File size: 197,379 Bytes
4ae1d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 |
---
base_model: microsoft/deberta-v2-xlarge
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99470
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: what is the wisconsin idea
sentences:
- The Netherlands Time is in the Central European Time Zone . Central European Standard
Time ( CET ) is 1 hours ahead of Greenwich Mean Time ( GMT+1 ). Like most states
in Europe, Summer (Daylight-Saving) Time is observed in The Netherlands Time,
where the time is shifted forward by 1 hour; 2 hours ahead of Greenwich Mean Time
( GMT+2 ). After the Summer months the time in The Netherlands Time is shifted
back by 1 hour to Central European Time (CET) or ( GMT+1 )
- "Unless stated otherwise, these amounts are the total that is recommended for\
\ your dog over a 24 hour period. Most adult dogs should eat two meals a day (puppies\
\ often require three or more feedings), so youâ\x80\x99ll need to divide the\
\ amount in the table by the number of meals you are offering."
- McCarthy's book, The Wisconsin Idea, published in 1912, describes the major problems
facing the country, some of the Progressive reforms already passed, and his guiding
vision for the future. Library-Archives.
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
mainland China .
sentences:
- 'More than 3,700 people have died : around 3,100 in mainland China and around
550 in all other countries combined .'
- 'More than 3,200 people have died : almost 3,000 in mainland China and around
275 in other countries .'
- more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: The planets orbit around the sun.
sentences:
- The planets orbit around what celestial body?
- What are the high points in a transverse wave called?
- After fertilization, how many cells does a zygote form into?
- source_sentence: Cells are small biological structures that make up all living things,
including the human body.
sentences:
- Of the three basic types of radioactive emissions, what particle is the most penetrating?
- What small biological structures make up all living things, including the human
body?
- What cellular structure is used during endocytosis to allow molecules to enter
the cell?
- source_sentence: '"""Music of the Night"" and ""All I Ask of You"" are songs from
which stage musical?"'
sentences:
- 'Electric resistance unit conversion - SI derived quantity Electric resistance
unit conversion - Discussion Forum ›› SI derived quantity: electric resistance
This category of measurement units is defined by the "electric resistance" type,
which is an SI derived quantity. ›› SI unit: ohm The SI derived unit for electric
resistance is the ohm. ›› Convert ohm to another unit Convert ohm to I''m feeling
lucky, show me some random units ›› Convert between two electric resistance units
Convert ›› Definition: Ohm The ohm (symbol: Ω) is the SI unit of electrical
impedance or, in the direct current case, electrical resistance, named after Georg
Ohm. It is defined as the resistance between two points of a conductor when a
constant potential difference of 1 volt, applied to these points, produces in
the conductor a current of 1 ampere, the conductor not being the seat of any electromotive
force.'
- 'All I Ask of You - YouTube All I Ask of You Want to watch this again later? Sign
in to add this video to a playlist. Need to report the video? Sign in to report
inappropriate content. Rating is available when the video has been rented. This
feature is not available right now. Please try again later. Published on Jan 6,
2012 Twenty-second in a series of clips from the 2004 film version of The Phantom
of the Opera. Performed by Patrick Wilson as Raoul and Emmy Rossum as Christine.
For more Phantom, find us on Facebook: http://www.facebook.com/ThePhantomOfT...
Or follow us on Twitter: http://www.twitter.com/TheOperaGhosts Or add us to your
Google+ Circles: https://plus.google.com/1019282273838... Category'
- Beatles US Labels - Variations THE CAPITOL � APPLE LABEL DISCOGRAPHY In
early 1964, Capitol Records became the primary U.S. manufacturer of The Beatles
major releases. When Apple Records was formed by the Beatles in 1968, Capitol
still maintained production and distribution control over the Beatles records.
When Apple was dissolved in 1975, the entire Beatles catalog, including solo releases,
reverted back to Capitol. In the early 1990�s, all The Beatles/solo Capitol
product was reissued on the Apple label. The Beatles, collectively and individually,
have also appeared on several other labels over the years. However, most of
these releases failed to stay in production long enough to experience significant
label design changes. The relatively few that did, are thoroughly identified
in their respective sections.
model-index:
- name: SentenceTransformer based on microsoft/deberta-v2-xlarge
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9110444991658042
name: Pearson Cosine
- type: spearman_cosine
value: 0.9211899030744385
name: Spearman Cosine
- type: pearson_manhattan
value: 0.925028098980626
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9206623304538951
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9255983263878029
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9209135640353466
name: Spearman Euclidean
- type: pearson_dot
value: 0.9027007693117498
name: Pearson Dot
- type: spearman_dot
value: 0.9034949858127107
name: Spearman Dot
- type: pearson_max
value: 0.9255983263878029
name: Pearson Max
- type: spearman_max
value: 0.9211899030744385
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allNLI dev
type: allNLI-dev
metrics:
- type: cosine_accuracy
value: 0.720703125
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8279609680175781
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6189376443418013
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7112143039703369
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5153846153846153
name: Cosine Precision
- type: cosine_recall
value: 0.7745664739884393
name: Cosine Recall
- type: cosine_ap
value: 0.5853174176053627
name: Cosine Ap
- type: dot_accuracy
value: 0.708984375
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 844.9638061523438
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.620525059665871
name: Dot F1
- type: dot_f1_threshold
value: 698.743408203125
name: Dot F1 Threshold
- type: dot_precision
value: 0.5284552845528455
name: Dot Precision
- type: dot_recall
value: 0.7514450867052023
name: Dot Recall
- type: dot_ap
value: 0.5767480495013521
name: Dot Ap
- type: manhattan_accuracy
value: 0.71875
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 546.237060546875
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6093023255813954
name: Manhattan F1
- type: manhattan_f1_threshold
value: 738.0977172851562
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5097276264591439
name: Manhattan Precision
- type: manhattan_recall
value: 0.7572254335260116
name: Manhattan Recall
- type: manhattan_ap
value: 0.5834282573106326
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.71875
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 17.55453109741211
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6063569682151589
name: Euclidean F1
- type: euclidean_f1_threshold
value: 22.958927154541016
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5254237288135594
name: Euclidean Precision
- type: euclidean_recall
value: 0.7167630057803468
name: Euclidean Recall
- type: euclidean_ap
value: 0.5835774601767848
name: Euclidean Ap
- type: max_accuracy
value: 0.720703125
name: Max Accuracy
- type: max_accuracy_threshold
value: 844.9638061523438
name: Max Accuracy Threshold
- type: max_f1
value: 0.620525059665871
name: Max F1
- type: max_f1_threshold
value: 738.0977172851562
name: Max F1 Threshold
- type: max_precision
value: 0.5284552845528455
name: Max Precision
- type: max_recall
value: 0.7745664739884393
name: Max Recall
- type: max_ap
value: 0.5853174176053627
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Qnli dev
type: Qnli-dev
metrics:
- type: cosine_accuracy
value: 0.685546875
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.715149462223053
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6854130052724077
name: Cosine F1
- type: cosine_f1_threshold
value: 0.658507227897644
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5855855855855856
name: Cosine Precision
- type: cosine_recall
value: 0.826271186440678
name: Cosine Recall
- type: cosine_ap
value: 0.7217325275419479
name: Cosine Ap
- type: dot_accuracy
value: 0.669921875
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 717.3741455078125
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6757679180887372
name: Dot F1
- type: dot_f1_threshold
value: 627.569580078125
name: Dot F1 Threshold
- type: dot_precision
value: 0.5657142857142857
name: Dot Precision
- type: dot_recall
value: 0.8389830508474576
name: Dot Recall
- type: dot_ap
value: 0.6857348319823914
name: Dot Ap
- type: manhattan_accuracy
value: 0.6796875
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 681.6762084960938
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6938053097345133
name: Manhattan F1
- type: manhattan_f1_threshold
value: 793.83837890625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5957446808510638
name: Manhattan Precision
- type: manhattan_recall
value: 0.8305084745762712
name: Manhattan Recall
- type: manhattan_ap
value: 0.7264245248641615
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.68359375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 23.550647735595703
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6959578207381371
name: Euclidean F1
- type: euclidean_f1_threshold
value: 25.634620666503906
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5945945945945946
name: Euclidean Precision
- type: euclidean_recall
value: 0.8389830508474576
name: Euclidean Recall
- type: euclidean_ap
value: 0.7266186529674616
name: Euclidean Ap
- type: max_accuracy
value: 0.685546875
name: Max Accuracy
- type: max_accuracy_threshold
value: 717.3741455078125
name: Max Accuracy Threshold
- type: max_f1
value: 0.6959578207381371
name: Max F1
- type: max_f1_threshold
value: 793.83837890625
name: Max F1 Threshold
- type: max_precision
value: 0.5957446808510638
name: Max Precision
- type: max_recall
value: 0.8389830508474576
name: Max Recall
- type: max_ap
value: 0.7266186529674616
name: Max Ap
---
# SentenceTransformer based on microsoft/deberta-v2-xlarge
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) <!-- at revision 1d134961d4db8e7e8eb1bc1ab81cb370244c57f7 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1536 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- negation-triplets
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- xsum-pairs
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
- openbookqa_pairs
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
- global_dataset
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp")
# Run inference
sentences = [
'"""Music of the Night"" and ""All I Ask of You"" are songs from which stage musical?"',
'All I Ask of You - YouTube All I Ask of You Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Published on Jan 6, 2012 Twenty-second in a series of clips from the 2004 film version of The Phantom of the Opera. Performed by Patrick Wilson as Raoul and Emmy Rossum as Christine. For more Phantom, find us on Facebook: http://www.facebook.com/ThePhantomOfT... Or follow us on Twitter: http://www.twitter.com/TheOperaGhosts Or add us to your Google+ Circles: https://plus.google.com/1019282273838... Category',
'Beatles US Labels - Variations \xa0 THE CAPITOL � APPLE LABEL DISCOGRAPHY\xa0 In early 1964, Capitol Records became the primary U.S. manufacturer of The Beatles major releases.\xa0 When Apple Records was formed by the Beatles in 1968, Capitol still maintained production and distribution control over the Beatles records.\xa0 When Apple was dissolved in 1975, the entire Beatles catalog, including solo releases, reverted back to Capitol. In the early 1990�s, all The Beatles/solo Capitol product was reissued on the Apple label.\xa0 The Beatles, collectively and individually, have also appeared on several other labels over the years.\xa0 However, most of these releases failed to stay in production long enough to experience significant label design changes.\xa0 The relatively few that did, are thoroughly identified in their respective sections.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1536]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.911 |
| **spearman_cosine** | **0.9212** |
| pearson_manhattan | 0.925 |
| spearman_manhattan | 0.9207 |
| pearson_euclidean | 0.9256 |
| spearman_euclidean | 0.9209 |
| pearson_dot | 0.9027 |
| spearman_dot | 0.9035 |
| pearson_max | 0.9256 |
| spearman_max | 0.9212 |
#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.7207 |
| cosine_accuracy_threshold | 0.828 |
| cosine_f1 | 0.6189 |
| cosine_f1_threshold | 0.7112 |
| cosine_precision | 0.5154 |
| cosine_recall | 0.7746 |
| cosine_ap | 0.5853 |
| dot_accuracy | 0.709 |
| dot_accuracy_threshold | 844.9638 |
| dot_f1 | 0.6205 |
| dot_f1_threshold | 698.7434 |
| dot_precision | 0.5285 |
| dot_recall | 0.7514 |
| dot_ap | 0.5767 |
| manhattan_accuracy | 0.7188 |
| manhattan_accuracy_threshold | 546.2371 |
| manhattan_f1 | 0.6093 |
| manhattan_f1_threshold | 738.0977 |
| manhattan_precision | 0.5097 |
| manhattan_recall | 0.7572 |
| manhattan_ap | 0.5834 |
| euclidean_accuracy | 0.7188 |
| euclidean_accuracy_threshold | 17.5545 |
| euclidean_f1 | 0.6064 |
| euclidean_f1_threshold | 22.9589 |
| euclidean_precision | 0.5254 |
| euclidean_recall | 0.7168 |
| euclidean_ap | 0.5836 |
| max_accuracy | 0.7207 |
| max_accuracy_threshold | 844.9638 |
| max_f1 | 0.6205 |
| max_f1_threshold | 738.0977 |
| max_precision | 0.5285 |
| max_recall | 0.7746 |
| **max_ap** | **0.5853** |
#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6855 |
| cosine_accuracy_threshold | 0.7151 |
| cosine_f1 | 0.6854 |
| cosine_f1_threshold | 0.6585 |
| cosine_precision | 0.5856 |
| cosine_recall | 0.8263 |
| cosine_ap | 0.7217 |
| dot_accuracy | 0.6699 |
| dot_accuracy_threshold | 717.3741 |
| dot_f1 | 0.6758 |
| dot_f1_threshold | 627.5696 |
| dot_precision | 0.5657 |
| dot_recall | 0.839 |
| dot_ap | 0.6857 |
| manhattan_accuracy | 0.6797 |
| manhattan_accuracy_threshold | 681.6762 |
| manhattan_f1 | 0.6938 |
| manhattan_f1_threshold | 793.8384 |
| manhattan_precision | 0.5957 |
| manhattan_recall | 0.8305 |
| manhattan_ap | 0.7264 |
| euclidean_accuracy | 0.6836 |
| euclidean_accuracy_threshold | 23.5506 |
| euclidean_f1 | 0.696 |
| euclidean_f1_threshold | 25.6346 |
| euclidean_precision | 0.5946 |
| euclidean_recall | 0.839 |
| euclidean_ap | 0.7266 |
| max_accuracy | 0.6855 |
| max_accuracy_threshold | 717.3741 |
| max_f1 | 0.696 |
| max_f1_threshold | 793.8384 |
| max_precision | 0.5957 |
| max_recall | 0.839 |
| **max_ap** | **0.7266** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### negation-triplets
* Dataset: negation-triplets
* Size: 4,987 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 21.87 tokens</li><li>max: 144 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.72 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.94 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:--------------------------------------------------------------|:---------------------------------------------------------------------------|:----------------------------------------------------------------------------|
| <code>a very dirty toilet in a tiled bathroom</code> | <code>A dirty toilet in a dirty bathroom with a octagon tile floor.</code> | <code>A clean toilet in a dirty bathroom with an octagon tile floor.</code> |
| <code>enjoy the wildlife</code> | <code>Enjoy the animals.</code> | <code>Ignore the animals.</code> |
| <code>A man looking inside of birdcages on a sidewalk.</code> | <code>A man, holding his hat, is looking into the bird cage. </code> | <code>A man, holding his hat, is looking away from the bird cage. </code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 4,987 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.62 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 36.79 tokens</li><li>max: 133 tokens</li></ul> |
* Samples:
| claim | evidence |
|:-------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Mase was born before 1976 .</code> | <code>Mase was born Mason Drell Betha in Jacksonville , Florida , on August 27 , 1975 , as a fraternal twin born almost two months premature .</code> |
| <code>On Rotten Tomatoes , Going in Style received more than 105 reviews and a rating of under 47 % .</code> | <code>On Rotten Tomatoes , the film has an approval rating of 46 % based on 106 reviews , with an average rating of 5.3/10 .</code> |
| <code>Aaron Charles Donald is an American football defensive end for Los Angeles Rams .</code> | <code>Aaron Charles Donald ( born May 23 , 1991 ) is an American football defensive end for the Los Angeles Rams of the National Football League ( NFL ) .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 4,987 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.84 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 14.96 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
| <code>A negative enthalpy change is observed in an exothermic reaction.</code> | <code>What enthalpy change is observed in an exothermic reaction?</code> |
| <code>Fungus-like protists such as slime molds reproduce with spores.</code> | <code>How do fungus-like protists such as slime molds reproduce?</code> |
| <code>Unlike energy, matter doesn’t need to be constantly added to ecosystems because it is recycled through ecosystems.</code> | <code>Unlike energy, what doesn’t need to be constantly added to ecosystems because it is recycled through ecosystems?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 4,987 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 23.21 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.66 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|
| <code>During equinox times the Sun's vertical ray is shining directly on the Earth's equator and neither hemisphere is tilted toward or away from the Sun.</code> | <code>The sun is directly over the equator during.</code> |
| <code>All the baby s major organs begin to develop in the first 6 to 8 weeks of pregnancy, so tight control from the moment of conception is critical.</code> | <code>By 8 weeks, all major organs start developing.</code> |
| <code>Nobody disputes that all modern humans belong to one species, Homo sapiens .</code> | <code>Humans belong to the species homo sapiens.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 4,987 training samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | summary | document |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 25.19 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 51 tokens</li><li>mean: 217.32 tokens</li><li>max: 422 tokens</li></ul> |
* Samples:
| summary | document |
|:------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Chester's Elliott Durrell salvaged a 1-1 draw at Boreham Wood with a late wonder strike.</code> | <code>Morgan Ferrier's fifth-minute effort looked like it would be enough for the hosts after the 24-year-old evaded Blaine Hudson to get in behind and tap the ball home.<br>After that the game became scrappy, with neither side creating many clear-cut chances, although Chester's Ryan Astles was forced into a goal-line clearance after 70 minutes to block a Matthew Paine drive.<br>Just when it looked like Chester boss Jon McCarthy was staring at a fourth defeat in his first five games, Durrell picked the ball up around halfway, spotted Grant Smith off his line and struck from distance to level things up with seven minutes remaining.<br>Report supplied by the Press Association<br>Match ends, Boreham Wood 1, Chester FC 1.<br>Second Half ends, Boreham Wood 1, Chester FC 1.<br>Substitution, Chester FC. Sam Hughes replaces Kane Richards.<br>Goal! Boreham Wood 1, Chester FC 1. Elliott Durrell (Chester FC).<br>Substitution, Boreham Wood. Jordan Chiedozie replaces Morgan Ferrier.<br>Substitution, Boreham Wood. Aaron Kuhl replaces Kenny Davis.<br>Substitution, Chester FC. Elliott Durrell replaces Jordan Chapell.<br>Evan Horwood (Chester FC) is shown the yellow card for a bad foul.<br>Second Half begins Boreham Wood 1, Chester FC 0.<br>First Half ends, Boreham Wood 1, Chester FC 0.<br>Goal! Boreham Wood 1, Chester FC 0. Morgan Ferrier (Boreham Wood).<br>First Half begins.<br>Lineups are announced and players are warming up.</code> |
| <code>A major trauma centre in Stoke-on-Trent has been rated the best in the country for saving the lives of patients.</code> | <code>The University Hospitals of North Midlands Major Trauma Centre has the best total rolling survival rates of any adult major trauma single site centre since 2013.<br>Latest statistics show that for every 1,000 people treated in the last four years, 13 more survived than expected.<br>The centre is based at Royal Stoke University Hospital.<br>Medical director Dr John Oxtoby, described it as a "huge accomplishment".<br>See more stories from across Stoke and Staffordshire here<br>The figures come from the Trauma Audit and Research Network, an independent monitor of trauma care in England and Wales.<br>The data shows the centre also had the best survival rates for adult major trauma in 2015-16, when there were 15 extra survivors per 1,000 patients than expected.<br>"To have the best survival rates over four years of any major trauma centre is a phenomenal achievement," Dr Oxtoby added.<br>The centre treats patients from as far away as north Wales and the Peak District.<br>Those treated include people seriously injured in incidents such as vehicle crashes, falls, or assaults.</code> |
| <code>Sunderland defender Paddy McNair will miss the rest of the season because of a cruciate knee ligament injury.</code> | <code>The 21-year-old, signed from Manchester United in August, has made 12 appearances for a Black Cats side that are 19th in the Premier League.<br>He was injured during his side's 3-0 win over Hull City on Saturday.<br>"We won't see him again this season and all we can hope is getting him right for the start of next season," said Sunderland boss David Moyes.<br>"I think he'd just started to find his way in the Premier League - even though he had experience at Manchester United - and the games he was having were bringing him on and giving him confidence."<br>The injury means McNair is unlikely to feature in Northern Ireland's World Cup 2018 qualifier against Norway in March.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 4,987 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.93 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 86.84 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The procedure known as angioplasty is used when what part of the circulatory system is clogged?</code> | <code>When a blood vessel gets clogged, there is no medical equivalent of "Drano" that will clear it out. There is, however, a procedure known as angioplasty. A thin tube with a balloon is threaded through the blood vessels. Once in place, the balloon is inflated to compress the clog against the artery wall.</code> |
| <code>Mollusks such as squid and octopi, which must hunt to survive, possess what complex organs containing millions of neurons?</code> | <code>Figure 35.2 Nervous systems vary in structure and complexity. In (a) cnidarians, nerve cells form a decentralized nerve net. In (b) echinoderms, nerve cells are bundled into fibers called nerves. In animals exhibiting bilateral symmetry such as (c) planarians, neurons cluster into an anterior brain that processes information. In addition to a brain, (d) arthropods have clusters of nerve cell bodies, called peripheral ganglia, located along the ventral nerve cord. Mollusks such as squid and (e) octopi, which must hunt to survive, have complex brains containing millions of neurons. In (f) vertebrates, the brain and spinal cord comprise the central nervous system, while neurons extending into the rest of the body comprise the peripheral nervous system. (credit e: modification of work by Michael Vecchione, Clyde F. Roper, and Michael J. Sweeney, NOAA; credit f: modification of work by NIH).</code> |
| <code>Combining nonpolar olive oil and polar vinegar yields what type of mixture?</code> | <code>Another familiar example is the mixing of vinegar and olive oil. Olive oil is a nonpolar substance, while vinegar (which is mostly water and acetic acid) is polar. The result is a heterogeneous mixture that exhibits a bilayer.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 4,987 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.33 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 33.52 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What happens before the rigid structure that surrounds the plant cell dilates?</code> | <code>Dilation occurs when cell walls relax.. Cell wall is the rigid structure that surrounds the plant cell. <br> Dilation occurs when the rigid structure that surrounds the plant cell relaxes.</code> |
| <code>Reusing plastic bags has a positive impact on what?</code> | <code>recycling has a positive impact on the environment. Plastic bags are recyclable and they are reusable. <br> Reusing plastic bags has a positive impact on the environment</code> |
| <code>What protects the body from harmful substances?</code> | <code>skin is used for protecting the body from harmful substances. Skin is a protective organ. <br> organs protect the body from harmful substances</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 3,007 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.75 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.34 tokens</li><li>max: 31 tokens</li></ul> |
* Samples:
| question | fact |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|
| <code>Heat exposure at higher temperatures without ability to regulate internal body temperatures will result in the expiration of which of these?</code> | <code>if an organism becomes too hot then that organism may die</code> |
| <code>Which of the following would be part of the water cycle?</code> | <code>evaporation is a stage in the water cycle process</code> |
| <code>polar bears are white due to an inherited</code> | <code>the color of fur is an inherited characteristic</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 4,987 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.68 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 75.36 tokens</li><li>max: 238 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how many days is it in a month</code> | <code>Each month has either 28, 30, or 31 days during a common year, which has 365 days. During leap years, which occur nearly every 4 years, we add an extra (intercalary) day, Leap Day, on 29 February, making leap years 366 days long.</code> |
| <code>who were the peloponnesian wars between? who won them?</code> | <code>The Greek city-state of Sparta won the war against Athens. The war, known as the Peloponnesian War, raged for 27 years between the Athenian realm and the Peloponnesian coalition commanded by the Spartans. The Peloponnesian War began in 431 B.C.C. and ended in 404 B.C.E. when Athens conceded defeat to Sparta.</code> |
| <code>average nurse practitioner salary ny</code> | <code>Nurse Practitioner New York, NY Salary. Nurse Practitioner New York, NY average salary is $91,897, median salary is $79,060 with a salary range from $20,530 to $1,926,393. Nurse Practitioner New York, NY salaries are collected from government agencies and companies. Each salary is associated with a real job position.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 4,987 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.79 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 131.1 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>parks and rec episode where ron gets a hernia</code> | <code>The Stakeout (Parks and Recreation) Back at city hall, Ron (Nick Offerman) remains immobile in his chair all day due to a hernia which causes excruciating pain if he moves. Ron remains immobile in his seat well into the night, until the janitors turn the lights off on him. The intern, April (Aubrey Plaza), returns to check on him, and wheels Ron out to the car on his office chair to bring him to the hospital.</code> |
| <code>when did jane beale come back to eastenders</code> | <code>Jane Beale Jane Beale (also Collins and Clarke) is a fictional character from the BBC soap opera, EastEnders, played by Laurie Brett. She made her first appearance on 21 June 2004. Brett took maternity leave in 2011[1] and departed on 19 May.[2] She returned on 8 November[3] and departed again on 27 January 2012.[4][5] Jane made temporary a return to the show on 6 January 2014 until 20 May and permanently from 24 November 2014.[6][7] Her major storylines have included her relationship and later marriages to Ian Beale (Adam Woodyatt); the first ended due to his affair with Glenda Mitchell (Glynis Barber), an affair with Grant Mitchell (Ross Kemp), accidentally shot by Ian's stepson Steven Beale (Aaron Sidwell) which results her desire to have a child of her own following a hysterectomy, a relationship with Masood Ahmed (Nitin Ganatra), her popular friendship with Tanya Branning (Jo Joyner), covering up her adopted son Bobby's (Eliot Carrington) role in the murder of her stepdaughter Lucy Beale (Hetti Bywater), being paralysed after brutally attacked with a hockey stick by Bobby, caught up in the fire at Beale's restaurant, which was started by Steven before she was then left in the blaze by Max Branning (Jake Wood) and being forced by Max to leave Walford which led to a second departure on 23 October 2017.[8] She made a voiceover appearance on 8 December.</code> |
| <code>who sings what lovers do with maroon 5</code> | <code>What Lovers Do "What Lovers Do" is a song by American pop rock band Maroon 5 featuring American R&B singer SZA. It was released on August 30, 2017, as the lead single from the band's sixth studio album Red Pill Blues (2017).[4] The song contains an interpolation of the 2016 song "Sexual" by Neiked featuring Dyo, therefore Victor Rådström, Dyo and Elina Stridh are credited as songwriters.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 4,987 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 17.26 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 205.76 tokens</li><li>max: 402 tokens</li></ul> |
* Samples:
| query | answer |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What word is the most common synonym of the word “corsair”?</code> | <code>Corsair Synonyms, Corsair Antonyms | Thesaurus.com Cite This Source Word Origin & History corsair 1549, from Fr. corsaire, from Prov. cursar, It. corsaro, from M.L. cursarius "pirate," from L. cursus "course, a running," from currere "to run" (see current). Meaning evolved in M.L. from "course" to "journey" to "expedition" to an expedition specifically for plunder. Example Sentences for corsair I have been a mercenary soldier, a corsair, a kozak, and a hundred other things. The words were out and the thing was done before Asad had realized the corsair's intent. He left a corsair's name to other times, Linked with one virtue, and a thousand crimes. If it were a Corsair, the rowers would all be Christian prisoners. After the failure of her attempt to board us, the corsair hauled aft her sheets and shot ahead of the Good Hope. I have read the Corsair, mended my petticoat, and have nothing else to do. He had also a mania for travelling, and when he was only two-and-twenty was captured by an Algerian corsair and enslaved. You are wrong there,” said the corsair, “for we would have attacked you all the same. To Moore he dedicated his "Corsair," and to read the preface is to see how sincerely attached Byron was to his friend. The corsair was standing by the side of Mr Tompkins, close by the taffrail.</code> |
| <code>"What scale initially related wind conditions to their effects on the sails of a man of war, from ""sufficient for steerage"" to ""which canvas sails couldn't withstand."""</code> | <code>Oil droplets transport due to irregular waves: Development of large-scale spreading coefficients "The sea state can be defined in a variety of ways. For example, one may use the Beaufort scale (Singleton, 2008) that describes the sea state based on qualitative terms. It is an empirical yet expedient scale. " [Show abstract] [Hide abstract] ABSTRACT: The movement of oil droplets due to waves and buoyancy was investigated by assuming an irregular sea state following a JONSWAP spectrum and four buoyancy values. A technique known as Wheeler stretching was used to model the movement of particles under the moving water surface. In each simulation, 500 particles were released and were tracked for a real time of 4.0 h. A Monte Carlo approach was used to obtain ensemble properties. It was found that small eddy diffusivities that decrease rapidly with depth generated the largest horizontal spreading of the plume. It was also found that large eddy diffusivities that decrease slowly with depth generated the smallest horizontal spreading coefficient of the plume. The increase in buoyancy resulted in a decrease in the horizontal spreading coefficient, which suggests that two-dimensional (horizontal) models that predict the transport of surface oil could be overestimating the spreading of oil. Full-text · Article · Jan 2016</code> |
| <code>What is the name given to the collection of Welsh legends?</code> | <code>1000+ images about Welsh - Legends & Folklore on Pinterest | Alan lee, Welsh and King arthur When looking for some illustrations on the Mabinogion I found this amazing looking book- The Golden Cockerel Sir Gawain so now I'm on the hunt for the artist. See More</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 4,987 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.52 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 56.25 tokens</li><li>max: 143 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how long does it take to get used to getting up earlier?</code> | <code>The most efficient method for changing the time you wake up is to do it gradually — 10–15 minutes earlier for 1–3 days until you feel used to it, and then lower it down. If you get up at 8 a.m. generally, don't suddenly change it to 6 a.m. Try 7:45 a.m. first.</code> |
| <code>what are the differences among standards goals and objectives?</code> | <code>Standard: Written expectations of what students are expected to know at a specific stage of education. These are based off of learning objectives. Goal: Unique to an individual student. May stem from a standard, but also relates to a student's academic habits and organization.</code> |
| <code>how do u work out the surface area of a triangular prism?</code> | <code>A triangular prism has three rectangular sides and two triangular faces. To find the area of the rectangular sides, use the formula A = lw, where A = area, l = length, and h = height. To find the area of the triangular faces, use the formula A = 1/2bh, where A = area, b = base, and h = height.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 4,987 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 25.62 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 25.61 tokens</li><li>max: 52 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
| <code>Primidone also causes exfoliative dermatitis , Johnson -- Stevens syndrome , and toxic epidermal necrolysis .</code> | <code>Primidone also causes exfoliative dermatitis , Johnson - Stevens -- Syndrome and toxic epidermal necrolysis .</code> |
| <code>The agency was founded in 1976 in Chicago , and it entered the New York market in 1998 and Milwaukee in 2009 .</code> | <code>The agency was founded in Chicago in 1976 and entered New York in 1998 and Milwaukee in 2009 .</code> |
| <code>After his death , the widow of Kellow Mary Hope Kellow with her daughter Mary moved to Sydney .</code> | <code>After his death , Kellow 's widow Mary Hope Kellow moved to Sydney with her daughter Mary .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### global_dataset
* Dataset: global_dataset
* Size: 36,619 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 28.68 tokens</li><li>max: 368 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 55.88 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The Turks , Tibetans , Muslim Arabs , and Tang competed for control of Central Asia until the tang 's collapse in the 10th century .</code> | <code>The Turks , Tang , Muslim Arabs and the Tibetans competed for control over Central Asia until the collapse of the Tang in the 10th century .</code> |
| <code>What do animals use to reproduce?</code> | <code>an animal needs to attract a mate to reproduce. Animals mate because of smells. <br> animals attract with smells</code> |
| <code>Some touch receptors sense a difference in pain or what?</code> | <code>Some touch receptors sense differences in temperature or pain.. Heat and temperature are the same. <br> Some touch receptors sense differences in heat or pain.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Evaluation Datasets
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 128 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 19.71 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 32.5 tokens</li><li>max: 78 tokens</li></ul> |
* Samples:
| claim | evidence |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### negation-triplets
* Dataset: negation-triplets
* Size: 128 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 14.54 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.12 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.43 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------|:----------------------------------------------------------|
| <code>A Marine that is looking at his cell phone.</code> | <code>A marine in uniform using a smart phone.</code> | <code>Not a marine in uniform using a smart phone.</code> |
| <code>A snowboarder on a wide plain of snow</code> | <code>A snow field with a snowboarder on it</code> | <code>An empty field with no snowboarder on it</code> |
| <code>Three men, one holding pipes, another holding a large object above his head, and one resting against the pipe bed on the truck, are looking at the camera.</code> | <code>three men look at the camera</code> | <code>three men ignore the camera</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 20.13 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> |
| <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code> | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
| <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.6 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.67 tokens</li><li>max: 33 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
| <code>Magma comes toward earth's crust through mantle plumes.</code> | <code>What substance comes toward earth's crust through mantle plumes?</code> |
| <code>The understory of the rainforest commonly has ferns and other ground plants.</code> | <code>What part of the rainforest commonly has ferns and other ground plants?</code> |
| <code>Because trees add water vapor to air, cutting down forests leads to longer periods of drought.</code> | <code>Because trees add water vapor to air, cutting down forests leads to longer periods of what?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | summary | document |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 13 tokens</li><li>mean: 25.42 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 67 tokens</li><li>mean: 213.0 tokens</li><li>max: 354 tokens</li></ul> |
* Samples:
| summary | document |
|:-----------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>An exam paper for Scottish secondary pupils is being re-issued after a mistake was spotted.</code> | <code>The National 5 Modern Studies exam will take place on Friday afternoon.<br>The Scottish Qualification Authority (SQA) said the paper has been reprinted because of a typographical error.<br>The exams body said there was no suggestion of a security breach. A spokesman added that it had procedures in place to deal with situations like this.<br>The printing mistake in the original paper was in a diagram, not a question.<br>The SQA said it acted quickly after the error was spotted.<br>The reprinted paper - with the correct text in the diagram but otherwise identical - will be issued to exam centres across Scotland.<br>Last year the Higher English paper was replaced amid fears of a security breach.<br>The SQA also faced criticism over mistakes in the National 5 computing paper.<br>Earlier this month, the SQA announced that teachers would not have access to exam papers until the day after each test takes place.<br>It said the change was in order to improve security and confidentiality. The largest teachers' union, the EIS, has condemned the move.</code> |
| <code>US regulators have told seven carmakers the recall of airbags made by Japanese firm Takata is likely to expand.</code> | <code>The National Highway Traffic Safety Administration (NHTSA) has written to firms including Mercedes-Benz, Jaguar-Land Rover and Tesla to ask which of their models use the Takata parts.<br>About 23.4 million Takata airbag inflators have been recalled in the US.<br>The airbags have been linked to eight deaths and more than 100 injuries around the world.<br>It was found they can inflate with excessive force, spraying metal shrapnel at the drivers.<br>The driver and passenger airbags were in more than 19 million cars sold by 11 different companies such as Honda in the US.<br>In the letters sent last week, the NHTSA said the recall "will likely grow to include vehicles that are outside the scope of the current recalls".<br>The agency will attend a public meeting in Washington on 22 October to discuss the Takata investigation and whether it will take over management of the recalls to speed up the repairs.<br>Carmakers are struggling to get parts with only 4.4 million airbag inflators replaced since the start of this month.<br>The other automakers that received the letters include Suzuki, Volvo Trucks, Volkswagen and Spartan Motors.<br>So far Mercedes, Jaguar-Land Rover and Tesla have all said the air bags they used from Takata are not part of current recalls, according to the Associated Press.</code> |
| <code>A salt lake in Melbourne has turned pink due to a combination of sunlight, warm temperatures and low rainfall.</code> | <code>Wildlife officers said algae growing in the salt crust at the bottom of Westgate Park's lake produce a red pigment.<br>"Enjoy the views, but we recommend you don't come into contact with the water," Parks Victoria said.<br>The phenomenon also occurs in Spain's Salina de Torrevieja, Canada's Dusty Rose Lake and Senegal's Lake Retba.<br>In Australia, the natural occurring sight can be seen in Victoria's Murray-Sunset National Park and Western Australia's Lake Hillier.<br>You might also be interested in:<br>Dr Mark Norman, Parks Victoria chief conservation scientist, said the colouration was caused by a harmless, single-cell alga known as Dunalliela.<br>"It's completely natural," he said. "We often get comments that it looks like an industrial accident of pink paint."<br>Dr Norman said that even though the water is not dangerous, he would not recommend taking a swim.<br>"It's so salty and muddy on the bottom that you would come out looking like a frosted rum ball, especially when you dried," he said.<br>Parks Victoria said the lake is expected to return to blue when the weather cooled and the rainfall increased.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 16.98 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 86.18 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What structures receive blood from the atria and pump it out of the heart?</code> | <code>The bottom two chambers of the heart are called the left and right ventricles. The ventricles receive blood from the atria and pump it out of the heart, either to the lungs or to the rest of the body.</code> |
| <code>Amphibians have permeable skin which allows for the exchange of oxygen and carbon dioxide, what is this "breathing called?"</code> | <code>Characteristics of Amphibians As tetrapods, most amphibians are characterized by four well-developed limbs. Some species of salamanders and all caecilians are functionally limbless; their limbs are vestigial. An important characteristic of extant amphibians is a moist, permeable skin that is achieved via mucus glands that keep the skin moist; thus, exchange of oxygen and carbon dioxide with the environment can take place through it ( cutaneous respiration). Additional characteristics of amphibians include pedicellate teeth—teeth in which the root and crown are calcified, separated by a zone of noncalcified tissue—and a papilla amphibiorum and papilla basilaris, structures of the inner ear that are sensitive to frequencies below and above 10,00 hertz, respectively. Amphibians also have an auricular operculum, which is an extra bone in the ear that transmits sounds to the inner ear. All extant adult amphibians are carnivorous, and some terrestrial amphibians have a sticky tongue that is used to capture prey.</code> |
| <code>What form do alkali metals take at room temperature?</code> | <code>Alkali metals are all solids at room temperature.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.25 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 34.65 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Warm body temperature requires what?</code> | <code>an animal usually requires a warm body temperature for survival. Most animals require water regularly. <br> a warm body temperature requires water</code> |
| <code>what rotates causing cycles of day and night?</code> | <code>a planet rotating causes cycles of day and night on that planet. Of all the planets, Mars is most like Earth. <br> Mars rotating causes cycles of day and night</code> |
| <code>What being tilted on its rotating axis causes spring, summer, autumn, and winter.</code> | <code>the Earth being tilted on its rotating axis causes seasons. Spring, summer, autumn, and winter are the seasons of the year. <br> Earth being tilted on its rotating axis causes spring, summer, autumn, and winter.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.96 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code> |
| <code>What creates a valley?</code> | <code>a valley is formed by a river flowing</code> |
| <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.1 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 74.29 tokens</li><li>max: 200 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>tcf routing number illinois</code> | <code>Routing Number 271972572. Tcf National Bank Illinois Routing Number. TCF NATIONAL BANK ILLINOIS ROUTING ABA NUMBER. 271972572 routing number is a 9-digit number designed and assigned to Tcf National Bank Illinois by The American Bankers Association (ABA) to identify the financial institution upon which a payment was drawn.</code> |
| <code>why was jamestown so important other then being the first permanent english settlement</code> | <code>Credit: National Park Service. View full size image. Jamestown, founded in 1607, was the first successful permanent English settlement in what would become the United States. It was located on Jamestown Island, in Virginia, about 30 miles (47 kilometers) up the James River from the Atlantic coast.amestown, founded in 1607, was the first successful permanent English settlement in what would become the United States.</code> |
| <code>when was the town of farragut tn incorporated</code> | <code>In January of 1980, residents decided to incorporate by an overwhelming margin. The Town of Farragut was incorporated on January 16, 1980, with the first board of Mayor and Alderman elected on April 1, 1980.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 12.24 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 128.73 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when did rodan and fields start direct sales</code> | <code>Rodan + Fields In 2002, Drs. Fields and Rodan launched Rodan + Fields. Products were sold in department stores. In 2003, Rodan + Fields was purchased by Estée Lauder.[1] In 2007, Drs. Fields and Rodan reacquired the brand[4] and transitioned the company from department stores to multi-level marketing, where consultants are paid a commission for their own sales and for the sales of people they recruit.[1]</code> |
| <code>what are the house names in harry potter</code> | <code>Hogwarts Hogwarts is divided into four houses, each bearing the last name of its founder: Godric Gryffindor, Salazar Slytherin, Rowena Ravenclaw and Helga Hufflepuff. Throughout the school year, the houses compete for the House Cup, gaining and losing points based on actions such as performance in class and rule violations. The house with the highest end-of-year total wins and has its colours displayed in the Great Hall for the following school year. Each house also has its own Quidditch team that competes for the Quidditch Cup. These two competitions breed rivalries between the houses. Houses at Hogwarts are living and learning communities for their students. Each house is under the authority of one of the Hogwarts staff members. The Heads of the houses, as they are called, are in charge of giving their students important information, dealing with matters of severe punishment, and responding to emergencies in their houses, among other things. Each year, year level groups of every separate house share the same dormitory and classes. The dormitory and common room of a House are, barring rare exceptions, inaccessible to students belonging to other Houses.</code> |
| <code>when was calibri font made available for use</code> | <code>Calibri Calibri (/kəˈliːbri/) is a sans-serif typeface family designed by Luc(as) de Groot in 2002–2004 and released to the general public in 2007, with Microsoft Office 2007 and Windows Vista.[2][3] In Office 2007, it replaced Times New Roman as the default typeface in Word[4] and replaced Arial as the default in PowerPoint, Excel, Outlook, and WordPad. Creator de Groot described its subtly rounded design as having "a warm and soft character".[3]</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 16.59 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 199.75 tokens</li><li>max: 373 tokens</li></ul> |
* Samples:
| query | answer |
|:-------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Theodore Francis international airport is in which US state?</code> | <code>Theodore Francis Green State Airport, Providence RI Hotels Near the Airport T. F. Green Airport (sometimes called T. F. Green International Airport) (IATA: PVD, ICAO: KPVD, FAA LID: PVD) , also known as Theodore Francis Green State Airport and Providence International Airport is located in Warwick, six miles (10 km) south of Providence, in Kent County, Rhode Island, USA. Completely rebuilt in 1996, it was the first state-owned airport in the United States. Providence International Airport is a popular alternative to Boston, Massachusetts' often busy Logan International Airport, as delays and wait time are minimal. There are two terminals with two concourses, North and South. The South Concourse has eight gates, and the North Concourse has 14 gates. Gate 8 is designed for international arrivals for use by Air Canada and SATA International flights; it is directly connected to customs, which is on the lower level of the concourse. The terminal contains a number of stores and restaurants, and a central food court. Local Time: 17-Jan-2017 12:02 AM © Copyright 2017, Providence-Airport.com, not the official airport website</code> |
| <code>What is the English for ‘Duirt me leat go raibh me breoite’?</code> | <code>Duirt mé leat go raibh mé breoite – Susan Hated Literature That is the enscription on Spike Milligan’s headstone . For those of you without Irish it is a translation of what he wanted: “I told you I was ill.” Duirt mé (I told) pronounced durtch may (like the month) leat (you) pronounced lat go raibh mé (that I was) pronounced not like the english go, but the o is sorta like “uh”; raibh can have a variety of pronunciations, I’d usually say row (as in to fight, not to do anything in a boat), but you could say rev, or rav, and mé is may (again) breoite (ill) pronounced bro-tcha Here endeth the very bad Irish lesson, from which you are probably more confuddled than you were before? On a secondary issue, why is the Irish language constantly described as Gaelic? It’s Irish, or Gaeilge. The latter only if you are speaking as Gaeilge. I mean I don’t say that some German person was speaking in Deutsch unless I’m attempting to say it in German. This is a pet peeve of mine, feel free to ignore :)</code> |
| <code>Which group sung the 1997 Eurovision Song Contest winning Love Shine A Light?</code> | <code>Eurovision 1997 - Katrina & The Waves - Love shine a light - YouTube Eurovision 1997 - Katrina & The Waves - Love shine a light Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Uploaded on Sep 14, 2008 Eurovision 1997 - Katrina & The Waves - Love shine a light Category</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.01 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 57.03 tokens</li><li>max: 96 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>can i use full synthetic oil in my snowblower?</code> | <code>So, while synthetic will do better in temperature extremes, (extremes not seen in a properly running snow blower) it will get dirty at the same rate as regular oil. Therefore we will need to replace it at the same intervals as regular oil, but at a greater cost.</code> |
| <code>what is the difference between primary and foreign key in sql?</code> | <code>Difference between Primary Key and Foreign Key. Primary key uniquely identify a record in the table. Foreign key is a field in the table that is primary key in another table. ... By default, Primary key is clustered index and data in the database table is physically organized in the sequence of clustered index.</code> |
| <code>how to change administrator windows 10?</code> | <code>['Under Settings > Accounts > Family & other users, select the account owner name, then select Change account type.', 'Under Account type, select Administrator and OK.', 'Sign in with the new administrator account.']</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 25.58 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.4 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>They were there to enjoy us and they were there to pray for us .</code> | <code>They were there for us to enjoy and they were there for us to pray .</code> |
| <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
| <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code> | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### global_dataset
* Dataset: global_dataset
* Size: 325 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 31.88 tokens</li><li>max: 344 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 55.72 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when was the world cup</code> | <code>In the first World Cup final, held on July 30, 1930, 93,000 spectators looked on as Uruguay defeated Argentina 4â2 in a rematch of the 1928 Olympic gold medal game. Uruguay went on to win its second World Cup in 1950 with a 2-1 win over Brazil in Rio de Janeiro.</code> |
| <code>Highlands-based Neil Anderson set up the camera in a part of Strathspey in the Cairngorms.<br>He said: "I knew the cat used a path fairly regularly and seeing that snow was forecast I rigged up my camera trap.<br>"I went away for a couple of weeks so when I finally checked the camera it was a great surprise to come back to."<br>The wildcat was photographed on 13 January.<br>Mr Anderson, whose credits include commissions for the BBC's Springwatch wildlife programmes, also photographs wildlife in other parts of the world.<br>The Scottish wildcat is one of the world's most endangered animals.<br>Habitat loss and breeding with domestic and feral cats are factors behind a severe decline in the mammals.</code> | <code>A rare Scottish wildcat has been photographed on a camera trap rigged up by a wildlife cameraman.</code> |
| <code>can phi be disclosed for marketing purposes?</code> | <code>The Privacy Rule addresses the use and disclosure of protected health information for marketing purposes by: ... Requiring individual authorization for all uses or disclosures of protected health information for marketing purposes with limited exceptions.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 3
- `learning_rate`: 1.5e-05
- `weight_decay`: 0.001
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1.5e-06}
- `warmup_ratio`: 0.25
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 3
- `eval_accumulation_steps`: None
- `learning_rate`: 1.5e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1.5e-06}
- `warmup_ratio`: 0.25
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | xsum-pairs loss | global dataset loss | scitail-pairs-pos loss | nq pairs loss | qasc pairs loss | trivia pairs loss | scitail-pairs-qa loss | vitaminc-pairs loss | sciq pairs loss | negation-triplets loss | gooaq pairs loss | msmarco pairs loss | openbookqa pairs loss | paws-pos loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:-------------------:|:----------------------:|:-------------:|:---------------:|:-----------------:|:---------------------:|:-------------------:|:---------------:|:----------------------:|:----------------:|:------------------:|:---------------------:|:-------------:|:---------------:|:-----------------:|:------------------------:|
| 0.0058 | 3 | 7.8503 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0116 | 6 | 8.4022 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0174 | 9 | 11.1776 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0231 | 12 | 9.7845 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0289 | 15 | 8.9224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0347 | 18 | 11.1202 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0405 | 21 | 7.413 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0463 | 24 | 7.7803 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0501 | 26 | - | 5.3947 | 6.3484 | 2.5062 | 10.4474 | 6.6809 | 6.1073 | 2.9786 | 4.1224 | 0.8978 | 3.9176 | 8.0953 | 15.7827 | 6.4026 | 1.6077 | 0.6094 | 0.3453 | 0.3223 |
| 0.0521 | 27 | 7.9729 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0578 | 30 | 6.0587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0636 | 33 | 5.6742 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0694 | 36 | 6.5406 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0752 | 39 | 5.4429 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0810 | 42 | 6.7855 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0868 | 45 | 5.3403 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0925 | 48 | 4.2282 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0983 | 51 | 4.7411 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1003 | 52 | - | 4.4624 | 3.8914 | 1.1342 | 6.2954 | 4.8895 | 5.7900 | 2.0086 | 3.9298 | 0.7183 | 3.2670 | 5.7852 | 7.5325 | 3.4273 | 0.4783 | 0.5957 | 0.4051 | 0.5257 |
| 0.1041 | 54 | 3.9082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1099 | 57 | 4.3922 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1157 | 60 | 3.2655 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1215 | 63 | 3.1043 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1272 | 66 | 2.2074 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1330 | 69 | 1.4414 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1388 | 72 | 1.5937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1446 | 75 | 1.0306 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1504 | 78 | 1.0784 | 0.4360 | 0.6714 | 0.1109 | 1.2714 | 1.3059 | 1.0828 | 0.1282 | 3.7639 | 0.2034 | 1.4773 | 0.7032 | 1.3856 | 1.1711 | 0.0449 | 0.6293 | 0.4747 | 0.8291 |
| 0.1562 | 81 | 0.9674 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1620 | 84 | 0.9335 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1677 | 87 | 0.8806 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1735 | 90 | 0.631 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1793 | 93 | 0.3384 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1851 | 96 | 0.404 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1909 | 99 | 0.6488 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1967 | 102 | 0.4728 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2005 | 104 | - | 0.1409 | 0.3990 | 0.0726 | 0.5425 | 0.4244 | 0.6438 | 0.0485 | 3.3142 | 0.1505 | 1.3401 | 0.2238 | 0.5883 | 0.5924 | 0.0358 | 0.7154 | 0.5430 | 0.8863 |
| 0.2024 | 105 | 0.5094 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2082 | 108 | 0.8002 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2140 | 111 | 0.3886 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2198 | 114 | 0.6937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2256 | 117 | 0.2909 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2314 | 120 | 0.3885 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2371 | 123 | 0.29 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2429 | 126 | 0.3485 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2487 | 129 | 0.3931 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2506 | 130 | - | 0.0513 | 0.3591 | 0.0457 | 0.2678 | 0.2206 | 0.1540 | 0.0365 | 3.8795 | 0.1231 | 1.1135 | 0.1206 | 0.2162 | 0.4568 | 0.0261 | 0.6993 | 0.5638 | 0.9082 |
| 0.2545 | 132 | 0.3394 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2603 | 135 | 0.1276 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2661 | 138 | 0.3569 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2719 | 141 | 0.1231 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2776 | 144 | 0.3086 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2834 | 147 | 0.3541 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2892 | 150 | 0.2597 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2950 | 153 | 0.1585 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3008 | 156 | 0.1436 | 0.0503 | 0.2959 | 0.0376 | 0.2004 | 0.1717 | 0.0823 | 0.0410 | 3.8346 | 0.0871 | 0.9441 | 0.0767 | 0.1350 | 0.4304 | 0.0213 | 0.7239 | 0.5807 | 0.9177 |
| 0.3066 | 159 | 0.1941 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3123 | 162 | 0.3041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3181 | 165 | 0.2358 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3239 | 168 | 0.2148 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3297 | 171 | 0.8567 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3355 | 174 | 0.3668 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3413 | 177 | 0.3278 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3470 | 180 | 0.474 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3509 | 182 | - | 0.0382 | 0.3900 | 0.0550 | 0.2525 | 0.1511 | 0.0624 | 0.1251 | 3.8444 | 0.0825 | 0.8706 | 0.1212 | 0.4176 | 0.7894 | 0.0209 | 0.7187 | 0.5555 | 0.9103 |
| 0.3528 | 183 | 0.5365 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3586 | 186 | 0.6902 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3644 | 189 | 0.4105 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3702 | 192 | 0.2434 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3760 | 195 | 0.1521 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3817 | 198 | 0.1878 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3875 | 201 | 0.3544 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3933 | 204 | 0.1397 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3991 | 207 | 0.2982 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4010 | 208 | - | 0.0290 | 0.2504 | 0.0209 | 0.2429 | 0.1335 | 0.0537 | 0.0243 | 3.2105 | 0.0851 | 0.6793 | 0.0728 | 0.0954 | 0.4361 | 0.0224 | 0.7266 | 0.5853 | 0.9212 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |