: Bill Young , In: Comedy , No Comment As co-writer and co-director of BBC’s The Office, Stephen Merchant is best known for his collaborations with Ricky Gervais. The British writer, director, radio presenter, stand-up comedian and actor added a London West-End appearance last July to his CV with his first play, The Mentalists by Richard Bean, alongside Steffan Rhodri at the Wyndham Theatre. Known for his brilliant command of the English language, who better to address America on this Fourth of July holiday than the man, whom Ricky Gervais so eloquently likened to both a ‘stick insect with glasses’ and an ‘upright lizard being given electro-shock treatment’. Currently living in Los Angeles, Merchant has probably witnessed his fair share of American celebrations of Independence Day having had guest roles in Modern Family, Big Bang Theory, The Simpsons and American Dad over the last couple of years. Happy Independence Day, America…from Stephen Merchant. Related Posts</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.52 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 52.82 tokens</li><li>max: 95 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>do nuclear bombs leave radiation?</code> | <code>Nuclear weapons emit large amounts of thermal radiation as visible, infrared, and ultraviolet light, to which the atmosphere is largely transparent. This is known as "Flash". The chief hazards are burns and eye injuries. On clear days, these injuries can occur well beyond blast ranges, depending on weapon yield.</code> |
| <code>how long does it take to get unclaimed property in illinois?</code> | <code>Once I file a claim how long does it take to receive my funds? Claims are processed within 60 days of receipt. If the claim is for shares of stock or mutual funds, it may take up to 90 days.</code> |
| <code>how many tons in a cubic yard of rock?</code> | <code>A general rule of thumb when converting cubic yards of gravel to tons is to multiply the cubic area by 1.4. For your reference, gravel typically weighs 2,800 pounds per cubic yard. In addition, there are 2,000 pounds to a ton.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 25.58 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.4 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>They were there to enjoy us and they were there to pray for us .</code> | <code>They were there for us to enjoy and they were there for us to pray .</code> |
| <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
| <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code> | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### global_dataset
* Dataset: global_dataset
* Size: 416 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 29.63 tokens</li><li>max: 316 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 56.16 tokens</li><li>max: 466 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>More than 478,000 cases and more than 21,500 deaths have been reported worldwide .</code> | <code>more than 478,000 cases have been reported worldwide ; more than 21,500 people have died and more than 114,000 have recovered.</code> |
| <code>Solutions are homogenous mixtures of two or more substances.</code> | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
| <code>What determines which codon in the mrna the trna will bind to?</code> | <code>The tRNA structure is a very important aspect in its role. Though the molecule folds into a 3-leaf clover structure, notice the anticodon arm in the lower segment of the molecule, with the amino acid attached at the opposite end of the molecule (acceptor stem). It is the anticodon that determines which codon in the mRNA the tRNA will bind to.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `learning_rate`: 3e-05
- `weight_decay`: 0.0005
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.5e-06}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0005
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.5e-06}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | scitail-pairs-pos loss | gooaq pairs loss | msmarco pairs loss | sciq pairs loss | global dataset loss | scitail-pairs-qa loss | trivia pairs loss | nq pairs loss | vitaminc-pairs loss | xsum-pairs loss | qasc pairs loss | openbookqa pairs loss | negation-triplets loss | paws-pos loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:----------------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:---------------------:|:-----------------:|:-------------:|:-------------------:|:---------------:|:---------------:|:---------------------:|:----------------------:|:-------------:|:---------------:|:-----------------:|:------------------------:|
| 0.0104 | 20 | 10.2062 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0207 | 40 | 7.9221 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0311 | 60 | 5.9499 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0414 | 80 | 6.0555 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0502 | 97 | - | 0.4556 | 3.3836 | 4.3960 | 0.4848 | 1.9564 | 1.1159 | 4.0240 | 4.4882 | 3.7554 | 3.2118 | 2.8566 | 2.1501 | 3.6898 | 0.1228 | 0.6198 | 0.4401 | 0.6552 |
| 0.0518 | 100 | 4.0315 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0621 | 120 | 1.6348 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0725 | 140 | 1.1866 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0829 | 160 | 0.6138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0932 | 180 | 0.5244 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1005 | 194 | - | 0.0656 | 0.2151 | 0.3251 | 0.1204 | 0.3550 | 0.0447 | 0.2965 | 0.4250 | 3.5071 | 0.0769 | 0.3620 | 0.5712 | 1.1223 | 0.0295 | 0.6942 | 0.5525 | 0.8942 |
| 0.1036 | 200 | 0.376 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1139 | 220 | 0.2782 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1243 | 240 | 0.2391 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1346 | 260 | 0.2767 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1450 | 280 | 0.2359 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1507 | 291 | - | 0.0297 | 0.1013 | 0.0817 | 0.0977 | 0.2509 | 0.0118 | 0.1532 | 0.1322 | 3.4645 | 0.0179 | 0.3064 | 0.4611 | 0.8775 | 0.0211 | 0.7178 | 0.5787 | 0.9146 |
| 0.1554 | 300 | 0.1505 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1657 | 320 | 0.1473 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1761 | 340 | 0.1614 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1864 | 360 | 0.1834 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1968 | 380 | 0.164 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2009 | 388 | - | 0.0324 | 0.1017 | 0.2048 | 0.0948 | 0.2299 | 0.0027 | 0.2084 | 0.1269 | 2.9899 | 0.0094 | 0.2342 | 0.4460 | 0.7612 | 0.0227 | 0.7305 | 0.6058 | 0.9147 |
| 0.2071 | 400 | 0.1426 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2175 | 420 | 0.1838 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2279 | 440 | 0.1324 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2382 | 460 | 0.1242 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2486 | 480 | 0.2166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2512 | 485 | - | 0.0202 | 0.1538 | 0.1833 | 0.0752 | 0.2666 | 0.0018 | 0.1391 | 0.1363 | 2.3597 | 0.0095 | 0.1672 | 0.5366 | 0.6828 | 0.0276 | 0.7579 | 0.6089 | 0.9109 |
| 0.2589 | 500 | 0.1781 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2693 | 520 | 0.2177 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2796 | 540 | 0.5771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2900 | 560 | 2.2303 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3004 | 580 | 1.0045 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3014 | 582 | - | 0.0205 | 1.6607 | 2.8998 | 0.0737 | 0.4394 | 0.0143 | 0.1635 | 0.1996 | 3.1416 | 0.0203 | 0.9374 | 0.5403 | 0.7199 | 0.0261 | 0.7335 | 0.5833 | 0.9182 |
| 0.3107 | 600 | 0.5632 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3211 | 620 | 0.2533 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3314 | 640 | 0.2559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3418 | 660 | 0.2664 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3516 | 679 | - | 0.0112 | 0.1588 | 0.1297 | 0.0776 | 0.1907 | 0.0086 | 0.1375 | 0.1111 | 2.5545 | 0.0046 | 0.2505 | 0.6150 | 0.7930 | 0.0243 | 0.7236 | 0.5716 | 0.9077 |
| 0.3521 | 680 | 0.2108 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3625 | 700 | 0.2936 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3729 | 720 | 1.13 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3832 | 740 | 0.2598 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3936 | 760 | 0.1599 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |