File size: 249,309 Bytes
9413fc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 |
---
base_model: bobox/DeBERTa-small-ST-v1-test-step3
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:163205
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: who is the president of chil
sentences:
- An endoscopic retrograde cholangiopancreatogram (ERCP) is usually done by a gastroenterologist.
This is a doctor who has special training in diseases of the digestive system.
The doctor must be trained in endoscopy. A thin, flexible fiber-optic endoscope
(scope) is used.
- "No. Cleveland Cavaliers guard, Kyrie Irving, is not the son of former NBA great\
\ Julius Erving. Kyrie Irving's father is former Australian professional basketball\
\ player Drederick Irving. Kyrie's mother, Elizabeth (who was a standout athlete\
\ herself), died when Kyrie was just four. Since then, dad Drederick raised him\
\ as a single parent and served as Kyrieâ\x80\x99s first basketball coach."
- Veronica Verónica Michelle Bachelet jeria is The president Of. Chile she was
the first Female president Of chile from 2006 march - 11 2010 march, 11 and was-re
elected for the-2014 2018. Term'chile s presidents are not-re electable. immediatelyhe
was the first female President of Chile from 2006 March 11 - 2010 March 11, and
was re-elected for the 2014-2018 term.
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
mainland China .
sentences:
- 'More than 3,700 people have died : around 3,100 in mainland China and around
550 in all other countries combined .'
- 'More than 3,200 people have died : almost 3,000 in mainland China and around
275 in other countries .'
- more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: The movement of an air mass over earth's surface causes local weather
changes.
sentences:
- The movement of an air mass over Earth's surface causes
- Which best explains why children resemble their parents?
- What ensures that seeds germinate only when conditions for seedling survival are
optimal?
- source_sentence: Heirloom seeds come from plants that were traditionally grown in
human populations, as opposed to the seeds used for large-scale agricultural production.
sentences:
- What do you call a substance that is not an acid or a base?
- What type of seeds come from plants that were traditionally grown in human populations,
as opposed to the seeds used for large-scale agricultural production?
- High consumption of saturated fats is linked to an increased risk of what disease?
- source_sentence: 2012 was the 300th anniversary of the world's first industrial
steam-powered machine, which was a?
sentences:
- Armed Forces Radio Vietnam | Video | C-SPAN.org Supreme Court November 11, 2006
Armed Forces Radio in Vietnam Adrian Cronauer talked about being a disc jockey
in Vietnam and the movie based on his experiences, “Good Morning, Vietnam!” The
ninth… read more Armed Forces Radio in Vietnam Adrian Cronauer talked about being
a disc jockey in Vietnam and the movie based on his experiences, “Good Morning,
Vietnam!” The ninth annual conference of the World War II Veterans Committee for
the first time expanded to include the Vietnam War under the new umbrella organization,
the American Veterans Center. close Transcript type
- The Worlds First Steam Engine 300th Anniversary - YouTube The Worlds First Steam
Engine 300th Anniversary Want to watch this again later? Sign in to add this video
to a playlist. Need to report the video? Sign in to report inappropriate content.
Rating is available when the video has been rented. This feature is not available
right now. Please try again later. Published on Nov 14, 2012 The replica Newcomen
Pumping Engine at the Black Country Living Museum in Dudley has been brought back
to life for the 300th anniversary of the first recorded practical application
of steam power. The self-acting valve gear is a clanking cacophony of joy! The
restoration team were helped by Guy Martin and the engine was featured in the
Channel 4 documentary series 'How Britain Worked' (as was my own miniature Newcomen
engine model, used by Guy to demonstrate how the engine works!) See my other vids
for some footage of my little 'un in action! Category
- YouTube | Logopedia | Fandom powered by Wikia 2015–present 2005–2011 The logo
consists of the black word "You" and a red rounded rectangle with the word "Tube"
in it next to it. This logo is still being used on some other pages. Logo with
the slogan "Broadcast Yourself". Notice that the red square looks different in
this variation. Add a photo to this gallery 2011–2013 This modification of the
YouTube logo was introduced in July 2011 as a part of the Cosmic Panda experiment.
It officially became the new logo a few months later. It has the red square in
a darker color this time. Also, starting in 2012, the slogan "Broadcast Yourself"
was retired. 2013–2015 On December 19, 2013, the red rectangle was made lighter
in color. Also, the word "You" was made more black and the shadow behind the word
"Tube" was removed. This is still used as a secondary logo. Alternate Version,
only for social media.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8849752478250572
name: Pearson Cosine
- type: spearman_cosine
value: 0.9074029344649761
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9066465477509797
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9026904476354162
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9057105226753817
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9012328095493753
name: Spearman Euclidean
- type: pearson_dot
value: 0.8644269802811118
name: Pearson Dot
- type: spearman_dot
value: 0.8581655381241343
name: Spearman Dot
- type: pearson_max
value: 0.9066465477509797
name: Pearson Max
- type: spearman_max
value: 0.9074029344649761
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allNLI dev
type: allNLI-dev
metrics:
- type: cosine_accuracy
value: 0.73828125
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7844070792198181
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6426966292134833
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6026103496551514
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5257352941176471
name: Cosine Precision
- type: cosine_recall
value: 0.8265895953757225
name: Cosine Recall
- type: cosine_ap
value: 0.6334966395637692
name: Cosine Ap
- type: dot_accuracy
value: 0.732421875
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 283.69488525390625
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6095617529880478
name: Dot F1
- type: dot_f1_threshold
value: 201.48480224609375
name: Dot F1 Threshold
- type: dot_precision
value: 0.46504559270516715
name: Dot Precision
- type: dot_recall
value: 0.884393063583815
name: Dot Recall
- type: dot_ap
value: 0.5980221780780246
name: Dot Ap
- type: manhattan_accuracy
value: 0.740234375
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 273.82623291015625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6563876651982379
name: Manhattan F1
- type: manhattan_f1_threshold
value: 367.0364990234375
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5302491103202847
name: Manhattan Precision
- type: manhattan_recall
value: 0.861271676300578
name: Manhattan Recall
- type: manhattan_ap
value: 0.6346873828150861
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.740234375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 12.730911254882812
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6496519721577727
name: Euclidean F1
- type: euclidean_f1_threshold
value: 16.85952377319336
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5426356589147286
name: Euclidean Precision
- type: euclidean_recall
value: 0.8092485549132948
name: Euclidean Recall
- type: euclidean_ap
value: 0.6353313789932706
name: Euclidean Ap
- type: max_accuracy
value: 0.740234375
name: Max Accuracy
- type: max_accuracy_threshold
value: 283.69488525390625
name: Max Accuracy Threshold
- type: max_f1
value: 0.6563876651982379
name: Max F1
- type: max_f1_threshold
value: 367.0364990234375
name: Max F1 Threshold
- type: max_precision
value: 0.5426356589147286
name: Max Precision
- type: max_recall
value: 0.884393063583815
name: Max Recall
- type: max_ap
value: 0.6353313789932706
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Qnli dev
type: Qnli-dev
metrics:
- type: cosine_accuracy
value: 0.6953125
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6459293961524963
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6733668341708542
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5255661606788635
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.556786703601108
name: Cosine Precision
- type: cosine_recall
value: 0.8516949152542372
name: Cosine Recall
- type: cosine_ap
value: 0.7130285997310533
name: Cosine Ap
- type: dot_accuracy
value: 0.666015625
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 248.84127807617188
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6728682170542635
name: Dot F1
- type: dot_f1_threshold
value: 177.0298614501953
name: Dot F1 Threshold
- type: dot_precision
value: 0.530562347188264
name: Dot Precision
- type: dot_recall
value: 0.9194915254237288
name: Dot Recall
- type: dot_ap
value: 0.6544554872798674
name: Dot Ap
- type: manhattan_accuracy
value: 0.6953125
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 346.01763916015625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.678714859437751
name: Manhattan F1
- type: manhattan_f1_threshold
value: 363.3157653808594
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6450381679389313
name: Manhattan Precision
- type: manhattan_recall
value: 0.7161016949152542
name: Manhattan Recall
- type: manhattan_ap
value: 0.7232893442260485
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6953125
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 16.394847869873047
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6799999999999999
name: Euclidean F1
- type: euclidean_f1_threshold
value: 17.270109176635742
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.6439393939393939
name: Euclidean Precision
- type: euclidean_recall
value: 0.7203389830508474
name: Euclidean Recall
- type: euclidean_ap
value: 0.7197613869313146
name: Euclidean Ap
- type: max_accuracy
value: 0.6953125
name: Max Accuracy
- type: max_accuracy_threshold
value: 346.01763916015625
name: Max Accuracy Threshold
- type: max_f1
value: 0.6799999999999999
name: Max F1
- type: max_f1_threshold
value: 363.3157653808594
name: Max F1 Threshold
- type: max_precision
value: 0.6450381679389313
name: Max Precision
- type: max_recall
value: 0.9194915254237288
name: Max Recall
- type: max_ap
value: 0.7232893442260485
name: Max Ap
---
# SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) <!-- at revision df9aaa75fe0c2791e5ed35ff33de1689d9a5f5ff -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- negation-triplets
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- xsum-pairs
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
- openbookqa_pairs
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
- global_dataset
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp")
# Run inference
sentences = [
"2012 was the 300th anniversary of the world's first industrial steam-powered machine, which was a?",
"The Worlds First Steam Engine 300th Anniversary - YouTube The Worlds First Steam Engine 300th Anniversary Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Published on Nov 14, 2012 The replica Newcomen Pumping Engine at the Black Country Living Museum in Dudley has been brought back to life for the 300th anniversary of the first recorded practical application of steam power. The self-acting valve gear is a clanking cacophony of joy! The restoration team were helped by Guy Martin and the engine was featured in the Channel 4 documentary series 'How Britain Worked' (as was my own miniature Newcomen engine model, used by Guy to demonstrate how the engine works!) See my other vids for some footage of my little 'un in action! Category",
'YouTube | Logopedia | Fandom powered by Wikia 2015–present 2005–2011 The logo consists of the black word "You" and a red rounded rectangle with the word "Tube" in it next to it. This logo is still being used on some other pages. Logo with the slogan "Broadcast Yourself". Notice that the red square looks different in this variation. Add a photo to this gallery 2011–2013 This modification of the YouTube logo was introduced in July 2011 as a part of the Cosmic Panda experiment. It officially became the new logo a few months later. It has the red square in a darker color this time. Also, starting in 2012, the slogan "Broadcast Yourself" was retired. 2013–2015 On December 19, 2013, the red rectangle was made lighter in color. Also, the word "You" was made more black and the shadow behind the word "Tube" was removed. This is still used as a secondary logo. Alternate Version, only for social media.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.885 |
| **spearman_cosine** | **0.9074** |
| pearson_manhattan | 0.9066 |
| spearman_manhattan | 0.9027 |
| pearson_euclidean | 0.9057 |
| spearman_euclidean | 0.9012 |
| pearson_dot | 0.8644 |
| spearman_dot | 0.8582 |
| pearson_max | 0.9066 |
| spearman_max | 0.9074 |
#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.7383 |
| cosine_accuracy_threshold | 0.7844 |
| cosine_f1 | 0.6427 |
| cosine_f1_threshold | 0.6026 |
| cosine_precision | 0.5257 |
| cosine_recall | 0.8266 |
| cosine_ap | 0.6335 |
| dot_accuracy | 0.7324 |
| dot_accuracy_threshold | 283.6949 |
| dot_f1 | 0.6096 |
| dot_f1_threshold | 201.4848 |
| dot_precision | 0.465 |
| dot_recall | 0.8844 |
| dot_ap | 0.598 |
| manhattan_accuracy | 0.7402 |
| manhattan_accuracy_threshold | 273.8262 |
| manhattan_f1 | 0.6564 |
| manhattan_f1_threshold | 367.0365 |
| manhattan_precision | 0.5302 |
| manhattan_recall | 0.8613 |
| manhattan_ap | 0.6347 |
| euclidean_accuracy | 0.7402 |
| euclidean_accuracy_threshold | 12.7309 |
| euclidean_f1 | 0.6497 |
| euclidean_f1_threshold | 16.8595 |
| euclidean_precision | 0.5426 |
| euclidean_recall | 0.8092 |
| euclidean_ap | 0.6353 |
| max_accuracy | 0.7402 |
| max_accuracy_threshold | 283.6949 |
| max_f1 | 0.6564 |
| max_f1_threshold | 367.0365 |
| max_precision | 0.5426 |
| max_recall | 0.8844 |
| **max_ap** | **0.6353** |
#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6953 |
| cosine_accuracy_threshold | 0.6459 |
| cosine_f1 | 0.6734 |
| cosine_f1_threshold | 0.5256 |
| cosine_precision | 0.5568 |
| cosine_recall | 0.8517 |
| cosine_ap | 0.713 |
| dot_accuracy | 0.666 |
| dot_accuracy_threshold | 248.8413 |
| dot_f1 | 0.6729 |
| dot_f1_threshold | 177.0299 |
| dot_precision | 0.5306 |
| dot_recall | 0.9195 |
| dot_ap | 0.6545 |
| manhattan_accuracy | 0.6953 |
| manhattan_accuracy_threshold | 346.0176 |
| manhattan_f1 | 0.6787 |
| manhattan_f1_threshold | 363.3158 |
| manhattan_precision | 0.645 |
| manhattan_recall | 0.7161 |
| manhattan_ap | 0.7233 |
| euclidean_accuracy | 0.6953 |
| euclidean_accuracy_threshold | 16.3948 |
| euclidean_f1 | 0.68 |
| euclidean_f1_threshold | 17.2701 |
| euclidean_precision | 0.6439 |
| euclidean_recall | 0.7203 |
| euclidean_ap | 0.7198 |
| max_accuracy | 0.6953 |
| max_accuracy_threshold | 346.0176 |
| max_f1 | 0.68 |
| max_f1_threshold | 363.3158 |
| max_precision | 0.645 |
| max_recall | 0.9195 |
| **max_ap** | **0.7233** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### negation-triplets
* Dataset: negation-triplets
* Size: 7,500 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 21.77 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.89 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.24 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Exploring inland to the north is difficult on foot, The streets become very steep.</code> | <code>It is difficult to explore inland on foot.</code> | <code>It is easy to explore inland by foot.</code> |
| <code>Michele is the lead singer in 14 of the top 20 selling Glee songs as of 2010 .</code> | <code>Michele is featured lead singer in 14 of the top 20 selling Glee songs as of 2010 .</code> | <code>Michele is featured lead singer in none of the top 20 selling Glee songs as of 2010.</code> |
| <code>Its theme is show business , based on Hollywood in the 1930s and 1940s .</code> | <code>Spanning 135 acres ( 546,000 m ) in size , its theme is show business , drawing inspiration from the heyday of Hollywood in the 1930s and 1940s .</code> | <code>Covering 25 acres ( 101,000 m ) in size , its theme is agriculture , drawing inspiration from the modern era of Silicon Valley in the 2000s and 2010s .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 7,500 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.12 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 38.83 tokens</li><li>max: 187 tokens</li></ul> |
* Samples:
| claim | evidence |
|:---------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Prokhorov offered Joseph Tsai , the executive vice-chairman of the Alibaba Group , a stake in Brooklyn Nets .</code> | <code>In late 2017 , there were multiple reports of an agreement for Prokhorov to sell a 49 % stake in the team to Joseph Tsai , the executive vice chairman of the Alibaba Group , with an option for Tsai to become the majority owner .</code> |
| <code>Vartan 's father was of Armenian descent .</code> | <code>Vartan 's father was Bulgarian-born and of part Armenian and Hungarian descent and Vartan 's mother is an American Jew originally from Poland ; Vartan has said about his French background that “ The funny thing is I ’ m actually a Polish Jew who happens to be born in France .</code> |
| <code>Big Sean was born on 25 March 1987 .</code> | <code>Sean Michael Leonard Anderson ( born March 25 , 1987 ) , known professionally as Big Sean , is an American hip hop recording artist , comedian , singer-songwriter .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 7,118 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.71 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.76 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
| <code>The hair cells sense(s) the movement of liquid in ear canals.</code> | <code>What senses the movement of liquid in ear canals?</code> |
| <code>Evidence allows theories to be widely accepted.</code> | <code>What allows theories to be widely accepted?</code> |
| <code>The field of study known as mathematics is called the language of science.</code> | <code>What field of study is called the language of science?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 4,300 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 23.62 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.55 tokens</li><li>max: 38 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>Plants convert carbon dioxide into oxygen as a byproduct of photosynthesis.</code> | <code>Oxygen is made by trees and other plants during photosynthesis.</code> |
| <code>Kinetic energy is the energy of bodies in motion.</code> | <code>Kinetic engergy is the energy of anything in motion.</code> |
| <code>Digestion begins in the mouth where salivary amylase starts the breakdown of carbohydrates.</code> | <code>Carbohydrate digestion begins in the mouth.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 7,500 training samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | summary | document |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 25.65 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 49 tokens</li><li>mean: 221.16 tokens</li><li>max: 421 tokens</li></ul> |
* Samples:
| summary | document |
|:-------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>A council has received complaints about people urinating and defecating outdoors after a village's public toilets were closed down.</code> | <code>The toilets at Staffin on Skye were among a number of Highland Council-run sites shut this year to save money.<br>The council has been in talks with Staffin Community Trust about alternative facilities.<br>In the meantime, two complaints have been received public urination and defecation in and around the village.<br>The nearest public toilet is in Kilmuir about 11 miles (17km) from Staffin.<br>Residents have told BBC Alba of people using ditches, a nearby quarry and the rear of the closed toilet block.<br>Highland Council it had cost £6,700 a year to run Staffin's loos.<br>A spokeswoman said: "We cannot confirm that people have been urinating and defecating in the area - we have found no evidence to support these claims.<br>"There have been two complaints made, one to environmental health and one to roads and community works.<br>"In addition to this we have had three enquiries about Staffin toilets."<br>She added: "The council has been in discussions with Staffin Community Trust and have agreed in principle to operate a seasonal - April to October - Highland Comfort Scheme within the community hall."</code> |
| <code>More than 70 workers have been taken off a North Sea oil platform after it suffered a loss of power.</code> | <code>The coastguard was first alerted to the issue on the Bruce installation, east of Shetland, just after 20:00 on Thursday.<br>A total of 76 people from the 121 on board were taken off the platform and flown to neighbouring installations in coastguard helicopters.<br>Forty-five workers stayed on the platform in a bid to restore power.<br>BP said work to restore power was ongoing.<br>A Coastguard spokesman said: "Following a loss of power on the Bruce platform off Aberdeen late on Thursday 22nd June, HM Coastguard rescue helicopters from Shetland and Inverness were tasked to partially down-man the platform.<br>"Seventy six non-essential personnel were transferred overnight by helicopter to other platforms in the area."</code> |
| <code>Shaun Hutchinson has agreed a two-year deal with League One club Millwall after his recent release by Fulham.</code> | <code>The defender, 25, who spent two years at Craven Cottage, will officially join the Lions when his Fulham contract expires at the end of the month.<br>"Coming to work at a place where you are so wanted is a great feeling," he told the Lions' website.<br>"I can't wait to get going and am looking forward to putting on the Millwall shirt."<br>Newcastle-born Hutchinson made 121 league appearances for Motherwell before Fulham signed him from the Scottish side after a number of clubs - including Millwall - had shown an interest in him.<br>However, he struggled to establish himself as a first-team regular, making 34 league appearances during his time in west London.<br>"Shaun is a player that as a club we have been aware of for quite a period of time," said Millwall manager Neil Harris.<br>"We tracked him diligently when he was at Motherwell and when he was moving down south we bid for him.<br>"We monitored him last season knowing that he was coming out of contract.<br>"He is a no-nonsense defender who likes to head it in both boxes and is very aggressive in his approach."<br>Find all the latest football transfers on our dedicated page.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 5,547 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.08 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 90.28 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>A rounded hollow carved in the side of a mountain by a glacier is known as?</code> | <code>A cirque is a rounded hollow carved in the side of a mountain by a glacier. The highest cliff of a cirque is called the headwall.</code> |
| <code>What is a group of lions called?</code> | <code>Lions live in social groups called prides . Adult females in the pride hunt cooperatively, which is more efficient than hunting alone. Then they share the food with the rest of the pride. For their part, adult males defend the pride’s territory from other predators.</code> |
| <code>What is a measure of the average amount of energy of motion, or kinetic energy, a system contains called?</code> | <code>There are other units in chemistry that are important, and we will cover others in the course of the entire book. One of the fundamental quantities in science is temperature. Temperature is a measure of the average amount of energy of motion, or kinetic energy, a system contains. Temperatures are expressed using scales that use units called degrees, and there are several temperature scales in use. In the United States, the commonly used temperature scale is the Fahrenheit scale (symbolized by °F and spoken as “degrees Fahrenheit”). On this scale, the freezing point of liquid water (the temperature at which liquid water turns to solid ice) is 32°F, and the boiling point of water (the temperature at which liquid water turns to steam) is 212°F. Science also uses other scales to express temperature. The Celsius scale (symbolized by °C and spoken as “degrees Celsius”) is a temperature scale where 0°C is the freezing point of water and 100°C is the boiling point of water; the scale is divided into 100 divisions between these two landmarks and extended higher and lower. By comparing the Fahrenheit and Celsius scales, a conversion between the two scales can be determined: °C=(°F–32) × 59° Saylor URL: http://www. saylor. org/books.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 3,863 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.39 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 33.65 tokens</li><li>max: 74 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Meat, fish and chicken are used to do what by the human body?</code> | <code>protein is used to repair cells by the human body. Meat, fish and chicken are rich sources of protein. <br> Meat, fish and chicken are used to repair cells by the human body.</code> |
| <code>A mutation in the sex cells of a parent can cause a new trait to appear in the parent 's what?</code> | <code>a mutation in the sex cells of a parent can cause a new trait to appear in the parent 's offspring. Child' is ambiguous between 'offspring' and 'immature offspring'. <br> A mutation in the sex cells of a parent can cause a new trait to appear in the parent's child.</code> |
| <code>Weathering means breaking down what from larger whole into smaller pieces by weather?</code> | <code>weathering means breaking down rocks from larger whole into smaller pieces by weather. Igneous rocks are made from lava that hardens. <br> weathering means breaking down something made from lava from larger whole into smaller pieces by weather</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 2,261 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.94 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.67 tokens</li><li>max: 31 tokens</li></ul> |
* Samples:
| question | fact |
|:--------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|
| <code>Skills are learned characteristics. To get better at doing something, you must stretch yourself in ways that</code> | <code>skills are learned characteristics</code> |
| <code>the lunar surface contains</code> | <code>the moon 's surface contains flat areas</code> |
| <code>natural disasters can cause animals to</code> | <code>natural disasters can cause animals to leave an environment</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 7,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.62 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 76.31 tokens</li><li>max: 195 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what county is youngsville nc in</code> | <code>My Home Town. Youngsville is a growing town in southwestern Franklin County, rich in history and full of promise. Its location in the prosperous Triangle region of North Carolina has meant that Youngsville has seen its share of growth, but without losing the rural charm that has made it a desired destination for families and businesses alike.</code> |
| <code>what college did allan houston play for</code> | <code>Wade Houston. Wade Houston (born October 9, 1944) is an American former college basketball player and coach. He was an assistant coach under Denny Crum at the University of Louisville for 13 years until 1989 when he was named the head coach of the University of Tennessee.</code> |
| <code>what does the rock</code> | <code>Webster Dictionary(5.00 / 1 vote)Rate this definition: 1 Rock(noun) see Roc. 2 Rock(noun) a distaff used in spinning; the staff or frame about which flax is arranged, and from which the thread is drawn in spinning. 3 Rock(noun) a large concreted mass of stony material; a large fixed stone or crag.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 7,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 11.66 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 131.66 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>where did they film last man on earth</code> | <code>The Last Man on Earth (TV series) The main recording location for the series is a 20th Century Fox studio in Chatsworth, California.[35][36][37]</code> |
| <code>when was the first soviet atomic bomb tested</code> | <code>Soviet atomic bomb project On 29 August 1949, the Soviet Union secretly conducted its first successful weapon test (First Lightning), based on the U.S. design at the Semipalatinsk in Kazakhstan.[2]</code> |
| <code>which two chambers make the united kingdom a bicameral type of government</code> | <code>Parliament of the United Kingdom The parliament is bicameral, consisting of an upper house (the House of Lords) and a lower house (the House of Commons).[4] The Sovereign forms the third component of the legislature (the Queen-in-Parliament).[5][6] The House of Lords includes two different types of members: the Lords Spiritual, consisting of the most senior bishops of the Church of England, and the Lords Temporal, consisting mainly of life peers, appointed by the Sovereign on the advice of the Prime Minister,[7] and of 92 hereditary peers, sitting either by virtue of holding a royal office, or by being elected by their fellow hereditary peers. Prior to the opening of the Supreme Court in October 2009, the House of Lords also performed a judicial role through the Law Lords.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 6,012 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.19 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 203.25 tokens</li><li>max: 499 tokens</li></ul> |
* Samples:
| query | answer |
|:---------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Which resort was advertised in a travel poster as '............ is so bracing'?</code> | <code>Kath - Postcards From the Past - Other Seaside Places Kath - Postcards from the Past - Mablethorpe, Skegness, Sutton-on-Sea and Ingoldmells Here are my postcards of Mablethorpe, Skegness,Sutton-on-Sea and Ingoldmells which together with Cleethorpes (see Cleethorpes separate pages) make up the major seaside resorts of Lincolnshire. These are typical British seaside resorts with all the usual expected amenities. Ingoldmells is a small coastal village and holiday resort three miles to the north of Skegness and is the home to the original Butlin's Holiday Camp built in 1936 which s still very popular today. Mablethorpe is located between Cleethorpes and Skegness and boasts all the usual attractions. It is home to the popular Golden Sands Holiday Park and there is a seal sanctuary situated at North End which has rescued hundreds of seals over the years. Skegness is popular with holiday makers and day-trippers from the Midlands, it was once a small port but from 1877 it was developed into a holiday resort. In 1908 it acquired it's famous "Jolly Fisherman" mascot taken from a Railway travel poster entitled "Skegness is so Bracing". Sutton-on-Sea, a few miles south of Mablethorpe, is one of the smaller seaside resorts being described as a "charming and tranquil village", it has golden sands, the usual attractions and golf can be played at nearby Sandilands. Click on the link for a larger image.</code> |
| <code>Amman is the capital city of which country?</code> | <code>Jordan Facts on Largest Cities, Populations, Symbols - Worldatlas.com Ethnicity: Arab 98%, Circassian 1%, Armenian 1% GDP total: $38.67 billion (2012 est.) GDP per capita: $6,000 (2012 est.) Language: Arabic (official), English widely understood among upper and middle classes Largest Cities: (by population) Amman, Irbid Name: Aramaic Yarden in origin, meaning "down-flowing," or "one who descends," and is named after the River Jordan National Day: May 25 Religion: Sunni Muslim 92%, Christian 6% (majority Greek Orthodox, but some Greek and Roman Catholics, Syrian Orthodox, Coptic Orthodox, Armenian Orthodox, and Protestant denominations), other 2% (several small Shia Muslim and Druze populations)</code> |
| <code>A famous sports car named after Argentina's hot dusty North wind, is the?</code> | <code>Tamerlane's Thoughts: Cars named after winds Cars named after winds Bora (ancient Greek name for north wind) Ghibli (Libyan wind) Khamsin (hot dusty wind in North Africa and Arabian Peninsula) Mistral (wind from the north that blows over the northwest coast of the Mediterranean) Shamal (summer wind over Iraq and Persian Gulf) Pagani: Zonda (Andean wind in Argentina) VW Passat ("trade wind" in German) Santana (Santa Ana wind (subject to debate)) Scirocco (warm wind in Mediterranean) Yugo (it is not derived from the word Yugoslavia; rather, yugo is a southeasterly wind on the Adriatic) 10 comments: Anonymous said... What about the Ford Zephyr and the Zonda and the Austin Maestro or if you want a helicopter try the Chinook for size, wind would seem popular for names kashgar216 said... Thanks for playing! I'll add the Zephyr. The Diablo is a stretch. There is a wind called that but were the Lambo people thinking-- let's name our next supercar after an obscure Northern California wind? I'm also debating the Maestro thing. Check back soon for an update!</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 7,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.58 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 57.14 tokens</li><li>max: 132 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>are starkist tuna cans bpa free?</code> | <code>The StarKist Chunk Light canned tuna we tested averaged 3 ppb of BPA, but BPA levels in the same brand in a plastic pouch weren't measurable. ... We tested two products that their manufacturers claimed were packaged in BPA-free cans and found the chemical in both of the foods.</code> |
| <code>is a 2gb graphics card enough?</code> | <code>Generally speaking, for 1080p gaming, 2GB of video memory is an adequate minimum, but 4GB is much better. In cards under $300 nowadays, you'll see graphics memory ranging from 1GB up to 8GB.</code> |
| <code>how much does it cost to jump your phone?</code> | <code>To get Jump, sign up to pay the full price of your new phone in 24 equal monthly installments. Then sign up for the Jump program, which costs an additional $9 to $12 per month, depending on your phone.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 7,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 25.78 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 25.7 tokens</li><li>max: 57 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Quintus Caecilius Metellus Macedonicus was the second son of Roman politician and general Lucius Caecilius Metellus Diadematus .</code> | <code>Quintus Caecilius Metellus Macedonicus was the second son of the Roman politician , General Lucius Caecilius Metellus Diadematus .</code> |
| <code>She moved to Switzerland when she was a few months old , then to France , but mostly grew up in Paris .</code> | <code>She moved to Switzerland when she was a few months old , then grew up to France , but largely in Paris .</code> |
| <code>The NBA season from 1979 to 80 was the 34th season of the National Basketball Association .</code> | <code>The 1979 -- 80 National Basketball Association season was the 34th season of the NBA .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### global_dataset
* Dataset: global_dataset
* Size: 81,604 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 35.5 tokens</li><li>max: 335 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 59.34 tokens</li><li>max: 415 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Great egrets get food by doing what?</code> | <code>Heterotrophs get food by eating other living things.. Great egrets are heterotrophs . <br> Great egrets get food by eating other livings things.</code> |
| <code>is oil price going to increase</code> | <code>The current downward swing in oil prices has raised a similar specter of low oil prices for a prolonged period. So far, this year oil prices have dropped by more than 57% from last year's prices. However, the decline may be temporary. According to analysts, oil prices will rise back up again in 2017.</code> |
| <code>Vascular plants have a dominant sporophyte generation.</code> | <code>Do nonvascular or vascular plants have a dominant sporophyte generation?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Evaluation Datasets
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 128 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.42 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 35.55 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
| claim | evidence |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### negation-triplets
* Dataset: negation-triplets
* Size: 128 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 13.98 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.47 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.7 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
| <code>A bathroom with a toilet, sink, and shower.</code> | <code>A full bathroom with a wicker laundry basket.</code> | <code>An empty bathroom with no laundry basket.</code> |
| <code>A person in a helmet standing by their motorcycle.</code> | <code>A motorcyclist stands next to a motorcycle at a lookout over a beach.</code> | <code>A motorcyclist stands nowhere near a motorcycle at a lookout over a beach.</code> |
| <code>A bathroom with a poster of an ugly face above the toilette.</code> | <code>A bathroom with a white toilet and sink.</code> | <code>A bathroom with a black toilet and sink.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 20.28 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> |
| <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code> | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
| <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.12 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.41 tokens</li><li>max: 31 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| <code>The hair cells sense(s) the movement of liquid in ear canals.</code> | <code>What senses the movement of liquid in ear canals?</code> |
| <code>A metallic bond is the force of attraction between a positive metal ion and valence electrons.</code> | <code>What is the force of attraction between a positive metal ion and valence electrons?</code> |
| <code>High consumption of saturated fats is linked to an increased risk of cardiovascular disease.</code> | <code>High consumption of saturated fats is linked to an increased risk of what disease?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | summary | document |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 13 tokens</li><li>mean: 25.59 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 70 tokens</li><li>mean: 217.06 tokens</li><li>max: 347 tokens</li></ul> |
* Samples:
| summary | document |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>A charity which has supported fishermen for more than 100 years has sold its base in Cornwall.</code> | <code>The Fishermen's Mission in Newlyn opened in 1903, but the charity said the building was no longer cost-effective to run.<br>It sold the centre to a local businessman, and said it hoped to use the proceeds to benefit the area.<br>The mission provides practical and spiritual support for fishermen and their families.<br>Julian Waring, from the charity, said that in the 1960s and 1970s there was a demand to house fishermen, feed them fresh meals and provide clothing in emergencies.<br>He said: "Those demands have changed. We're still here in Newlyn and a memorial room will remain, but there's no need for accommodation or a canteen. If accommodation is needed we'll house them in a B&B.<br>"To manage a building comes at a huge cost and if it's not used to its full potential it needs to be reassessed."<br>Mr Waring said 88p of every £1 donated to the charity was spent helping fishermen and the move would allow the charity to "better serve the county as a whole" rather than just Newlyn.<br>In 2014 the mission provided emergency grants of £500 to fishermen in Cornwall who were unable to work due to prolonged winter storms.<br>The mission has had a presence in Cornwall since 1896. It was initially based in Penzance and moved to Newlyn in 1903.</code> |
| <code>The recovery in Scotland's labour market has continued into the second half of 2015, according to the latest Bank of Scotland report on jobs.</code> | <code>But, it said there were signs of the upturn slowing.<br>July saw a rise in demand for staff and an increase in average starting salaries, the report said.<br>However, in each case the rates of improvement were well below the highs reached one year ago.<br>The Bank of Scotland Labour Market Barometer for July was measured at 58.2.<br>That is well above the 50 "no-change" level, pointing to a further improvement in overall labour market conditions north of the border.<br>But, the latest reading was the lowest since May 2013, and well below last July's survey-record high of 67.3.<br>The equivalent UK index recorded a six-month low of 61.1 at the start of the third quarter.<br>Donald MacRae, chief Economist at Bank of Scotland, said: "Scotland's labour market continued to improve in July.<br>"The number of people appointed to both permanent and temporary jobs rose in the month but the number of vacancies for permanent jobs increased at the slowest pace in just over two years.<br>"Salary inflation remained solid although slowing to a five-month low.<br>"These results show an economy demonstrating both confidence and growth in the second half of 2015."<br>The report also said:</code> |
| <code>A man arrested after a man died in a shooting at a pool party in Surrey has been released on bail.</code> | <code>Ricardo Hunter from Coulsdon in south London, died from a single gunshot wound at the private event in Headley, near Epsom.<br>Two others were injured in the shooting just after 02:30 BST on Monday.<br>The 38-year-old man from London, arrested on suspicion of murder and attempted murder, was bailed until 8 September, Surrey Police said.<br>A 36-year-old woman was shot in the leg and taken to hospital while another man was treated for minor shoulder wounds.<br>On Wednesday a woman, 30, arrested on suspicion of assisting an offender was released on conditional bail until September.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 16.67 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 84.85 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Psip can be positive or negative relative to what kind of pressure?</code> | <code></code> |
| <code>How many pathways do plants have for carbon fixation?</code> | <code>Plants have evolved three pathways for carbon fixation. The most common pathway combines one molecule of CO 2 with a 5-carbon sugar called ribulose biphosphate (RuBP). The enzyme which catalyzes this reaction, ribulose-1,5-bisphosphate carboxylase oxygenase (nicknamed RuBisCo ), is the most abundant enzyme on earth! The resulting 6-carbon molecule is unstable, so it immediately splits into two much more stable 3-carbon phosphoglycerate molecules. The 3 carbons in the first stable molecule of this pathway give this largest group of plants the name “C-3. ”.</code> |
| <code>What is the amount of force pushing against a given area?</code> | <code>Pressure is defined as the amount of force pushing against a given area. How much pressure a gas exerts depends on the amount of gas. The more gas particles there are, the greater the pressure.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 11.69 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 34.49 tokens</li><li>max: 59 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Where are the structures where proteins are made located on?</code> | <code>Ribosomes are structures in the cytoplasm where proteins are made.. Rough endoplasmic reticulum has ribosomes attached d. <br> structures where proteins are made are located on rough endoplasmic reticulum</code> |
| <code>What is something that can be used to impede electrical transference?</code> | <code>an electrical insulator slows the transfer of electricity. Sulfur is a good electrical insulator. <br> Sulfur slows the transfer of electricity.</code> |
| <code>What are lakes formed by?</code> | <code>lakes are formed by precipitation and runoff. Clouds form and precipitation occurs. <br> lakes are formed by clouds</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code> |
| <code>What creates a valley?</code> | <code>a valley is formed by a river flowing</code> |
| <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.79 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 78.0 tokens</li><li>max: 179 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how much american dollars does it cost to join weight watchers?</code> | <code>Beyond that, many cable services offer free, on-demand workout videos, as do various websites, like YouTube. If you join a weight-loss program: If you opt for Weight Watchers, what you spend will depend on whether you're attending in-person meetings ($42.95 a month) or joining the organization online ($18.95 a month).</code> |
| <code>what causes the leaves of an oak tree to curl</code> | <code>A. Leaves of oak trees can be attacked by erophytid (pronounced Arrow-Fie-Tid) mites which cause a curling reaction. You can spray with diazinon insecticide or just let nature take its course. The curled leaves are still functional and will support tree growth. All leaves will not be affected. 2. Q. We have a spectacular oak tree in our yard that had an infestation of oak galls last year.</code> |
| <code>what is tramadol hcl</code> | <code>Tramadol hydrochloride is a centrally acting synthetic analgesic in an extended-release formulation. The chemical name is (±) cis-2-[(dimethylamino)methyl]Â-1-(3-methoxyphenyl) cyclohexanol hydrochloride. Its structural formula is: The molecular weight of tramadol hydrochloride is 299.8. It is a white, bitter, crystalline and odorless powder that is readily soluble in water and ethanol and has a pKa of 9.41. The n-octanol/water log partition coefficient (logP) is 1.35 at pH 7.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.39 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 41 tokens</li><li>mean: 146.72 tokens</li><li>max: 392 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>where does the queen mary 2 sail to</code> | <code>RMS Queen Mary 2 Like her predecessor Queen Elizabeth 2 she is built for crossing the Atlantic Ocean, though she is regularly used for cruising; in the winter season she cruises from New York to the Caribbean on twelve- or thirteen-day tours. Queen Mary 2's 30-knot (56 km/h; 35 mph) open ocean speed sets the ship apart from cruise ships, such as MS Oasis of the Seas, which has a service speed of 22.6 knots (41.9 km/h; 26.0 mph); QM2's normal service speed is 26 knots (48 km/h; 30 mph).[14] While the hull of a cruise ship will typically have a block coefficient of 0.73 (1.0 would represent a rectangular block) Queen Mary 2 is more fine-lined, with a block coefficient of 0.61.[15]</code> |
| <code>who sings lean with it rock with it</code> | <code>Lean wit It, Rock wit It "Lean wit It, Rock wit It" is a song by Atlanta rap group Dem Franchize Boyz from their album On Top of Our Game. The recording features Peanut and Charlay and was produced by Maurice "Parlae" Gleaton.</code> |
| <code>which division of the nervous system consists of the brain spinal cord and optic nerves</code> | <code>Central nervous system The central nervous system (CNS) is the part of the nervous system consisting of the brain and spinal cord. The central nervous system is so named because it integrates information it receives from, and coordinates and influences the activity of, all parts of the bodies of bilaterally symmetric animals—that is, all multicellular animals except sponges and radially symmetric animals such as jellyfish—and it contains the majority of the nervous system. Many consider the retina[2] and the optic nerve (cranial nerve II),[3][4] as well as the olfactory nerves (cranial nerve I) and olfactory epithelium[5] as parts of the CNS, synapsing directly on brain tissue without intermediate ganglia. As such, the olfactory epithelium is the only central nervous tissue in direct contact with the environment, which opens up for therapeutic treatments. [5] The CNS is contained within the dorsal body cavity, with the brain housed in the cranial cavity and the spinal cord in the spinal canal. In vertebrates, the brain is protected by the skull, while the spinal cord is protected by the vertebrae.[6] The brain and spinal cord are both enclosed in the meninges.[6] In central nervous system, the interneuronal space is filled with large amount of supporting non nervous cells called neuroglial cells.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 16.9 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 200.84 tokens</li><li>max: 379 tokens</li></ul> |
* Samples:
| query | answer |
|:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>"Which actor spoke the line ""I love the smell of napalm in the morning* in the 1979 film Apocalypse Now?"</code> | <code>Smell of Napalm Scene - Apocalypse Now - YouTube Smell of Napalm Scene - Apocalypse Now Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Uploaded on Nov 8, 2008 This is my favorite scene from one of my favorite movies, "Apocalypse Now" in which Kilgore talks about the smell of napalm. This scene gives birth to one of the most famous movie quotes of all time, "I love the smell of napalm in the morning." Lt. Col. Bill Kilgore is played by the actor Robert Duvall. Category</code> |
| <code>After winning £152,000 in 1961, whose autobiography was entitled 'Spend, Spend, Spend'?</code> | <code>Viv Nicholson goes from 'spend, spend, spend' to 'sell, sell, sell': Sorry tale of pools winner who's auctioning off her memorabilia now she's in a care home | Daily Mail Online From 'spend, spend, spend' to 'sell, sell, sell': Sorry tale of pools winner who's auctioning off her memorabilia now she's in a care home Viv Nicholson, 77, won £152,000 in 1961 with her husband Keith She famously declared that she would 'spend, spend, spend' after the win But she soon lost all the money, which would be worth £2,870,000 today Mrs Nicholson, who now lives in a care home, will auction old possessions kept by her brother to raise money for charity The proceeds will be spent on buying iPads for the elderly</code> |
| <code>In which 'New England' state is Harvard University situated?</code> | <code>What state are the New England Patriots from? | Reference.com What state are the New England Patriots from? A: Quick Answer The New England Patriots are from the state of Massachusetts. The team plays all of their home games at Gillette Stadium in Foxborough, Mass. Full Answer The team formed in 1959 and in 1960, the first head coach, Lou Saban, took his place with the team. Originally called the Boston Patriots, the team first played at Boston University Field and at Harvard University because they did not have a permanent home stadium. It was at Boston University Field that the Boston Patriots opened their first training camp on July 4, 1960. The team's first game, however, took place at Harvard University on August 14, 1960, where the team lost to the Dallas Texans. After the NFL and AFL merger in 1971, the Patriots took their place in the AFC East Division, and within a year, they had a new stadium in Foxborough called Foxboro Stadium. As they made the new stadium their home, they attempted to change their name to the Bay State Patriots. An overseeing NFL committee refused the name change, however. On March 23, 1981, the team officially became known as the New England Patriots. In 2002, Gillette Stadium was built and opened and it became the new home field for the team.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.62 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 55.83 tokens</li><li>max: 107 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>we are never ever getting back together country?</code> | <code>"We Are Never Ever Getting Back Together" is a song recorded by American singer-songwriter Taylor Swift for her fourth studio album, Red (2012). Swift co-wrote the song with its producers, Max Martin and Shellback. ... It also topped the US Hot Country Songs for ten weeks, Swift's longest reign to date.</code> |
| <code>can an optometrist treat lazy eye?</code> | <code>Your eye doctor may recommend eye patch therapy in addition to corrective lenses. Strabismus surgery is usually required if the amblyopia is due to a large eye turn. This type of surgery aligns the eyes and corrects the problem within the eye muscles. After the surgery the eyes will able to focus better.</code> |
| <code>ok google are the everly brothers still alive?</code> | <code>Don Everly is now 80, while Phil Everly died in January 2014 at age 74.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 25.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.55 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>They were there to enjoy us and they were there to pray for us .</code> | <code>They were there for us to enjoy and they were there for us to pray .</code> |
| <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
| <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code> | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### global_dataset
* Dataset: global_dataset
* Size: 663 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 31.01 tokens</li><li>max: 347 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 58.72 tokens</li><li>max: 392 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Seeds can be dispersed through all sorts of creative ways, such as</code> | <code>seed dispersal is when the seeds of a plant are moved from the plant to a new environment</code> |
| <code>It was part of the Hanover Township , then Chatham Township , before being recorded in 1899 as Florham Park .</code> | <code>It was part of Hanover Township , then Chatham Township before being incorporated as Florham Park in 1899 .</code> |
| <code>Pivac joined the Scarlets as assistant coach in July before Easterby announced his decision to move.<br>He takes over the head coach role with immediate effect, though former Ireland international Easterby will remain at the Scarlets until October.<br>"Joining the Scarlets was an exciting challenge for me," said Pivac.<br>"I am honoured that the Scarlets have the faith and belief in me to take the squad forward and build on the good work and solid foundations that Simon and his team have put in place."<br>Former Auckland coach Pivac said Easterby played a key role in his recruitment and he was also influenced by Llanelli's famous 9-3 win over the All Blacks in the 1970s.<br>"There were two factors why I chose Scarlets, the fact that Simon Easterby jumped on a plane and came to New Zealand rather than a lot of talks going on for a long period of time.<br>"[And] As a young boy growing up listening to the All Blacks play Llanelli in 1972 on the radio back home, I've never forgotten that moment.<br>"Knowing the Scarlets has a proud history, like the union I've come from, was important to me and coming to an area where they live and breathe rugby like home."<br>In addition to his role at Auckland, New Zealander Pivac coached Fiji to the Pacific Tri-Nations and was also coach of the side which won the 2005 Rugby World Cup Sevens.</code> | <code>Scarlets have confirmed Wayne Pivac will take over as head coach from Simon Easterby who has been appointed Ireland forwards coach.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 96
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `learning_rate`: 4.5e-05
- `weight_decay`: 0.001
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 9e-06}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 96
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4.5e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 9e-06}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | negation-triplets loss | vitaminc-pairs loss | scitail-pairs-pos loss | sciq pairs loss | trivia pairs loss | xsum-pairs loss | openbookqa pairs loss | msmarco pairs loss | nq pairs loss | global dataset loss | paws-pos loss | scitail-pairs-qa loss | qasc pairs loss | gooaq pairs loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:----------------------:|:-------------------:|:----------------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:------------------:|:-------------:|:-------------------:|:-------------:|:---------------------:|:---------------:|:----------------:|:---------------:|:-----------------:|:------------------------:|
| 0.0129 | 11 | 0.1802 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0257 | 22 | 0.1573 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0386 | 33 | 0.1184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0515 | 44 | 0.1456 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0643 | 55 | 0.2102 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0772 | 66 | 0.151 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0901 | 77 | 0.1356 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1029 | 88 | 0.2292 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1158 | 99 | 0.126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1287 | 110 | 0.1942 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1415 | 121 | 0.2089 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1544 | 132 | 0.1225 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1673 | 143 | 0.2504 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1801 | 154 | 0.1454 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1930 | 165 | 0.2052 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2058 | 176 | 0.1321 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2187 | 187 | 0.1975 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2316 | 198 | 0.1615 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2444 | 209 | 0.2174 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2503 | 214 | - | 1.0606 | 2.7611 | 0.0596 | 0.0132 | 0.2116 | 0.0044 | 1.3197 | 0.1359 | 0.0413 | 0.2187 | 0.0459 | 0.0000 | 0.0490 | 0.1187 | 0.7328 | 0.6432 | 0.9079 |
| 0.2573 | 220 | 0.1545 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2702 | 231 | 0.1201 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2830 | 242 | 0.1389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2959 | 253 | 0.1657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3088 | 264 | 0.237 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3216 | 275 | 0.1094 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3345 | 286 | 0.196 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3474 | 297 | 0.2164 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3602 | 308 | 0.1793 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3731 | 319 | 0.2878 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3860 | 330 | 0.1189 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3988 | 341 | 0.1475 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4117 | 352 | 0.1019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4246 | 363 | 0.1587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4374 | 374 | 0.2483 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4503 | 385 | 0.1427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4632 | 396 | 0.1199 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4760 | 407 | 0.2037 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4889 | 418 | 0.1317 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5006 | 428 | - | 1.0632 | 2.7318 | 0.0605 | 0.0029 | 0.2094 | 0.0045 | 1.2716 | 0.1622 | 0.0400 | 0.2122 | 0.0461 | 0.0000 | 0.0601 | 0.1271 | 0.7294 | 0.6397 | 0.9063 |
| 0.5018 | 429 | 0.1293 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5146 | 440 | 0.1902 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5275 | 451 | 0.1429 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5404 | 462 | 0.2446 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5532 | 473 | 0.1623 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5661 | 484 | 0.0707 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5789 | 495 | 0.1557 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5918 | 506 | 0.2016 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6047 | 517 | 0.1018 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6175 | 528 | 0.1821 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6304 | 539 | 0.1437 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6433 | 550 | 0.1112 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6561 | 561 | 0.12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6690 | 572 | 0.0933 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6819 | 583 | 0.0939 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6947 | 594 | 0.2064 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7076 | 605 | 0.131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7205 | 616 | 0.161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7333 | 627 | 0.213 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7462 | 638 | 0.1853 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7509 | 642 | - | 1.0684 | 2.7074 | 0.0593 | 0.0030 | 0.2113 | 0.0052 | 1.2897 | 0.1479 | 0.0423 | 0.2030 | 0.0460 | 0.0000 | 0.0563 | 0.1147 | 0.7257 | 0.6432 | 0.9073 |
| 0.7591 | 649 | 0.1919 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7719 | 660 | 0.1395 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7848 | 671 | 0.2047 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7977 | 682 | 0.1421 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8105 | 693 | 0.1227 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8234 | 704 | 0.1235 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8363 | 715 | 0.2004 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8491 | 726 | 0.1568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8620 | 737 | 0.1598 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8749 | 748 | 0.1328 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8877 | 759 | 0.0999 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9006 | 770 | 0.1058 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9135 | 781 | 0.1673 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9263 | 792 | 0.1905 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9392 | 803 | 0.1463 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9520 | 814 | 0.1294 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9649 | 825 | 0.1312 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9778 | 836 | 0.1308 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9906 | 847 | 0.1076 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0012 | 856 | - | 1.0481 | 2.6587 | 0.0596 | 0.0031 | 0.2101 | 0.0056 | 1.2992 | 0.1593 | 0.0405 | 0.2027 | 0.0462 | 0.0000 | 0.0542 | 0.1140 | 0.7226 | 0.6377 | 0.9070 |
| 1.0035 | 858 | 0.1085 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0164 | 869 | 0.2214 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0292 | 880 | 0.1214 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0421 | 891 | 0.1049 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0550 | 902 | 0.1897 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0678 | 913 | 0.1273 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0807 | 924 | 0.1474 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0936 | 935 | 0.1313 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.1064 | 946 | 0.1769 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.1193 | 957 | 0.143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.1322 | 968 | 0.1968 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.1450 | 979 | 0.1771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.1579 | 990 | 0.1822 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.1708 | 1001 | 0.2467 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.1836 | 1012 | 0.1419 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.1965 | 1023 | 0.1782 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.2094 | 1034 | 0.1297 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.2222 | 1045 | 0.1972 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.2351 | 1056 | 0.1491 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.2480 | 1067 | 0.1721 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.2515 | 1070 | - | 1.0599 | 2.6560 | 0.0610 | 0.0029 | 0.2088 | 0.0053 | 1.2817 | 0.1446 | 0.0420 | 0.2135 | 0.0460 | 0.0000 | 0.0509 | 0.1112 | 0.7247 | 0.6369 | 0.9072 |
| 1.2608 | 1078 | 0.1279 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.2737 | 1089 | 0.106 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.2865 | 1100 | 0.1597 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.2994 | 1111 | 0.192 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.3123 | 1122 | 0.165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.3251 | 1133 | 0.1472 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.3380 | 1144 | 0.1528 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.3509 | 1155 | 0.202 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.3637 | 1166 | 0.1974 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.3766 | 1177 | 0.2229 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.3895 | 1188 | 0.1104 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4023 | 1199 | 0.1544 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4152 | 1210 | 0.0875 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4281 | 1221 | 0.1607 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4409 | 1232 | 0.2026 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4538 | 1243 | 0.185 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4667 | 1254 | 0.1114 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4795 | 1265 | 0.2033 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4924 | 1276 | 0.1216 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.5018 | 1284 | - | 1.0499 | 2.6942 | 0.0598 | 0.0033 | 0.2039 | 0.0053 | 1.3073 | 0.1548 | 0.0390 | 0.2039 | 0.0455 | 0.0000 | 0.0437 | 0.1066 | 0.7248 | 0.6358 | 0.9076 |
| 1.5053 | 1287 | 0.1108 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.5181 | 1298 | 0.188 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.5310 | 1309 | 0.1731 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.5439 | 1320 | 0.2191 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.5567 | 1331 | 0.146 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.5696 | 1342 | 0.1045 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.5825 | 1353 | 0.1901 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.5953 | 1364 | 0.1898 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6082 | 1375 | 0.0942 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6211 | 1386 | 0.1809 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6339 | 1397 | 0.1083 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6468 | 1408 | 0.1277 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6596 | 1419 | 0.1039 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6725 | 1430 | 0.0933 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6854 | 1441 | 0.11 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6982 | 1452 | 0.2423 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.7111 | 1463 | 0.1085 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.7240 | 1474 | 0.1678 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.7368 | 1485 | 0.1799 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.7497 | 1496 | 0.1811 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.7520 | 1498 | - | 1.0360 | 2.6751 | 0.0565 | 0.0044 | 0.1985 | 0.0060 | 1.2448 | 0.1428 | 0.0401 | 0.2027 | 0.0459 | 0.0000 | 0.0569 | 0.1081 | 0.7226 | 0.6360 | 0.9070 |
| 1.7626 | 1507 | 0.1746 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.7754 | 1518 | 0.1603 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.7883 | 1529 | 0.1784 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8012 | 1540 | 0.1041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8140 | 1551 | 0.1067 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8269 | 1562 | 0.1293 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8398 | 1573 | 0.18 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8526 | 1584 | 0.1481 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8655 | 1595 | 0.1573 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8784 | 1606 | 0.1434 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8912 | 1617 | 0.0975 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.9041 | 1628 | 0.1133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.9170 | 1639 | 0.1661 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.9298 | 1650 | 0.1518 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.9427 | 1661 | 0.1365 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.9556 | 1672 | 0.1226 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.9684 | 1683 | 0.1347 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.9813 | 1694 | 0.1121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.9942 | 1705 | 0.1224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.0023 | 1712 | - | 1.0452 | 2.7114 | 0.0591 | 0.0032 | 0.2049 | 0.0067 | 1.3293 | 0.1508 | 0.0429 | 0.1887 | 0.0458 | 0.0000 | 0.0426 | 0.1020 | 0.7225 | 0.6357 | 0.9074 |
| 2.0070 | 1716 | 0.1359 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.0199 | 1727 | 0.1889 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.0327 | 1738 | 0.0972 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.0456 | 1749 | 0.1209 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.0585 | 1760 | 0.1707 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.0713 | 1771 | 0.1405 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.0842 | 1782 | 0.1099 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.0971 | 1793 | 0.1611 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.1099 | 1804 | 0.1464 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.1228 | 1815 | 0.1525 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.1357 | 1826 | 0.1947 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.1485 | 1837 | 0.1191 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.1614 | 1848 | 0.2513 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.1743 | 1859 | 0.1819 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.1871 | 1870 | 0.1874 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.2 | 1881 | 0.1416 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.2129 | 1892 | 0.1146 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.2257 | 1903 | 0.2032 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.2386 | 1914 | 0.1711 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.2515 | 1925 | 0.1282 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.2526 | 1926 | - | 1.0518 | 2.6589 | 0.0583 | 0.0036 | 0.2056 | 0.0070 | 1.2767 | 0.1525 | 0.0407 | 0.2110 | 0.0460 | 0.0000 | 0.0568 | 0.1131 | 0.7240 | 0.6352 | 0.9069 |
| 2.2643 | 1936 | 0.1317 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.2772 | 1947 | 0.1155 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.2901 | 1958 | 0.2087 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.3029 | 1969 | 0.1564 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.3158 | 1980 | 0.1427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.3287 | 1991 | 0.142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.3415 | 2002 | 0.2259 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.3544 | 2013 | 0.1366 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.3673 | 2024 | 0.2698 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.3801 | 2035 | 0.1317 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.3930 | 2046 | 0.1137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.4058 | 2057 | 0.1261 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.4187 | 2068 | 0.1068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.4316 | 2079 | 0.1546 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.4444 | 2090 | 0.1739 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.4573 | 2101 | 0.1445 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.4702 | 2112 | 0.1521 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.4830 | 2123 | 0.1299 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.4959 | 2134 | 0.1205 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.5029 | 2140 | - | 1.0334 | 2.6330 | 0.0598 | 0.0034 | 0.2008 | 0.0052 | 1.2967 | 0.1538 | 0.0414 | 0.1748 | 0.0457 | 0.0000 | 0.0435 | 0.1072 | 0.7233 | 0.6353 | 0.9074 |
</details>
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |