File size: 177,478 Bytes
0e7ce92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
---
base_model: bobox/DeBERTa-small-ST-v1-test-step3
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:19500
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: what documents do you need for the nj driving test
  sentences:
  - 'Rating Newest Oldest. Best Answer: tea is an old term for gossip, which came
    from the idea of what goes on at a tea party. Tea party is an old term for a gossip
    fest, and spilling tea means accidentally( on purpose) dropping an irresistible
    tidbit of gossip. True tea would still be gossip, but the gossiper believes they
    have the true story.'
  - The United States declared war on Germany for many reasons. One of them was the
    sinking on neutral ships and the lusitania which killed about 148 Americans. This
    was not the immediate cause, another is propaganda which persuaded public opinion.
  - When you apply for NJ Driver's Permit, you will need to bring the $10 fee, a primary
    and secondary ID, your Social Security Number and proof of your address. These
    documents must total 6 points on New Jersey's verification scale.
- source_sentence: More than 515,000 coronavirus cases and more than 23,300 fatalities
    had been registered around the world by 26 March
  sentences:
  - more than 680,000 cases of COVID-19 have been reported in over 190 countries and
    territories , resulting in approximately 31,900 deaths .
  - As of 26 March , more than 519,000 cases of COVID-19 have been reported in over
    200 countries and territories , resulting in approximately 23,500 deaths and more
    than 123,000 recoveries .
  - more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: Scientists know that some mountains were once at the bottom of
    an ocean because marine fossils have been found on the peaks of some mountains.
  sentences:
  - Different media affect what property of light?
  - Which of these is an example of liquid water?
  - How do scientists know that some mountains were once at the bottom of an ocean?
- source_sentence: Exposure to ultraviolet radiation can increase the amount of pigment
    in the skin and make it appear darker.
  sentences:
  - Early in the development of a human fetus, the skeleton is made entirely of what?
  - After infecting a host, what inactive state do some viruses enter?
  - Exposure to what can increase the amount of pigment in the skin and make it appear
    darker?
- source_sentence: Which 2011 Nobel Prize was jointly awarded to Ellen Johnson Sirleaf,
    Leymah Gbowee and Tawakkol Karman?
  sentences:
  - 'The Nobel Peace Prize 2011 The Nobel Peace Prize 2011 Ellen Johnson Sirleaf,
    Leymah Gbowee, Tawakkol Karman Share this: The Nobel Peace Prize 2011 Photo: K.
    Opprann Tawakkol Karman Prize share: 1/3 The Nobel Peace Prize 2011 was awarded
    jointly to Ellen Johnson Sirleaf, Leymah Gbowee and Tawakkol Karman "for their
    non-violent struggle for the safety of women and for women''s rights to full participation
    in peace-building work". Photos: Copyright © The Nobel Foundation Share this:
    To cite this page MLA style: "The Nobel Peace Prize 2011". Nobelprize.org. Nobel
    Media AB 2014. Web. 18 Jan 2017. <http://www.nobelprize.org/nobel_prizes/peace/laureates/2011/>'
  - Daiquiri Cocktail Recipe You must be logged in to post a comment. Adding comment  
    dannynannady2007.2b626c1 posted 10 months ago I usually enjoy the videos with
    Dushan, but FREE POURING a daiquiri???? You gotta be out of your mind... johndixon548gmailcom1017305228
    posted 1 year ago I made this tonight with Pusser's British Navy Rum and Rose's
    Lime Juice. Very citrusy until I added an additional .5 oz (ish) of rum. Refreshing!
    cholo7 posted 2 years ago I thought the classic is supposed to be with light rum??
    CocktailSeb posted 2 years ago Dark Rum?!?!
  - Chemical Elements.com - Iron (Fe) The homepage of the Iron and Steel Society If
    you know of any other links for Iron, please let me know Bentor, Yinon. Chemical
    Element.com - Iron. <http://www.chemicalelements.com/elements/fe.html>. For more
    information about citing online sources, please visit the MLA's Website . This
    page was created by Yinon Bentor. Use of this web site is restricted by this site's
    license  agreement . Copyright © 1996-2012 Yinon Bentor. All Rights Reserved.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.8848940721874675
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9077582147291623
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.905176437582178
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.9020171201565211
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9044975746549173
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9012842734999755
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8708637407541432
      name: Pearson Dot
    - type: spearman_dot
      value: 0.870147285600329
      name: Spearman Dot
    - type: pearson_max
      value: 0.905176437582178
      name: Pearson Max
    - type: spearman_max
      value: 0.9077582147291623
      name: Spearman Max
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: allNLI dev
      type: allNLI-dev
    metrics:
    - type: cosine_accuracy
      value: 0.7421875
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7891373634338379
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6337078651685394
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.6023260354995728
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5183823529411765
      name: Cosine Precision
    - type: cosine_recall
      value: 0.815028901734104
      name: Cosine Recall
    - type: cosine_ap
      value: 0.6322954079925401
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.724609375
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 283.5550842285156
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.5986394557823129
      name: Dot F1
    - type: dot_f1_threshold
      value: 231.64846801757812
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.4925373134328358
      name: Dot Precision
    - type: dot_recall
      value: 0.7630057803468208
      name: Dot Recall
    - type: dot_ap
      value: 0.5884575729907496
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.740234375
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 267.76416015625
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6457831325301204
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 353.9185791015625
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.5537190082644629
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.7745664739884393
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.6391624752319756
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.7421875
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 13.253250122070312
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6512702078521939
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 17.237594604492188
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.5423076923076923
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.815028901734104
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.6378114586204184
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.7421875
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 283.5550842285156
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6512702078521939
      name: Max F1
    - type: max_f1_threshold
      value: 353.9185791015625
      name: Max F1 Threshold
    - type: max_precision
      value: 0.5537190082644629
      name: Max Precision
    - type: max_recall
      value: 0.815028901734104
      name: Max Recall
    - type: max_ap
      value: 0.6391624752319756
      name: Max Ap
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Qnli dev
      type: Qnli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.6953125
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.6684017181396484
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6755852842809364
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.5110002756118774
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5580110497237569
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8559322033898306
      name: Cosine Recall
    - type: cosine_ap
      value: 0.7203045959833639
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.66796875
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 294.4780578613281
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6738794435857806
      name: Dot F1
    - type: dot_f1_threshold
      value: 184.11688232421875
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.5304136253041363
      name: Dot Precision
    - type: dot_recall
      value: 0.923728813559322
      name: Dot Recall
    - type: dot_ap
      value: 0.676288649042553
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.70703125
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 359.81439208984375
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6800804828973843
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 374.1423645019531
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.6475095785440613
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.7161016949152542
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.7325123059741169
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.7109375
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 16.85451889038086
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6848739495798319
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 17.339509963989258
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.6791666666666667
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.690677966101695
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.7312433122162235
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.7109375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 359.81439208984375
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6848739495798319
      name: Max F1
    - type: max_f1_threshold
      value: 374.1423645019531
      name: Max F1 Threshold
    - type: max_precision
      value: 0.6791666666666667
      name: Max Precision
    - type: max_recall
      value: 0.923728813559322
      name: Max Recall
    - type: max_ap
      value: 0.7325123059741169
      name: Max Ap
---

# SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) <!-- at revision df9aaa75fe0c2791e5ed35ff33de1689d9a5f5ff -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - negation-triplets
    - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
    - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
    - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
    - xsum-pairs
    - [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
    - [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
    - openbookqa_pairs
    - [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
    - [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
    - [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
    - [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
    - global_dataset
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp")
# Run inference
sentences = [
    'Which 2011 Nobel Prize was jointly awarded to Ellen Johnson Sirleaf, Leymah Gbowee and Tawakkol Karman?',
    'The Nobel Peace Prize 2011 The Nobel Peace Prize 2011 Ellen Johnson Sirleaf, Leymah Gbowee, Tawakkol Karman Share this: The Nobel Peace Prize 2011 Photo: K. Opprann Tawakkol Karman Prize share: 1/3 The Nobel Peace Prize 2011 was awarded jointly to Ellen Johnson Sirleaf, Leymah Gbowee and Tawakkol Karman "for their non-violent struggle for the safety of women and for women\'s rights to full participation in peace-building work". Photos: Copyright © The Nobel Foundation Share this: To cite this page MLA style: "The Nobel Peace Prize 2011". Nobelprize.org. Nobel Media AB 2014. Web. 18 Jan 2017. <http://www.nobelprize.org/nobel_prizes/peace/laureates/2011/>',
    "Daiquiri Cocktail Recipe You must be logged in to post a comment. Adding comment\xa0…\xa0 dannynannady2007.2b626c1 posted 10 months ago I usually enjoy the videos with Dushan, but FREE POURING a daiquiri???? You gotta be out of your mind... johndixon548gmailcom1017305228 posted 1 year ago I made this tonight with Pusser's British Navy Rum and Rose's Lime Juice. Very citrusy until I added an additional .5 oz (ish) of rum. Refreshing! cholo7 posted 2 years ago I thought the classic is supposed to be with light rum?? CocktailSeb posted 2 years ago Dark Rum?!?!",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8849     |
| **spearman_cosine** | **0.9078** |
| pearson_manhattan   | 0.9052     |
| spearman_manhattan  | 0.902      |
| pearson_euclidean   | 0.9045     |
| spearman_euclidean  | 0.9013     |
| pearson_dot         | 0.8709     |
| spearman_dot        | 0.8701     |
| pearson_max         | 0.9052     |
| spearman_max        | 0.9078     |

#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.7422     |
| cosine_accuracy_threshold    | 0.7891     |
| cosine_f1                    | 0.6337     |
| cosine_f1_threshold          | 0.6023     |
| cosine_precision             | 0.5184     |
| cosine_recall                | 0.815      |
| cosine_ap                    | 0.6323     |
| dot_accuracy                 | 0.7246     |
| dot_accuracy_threshold       | 283.5551   |
| dot_f1                       | 0.5986     |
| dot_f1_threshold             | 231.6485   |
| dot_precision                | 0.4925     |
| dot_recall                   | 0.763      |
| dot_ap                       | 0.5885     |
| manhattan_accuracy           | 0.7402     |
| manhattan_accuracy_threshold | 267.7642   |
| manhattan_f1                 | 0.6458     |
| manhattan_f1_threshold       | 353.9186   |
| manhattan_precision          | 0.5537     |
| manhattan_recall             | 0.7746     |
| manhattan_ap                 | 0.6392     |
| euclidean_accuracy           | 0.7422     |
| euclidean_accuracy_threshold | 13.2533    |
| euclidean_f1                 | 0.6513     |
| euclidean_f1_threshold       | 17.2376    |
| euclidean_precision          | 0.5423     |
| euclidean_recall             | 0.815      |
| euclidean_ap                 | 0.6378     |
| max_accuracy                 | 0.7422     |
| max_accuracy_threshold       | 283.5551   |
| max_f1                       | 0.6513     |
| max_f1_threshold             | 353.9186   |
| max_precision                | 0.5537     |
| max_recall                   | 0.815      |
| **max_ap**                   | **0.6392** |

#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.6953     |
| cosine_accuracy_threshold    | 0.6684     |
| cosine_f1                    | 0.6756     |
| cosine_f1_threshold          | 0.511      |
| cosine_precision             | 0.558      |
| cosine_recall                | 0.8559     |
| cosine_ap                    | 0.7203     |
| dot_accuracy                 | 0.668      |
| dot_accuracy_threshold       | 294.4781   |
| dot_f1                       | 0.6739     |
| dot_f1_threshold             | 184.1169   |
| dot_precision                | 0.5304     |
| dot_recall                   | 0.9237     |
| dot_ap                       | 0.6763     |
| manhattan_accuracy           | 0.707      |
| manhattan_accuracy_threshold | 359.8144   |
| manhattan_f1                 | 0.6801     |
| manhattan_f1_threshold       | 374.1424   |
| manhattan_precision          | 0.6475     |
| manhattan_recall             | 0.7161     |
| manhattan_ap                 | 0.7325     |
| euclidean_accuracy           | 0.7109     |
| euclidean_accuracy_threshold | 16.8545    |
| euclidean_f1                 | 0.6849     |
| euclidean_f1_threshold       | 17.3395    |
| euclidean_precision          | 0.6792     |
| euclidean_recall             | 0.6907     |
| euclidean_ap                 | 0.7312     |
| max_accuracy                 | 0.7109     |
| max_accuracy_threshold       | 359.8144   |
| max_f1                       | 0.6849     |
| max_f1_threshold             | 374.1424   |
| max_precision                | 0.6792     |
| max_recall                   | 0.9237     |
| **max_ap**                   | **0.7325** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### negation-triplets

* Dataset: negation-triplets
* Size: 750 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | entailment                                                                        | negative                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 22.07 tokens</li><li>max: 154 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.13 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.41 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                     | entailment                                          | negative                                              |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------|:------------------------------------------------------|
  | <code>Judge Bisbee took the stand on his own behalf for several hours today.</code>                                                                                                        | <code>Bisbee takes the stand</code>                 | <code>Bisbee refuses to take the stand</code>         |
  | <code>Half of Germans want to ditch the euro and return to the deutschmark, a major survey showed just a day after Angela Merkel drove through a vote in favour of a Greek bailout.</code> | <code>Half of all Germans want to ditch euro</code> | <code>Half of all Belgians want to uphold euro</code> |
  | <code>216 "At first, the thing seemed utterly impossible.</code>                                                                                                                           | <code>It seemed impossible at first. </code>        | <code>It didn`t seem impossible at first.</code>      |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 750 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 15.23 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 37.68 tokens</li><li>max: 185 tokens</li></ul> |
* Samples:
  | claim                                                                                 | evidence                                                                                                                                                                                                                                                                                                                                 |
  |:--------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Based on less than 8 critics , the film scored more than 42 out of 100 .</code> | <code>`` On Metacritic the film has a score of 43 out of 100 , based on 7 critics , indicating `` '' mixed or average reviews '' '' .  ''</code>                                                                                                                                                                                         |
  | <code>Haim resumed activities in 2012 .</code>                                        | <code>This led to Haim resuming as a full-time operation in 2012.The group 's first release , Forever ( an EP released on a limited-time download ) , combined with positive reception at the South by Southwest festival , led to a deal with Polydor Records and a management deal with Jay-Z 's Roc Nation group in mid-2012 .</code> |
  | <code>Iman 's second husband was Spencer Haywood .</code>                             | <code>He also has a stepsister , Zulekha Haywood ( born 1978 ) , who is the daughter of Iman and former NBA basketball player Spencer Haywood , Iman 's second husband.</code>                                                                                                                                                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.41 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.12 tokens</li><li>max: 34 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                              | sentence2                                                                                                                 |
  |:-----------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
  | <code>A binary molecular compound is made up of two  elements.</code>                                                  | <code>A binary molecular compound is made up of two of what?</code>                                                       |
  | <code>Ash that enters the air naturally as a result of a volcano eruption is classified as a primary pollutant.</code> | <code>Ash that enters the air naturally as a result of a volcano eruption is classified as what kind of pollutant?</code> |
  | <code>Coal is nonrenewable, and the sun is renewable is how coal and the sun compare as sources of energy.</code>      | <code>How do coal and the sun compare as sources of energy?</code>                                                        |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 24.72 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.21 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                             | sentence2                                                                                   |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
  | <code>The Earth rotates once a day.</code>                                                                                                                            | <code>Earth rotates on its axis once times in one day.</code>                               |
  | <code>When the plates crash into each other, geologists call  this type of plate boundary a convergent boundary.</code>                                               | <code>A convergent plate boundary is created when two plates come toward each other.</code> |
  | <code>In biochemistry, amino acids having both the amine and the carboxylic acid groups attached to the first (alpha-) carbon atom have particular importance.</code> | <code>Amino acids contain both a carboxylic acid group and a(n) amine group.</code>         |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 750 training samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
  |         | summary                                                                           | document                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 25.57 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 57 tokens</li><li>mean: 218.28 tokens</li><li>max: 408 tokens</li></ul> |
* Samples:
  | summary                                                                                                                                                            | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Defender Neil Taylor believes Swansea City "turned a corner" with the manner of their performance in Sunday's 1-0 Premier League defeat at Liverpool.</code> | <code>A handball decision against Taylor gave James Milner the chance to earn victory from the penalty spot for the Reds.<br>Taylor believes referee Anthony Taylor was wrong, but felt his side played well despite falling to their ninth league loss in 10 starts.<br>"We played well and turned the corner a bit as a performance," said Taylor.<br>"But we obviously haven't got the result which is disappointing and hard to swallow.<br>"The performance was good, the boys played well and I think overall we can be proud of what we did and we frustrated Liverpool."<br>But defeat meant dropping a place to 15th in the table, one place below Chelsea and four points off the relegation zone.<br>Swansea's plight has led to speculation over manager Garry Monk's future, but Taylor believes the display at Anfield was an improvement.<br>"We got back to how we wanted to play and how we have been playing so we're happy with that," said the Wales international.<br>Taylor felt he was legitimately protecting his face when Jordan Ibe's cross struck his arm, leading to the penalty award.<br>"I don't think the ref was going to give it. Time stood still for about 10 seconds, the crowd shouted loud enough and it's a pen," lamented Taylor.</code> |
  | <code>Photographs showing the Duke of Windsor's visit to Nazi Germany in 1937 are expected to fetch up to £1,000 at auction.</code>                               | <code>The album was compiled by the former King Edward VIII's equerry, Sir Dudley Forwood, and has been in his family ever since.<br>It features 60 photos, some previously unseen, of the duke meeting Nazis, including Adolf Hitler.<br>The album is due to be sold at Duke's of Dorchester on 10 March.<br>It details the visit the duke took with his new wife Wallis Simpson.<br>Sir Dudley said years later that the trip was made, not in order to support the Nazi regime, as many thought, but so that the Duchess could experience a state visit.<br>The equerry's invitation to the funeral of the Duchess of Windsor in 1986 is also being sold.<br>Timothy Medhurst, of the auction house, said: "It shows the couple in a relaxed environment being shown around by Nazis who are clearly proud of their nation.<br>"It is a unique piece of history compiled at a time when the Nazi war machine was preparing for European conquest and the systematic slaughter of millions of people."<br>The photographs show the duke and his wife visiting many places, including a mine, a winter relief headquarters, a lightbulb factory and a school.<br>Source: BBC History</code>                                                                                       |
  | <code>A man has appeared in court charged as part of an investigation into the death of a man who was fatally shot in his car outside his London home.</code>      | <code>Redwan El-Ghaidouni was shot on his driveway by a man who approached him in Vine Lane, Hillingdon, west London, on 3 February.<br>Marwais Kakar, 34, appeared at Uxbridge Magistrates' Court earlier charged with perverting the course of justice.<br>He was bailed to attend Isleworth Crown Court on 6 July.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.29 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 86.8 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                        | sentence2                                                                                                                                                                                                                                                                                                                                              |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the only continent without amphibians?</code>                                                                                                      | <code>Amphibians can be found in freshwater and moist terrestrial habitats throughout the world. The only continent without amphibians is Antarctica. Amphibians are especially numerous in temperate lakes and ponds and in tropical rainforests.</code>                                                                                              |
  | <code>Where are aerofoils found?</code>                                                                                                                          | <code>Birds also have wings that function as an aerofoil . The surface of the aerofoil is curved to help the bird control and use the air currents to fly. Aerofoils are also found on the wings of airplanes.</code>                                                                                                                                  |
  | <code>A black solid by itself, this element is incredibly important because of what it makes when it combines with many other elements, including oxygen?</code> | <code>Carbon is an element. By itself, it’s a black solid. You can see a lump of carbon in Figure below . Carbon is incredibly important because of what it makes when it combines with many other elements. Carbon can form a wide variety of substances. For example, in the air, carbon combines with oxygen to form the gas carbon dioxide.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 11.52 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 34.06 tokens</li><li>max: 65 tokens</li></ul> |
* Samples:
  | sentence1                                                               | sentence2                                                                                                                                                                                      |
  |:------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what enters the egg?</code>                                       | <code>Fertilization occurs when sperm swim to an egg inside an archegonium.. Sperm nuclei are released into the archegonium. <br> sperm nuclei enter the egg</code>                            |
  | <code>When does water freeze into ice?</code>                           | <code>when water freezes , that water expands. Upon further cooling to 32 degrees Fahrenheit, water expands as it turns to ice. <br> Water freezes into ice under 32 degrees fahrenheit</code> |
  | <code>What responds to daily and seasonal cycles and to disease?</code> | <code>Plants respond to daily and seasonal cycles and to disease.. Bamboos are vigorous, rugged plants. <br> bamboo respond to daily and seasonal cycles and to disease</code>                 |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 750 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | fact                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.95 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.67 tokens</li><li>max: 31 tokens</li></ul> |
* Samples:
  | question                                                                                                              | fact                                                                                           |
  |:----------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | <code>A boy has a scar from an oven on his leg, so his leg was likely</code>                                          | <code>if a body part was burned then that body part was exposed to a lot of heat energy</code> |
  | <code>The only stage of the water cycle process that is nonexistent is</code>                                         | <code>evaporation is a stage in the water cycle process</code>                                 |
  | <code>over a period of three years, a farmer cultivates, corn, millet and potatoes. What is this exemplary of?</code> | <code>crop rotation is when different crops are planted on a field in different years</code>   |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.76 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 76.27 tokens</li><li>max: 232 tokens</li></ul> |
* Samples:
  | sentence1                                                   | sentence2                                                                                                                                                                                                                                                                                                                                                         |
  |:------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what are archegonia</code>                            | <code>An archegonium (pl: archegonia), from the ancient Greek ἀρχή (beginning) and γόνος (offspring), is a multicellular structure or organ of the gametophyte phase of certain plants producing and containing the ovum or female gamete.</code>                                                                                                       |
  | <code>what does it mean to deduct commission</code>         | <code>What is Commission Pay? Commission is a sum of money that is paid to an employee upon completion of a task, usually selling a certain amount of goods or services. It can be paid as a percentage of the sale or as a flat dollar amount based on sales volume. Employers often use sales commissions as incentives to increase worker productivity.</code> |
  | <code>how many grams of fiber should you eat per day</code> | <code>So just how much fiber do you need? The national fiber recommendations are 30 to 38 grams a day for men and 25 grams a day for women between 18 and 50 years old, and 21 grams a day if a woman is 51 and older. Another general guideline is to get 14 grams of fiber for every 1,000 calories in your diet.</code>                                        |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.79 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 130.64 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  |:-------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who was the viceroy of india when delhi became capital</code>      | <code>New Delhi The foundation stone of the city was laid by George V, Emperor of India during the Delhi Durbar of 1911.[6] It was designed by British architects, Sir Edwin Lutyens and Sir Herbert Baker. The new capital was inaugurated on 13 February 1931,[7] by Viceroy and Governor-General of India Lord Irwin.</code>                                                                                                                                                                                                |
  | <code>who is the singer for alice in chains</code>                       | <code>Layne Staley Layne Staley (born Layne Rutherford Staley,[1] August 22, 1967 – April 5, 2002)[7][8][9] was an American musician known for being the lead vocalist, occasional rhythm guitarist and co-songwriter of the rock band Alice in Chains from 1987 until 1998. The band rose to international fame in the early 1990s during Seattle's grunge movement, and became known for Staley's distinct vocal style, as well as the harmonized vocals between him and guitarist/vocalist Jerry Cantrell.[10][11]</code> |
  | <code>explain the salient features of banking regulation act 1949</code> | <code>Banking Regulation Act, 1949 The Act gives the Reserve Bank of India (RBI) the power to license banks, have regulation over shareholding and voting rights of shareholders; supervise the appointment of the boards and management; regulate the operations of banks; lay down instructions for audits; control moratorium, mergers and liquidation; issue directives in the interests of public good and on banking policy, and impose penalties.[2]</code>                                                             |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 750 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | answer                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 16.06 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 207.41 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | query                                                                                                                       | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:----------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>English musician Ian Curtis, who died on 18th May 1980, was best known as lead singer of which post-punk band?</code> | <code>Ian Curtis ( of Touching from a distance) Ian Kevin Curtis was an English musician and singer-songwriter. He is best known as the lead singer and lyricist of the post-punk band Joy Division. Joy Division released its debut album, Unknown Pleasures, in 1979 and recorded its follow-up, Closer, in 1980. Curtis, who suffered from epilepsy and depression, committed suicide on 18 May 1980, on the eve of Joy Division's first North American tour, resulting in the band's dissolution and the subsequent formation of New Order. Curtis was known for his baritone voice, dance style, and songwriting filled with imagery of desolation, emptiness and alienation. In 1995, Curtis's widow Deborah published Touching from a Distance: Ian Curtis and Joy Division, a biography of the singer. His life and death Ian Kevin Curtis was an English musician and singer-songwriter. He is best known as the lead singer and lyricist of the post-punk band Joy Division. Joy Division released its debut album, Unknown Pleasures, in 1979 and recorded its follow-up, Closer, in 1980. Curtis, who suffered from epilepsy and depression, committed suicide on 18 May 1980, on the eve of Joy Division's first North American tour, resulting in the band's dissolution and the subsequent formation of New Order. Curtis was known for his baritone voice, dance style, and songwriting filled with imagery of desolation, emptiness and alienation. In 1995, Curtis's widow Deborah published Touching from a Distance: Ian Curtis and Joy Division, a biography of the singer. His life and death have been dramatised in the films 24 Hour Party People (2002) and Control (2007). ...more</code> |
  | <code>From which film comes the line 'Mrs. Robinson, you're trying to seduce me... aren't you?'</code>                      | <code>The Graduate (1967) - "Mrs. Robinson, you're trying to seduce me. Aren't you?" - YouTube The Graduate (1967) - "Mrs. Robinson, you're trying to seduce me. Aren't you?" Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. The interactive transcript could not be loaded. Loading... Rating is available when the video has been rented. This feature is not available right now. Please try again later. Uploaded on May 5, 2009 The famous scene from The Graduate. Category</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  | <code>The Amazon flows through how many countries?</code>                                                                   | <code>Learn About the Six Amazon River Basin Countries Share By Amanda Briney The Amazon River is the second longest river (it is just shorter than the Nile River in Egypt ) in the world and it has the largest watershed or drainage basin as well as the most tributaries of any river in the world. For reference, a watershed is defined as the area of land that releases its water into a river. This entire area is often referred to as the Amazon Basin. The Amazon River begins with streams in the Andes Mountains in Peru and flows into the Atlantic Ocean about 4,000 miles (6,437 km) away. The Amazon River and its watershed encompass an area of 2,720,000 square miles (7,050,000 sq km). This area includes the largest tropical rainforest in the world - the Amazon Rainforest . In addition parts of the Amazon Basin also include grassland and savannah landscapes. As a result, this area is some of the least developed and most biodiverse in the world. Along its length, the Amazon River flows through three countries and its basin includes three more. continue reading below our video Test Your General Science Knowledge The following is a list of these six countries that have claims to the Amazon region arranged by their area. For reference, their capitals and populations have also been included. All information was obtained from the CIA World Factbook . • Area: 3,287,612 square miles (8,514,877 sq km) • Capital: Brasilia</code>                                                                                                                                                                                                                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.51 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 57.44 tokens</li><li>max: 155 tokens</li></ul> |
* Samples:
  | sentence1                                               | sentence2                                                                                                                                                                                                                                                                                                       |
  |:--------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>has roku ultra been discontinued?</code>          | <code>No, its not been discontinued. It may depend on where you live what shows up for sale on roku pages. The newest model of Ultra is the 4670R, try amazon.</code>                                                                                                                                           |
  | <code>how much percent is malibu?</code>                | <code>Malibu is a coconut flavored liqueur, made with Caribbean rum, and possessing an alcohol content by volume of 21.0 % (42 proof).</code>                                                                                                                                                                   |
  | <code>how to change a pdf document back to word?</code> | <code>['Open a PDF file in Acrobat DC.', 'Click on the “Export PDF” tool in the right pane.', 'Choose Microsoft Word as your export format, and then choose “Word Document.”', 'Click “Export.” If your PDF contains scanned text, the Acrobat Word converter will run text recognition automatically.']</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 25.72 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 25.62 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                          | sentence2                                                                                                                                                          |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Tampa became less important when several digger projects made the port of Tampa accessible to all shipping .</code>                                                          | <code>Tampa became less important when several dredging projects made the Port of Port Tampa accessible to all shipping .</code>                                   |
  | <code>Yarde sometimes improvised , often while listening to jazz .</code>                                                                                                          | <code>Yarde sometimes improvised , often while listening to the jazz .</code>                                                                                      |
  | <code>Major airports near Seymour include : Austin Straubel International Airport ( public ) , in Ashwaubenon ; Appleton International Airport ( public ) , in Greenville .</code> | <code>Airports near Seymour : Austin Straubel International Airport ( public ) in Ashwaubenon and International Airport Appleton ( public ) in Greenville .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### global_dataset

* Dataset: global_dataset
* Size: 9,750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 32.84 tokens</li><li>max: 354 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 56.79 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                       | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Binary compounds of carbon with less electronegative elements are called carbides.</code> | <code>Binary compounds of carbon with less electronegative elements are called what?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  | <code>who played ramses in exodus gods and kings</code>                                         | <code>Exodus: Gods and Kings On March 15, 2013, Deadline.com reported Scott wanted Christian Bale to star in the film;[16] in August he confirmed the role to be Moses himself.[17] On the same day, Joel Edgerton joined the cast to play Ramses and production was set to begin in September.[18] The studio announced the casting calls in Spain's Almería and Pechina for 3,000 to 4,000 extras and with another 1,000 to 2,000 extras on the island of Fuerteventura.[19] On August 27, Aaron Paul joined the film to play Joshua.[20] Sigourney Weaver, Ben Kingsley and John Turturro were then still in talks about joining the cast.[21]</code> |
  | <code>From 1996 to September 2010 he was Ambassador of Belgium to Liechtenstein .</code>        | <code>From 1996 to September 2010 he was ambassador of Belgium near Liechtenstein .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Evaluation Datasets

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 128 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 21.42 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 35.55 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
  | claim                                                                               | evidence                                                                                                                                                                                                                                                                                                                                               |
  |:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Dragon Con had over 5000 guests .</code>                                      | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code>                                                                                                          |
  | <code>COVID-19 has reached more than 185 countries .</code>                         | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code>                                                                                                                                                                                                   |
  | <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### negation-triplets

* Dataset: negation-triplets
* Size: 128 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | entailment                                                                        | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 14.26 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.25 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.59 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                  | entailment                                 | negative                                       |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------|:-----------------------------------------------|
  | <code>A guy riding a motorcycle near junk cars</code>                                                                                                                   | <code>A man is riding a motorcycle.</code> | <code>A man is not riding a motorcycle.</code> |
  | <code>People jump over a mountain crevasse on a rope.</code>                                                                                                            | <code>People are jumping outside.</code>   | <code>People are not jumping outside.</code>   |
  | <code>Three men, one holding pipes, another holding a large object above his head, and one resting against the pipe bed on the truck, are looking at the camera.</code> | <code>three men look at the camera</code>  | <code>three men ignore the camera</code>       |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 20.28 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                     | sentence2                                                                              |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>humans normally have 23 pairs of chromosomes.</code>                                                                                                                                    | <code>Humans typically have 23 pairs pairs of chromosomes.</code>                      |
  | <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code>                                                                                       | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
  | <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code>     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.16 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 14.59 tokens</li><li>max: 24 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                   | sentence2                                                                                                |
  |:------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
  | <code>Hail during a storm describes water in a solid state.</code>                                          | <code>Which of these describes water in a solid state?</code>                                            |
  | <code>A role of mushrooms in ecosystems is breaking down dead plant material.</code>                        | <code>Which of the following best describes a role of mushrooms in ecosystems?</code>                    |
  | <code>Because trees add water vapor to air, cutting down forests leads to longer periods of drought.</code> | <code>Because trees add water vapor to air, cutting down forests leads to longer periods of what?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
  |         | summary                                                                            | document                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 15 tokens</li><li>mean: 26.25 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 64 tokens</li><li>mean: 212.7 tokens</li><li>max: 366 tokens</li></ul> |
* Samples:
  | summary                                                                                                                                                 | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>A fifth senior Kenyan Olympic official has been arrested as part of the investigation into missing money and equipment following Rio 2016.</code> | <code>Police went to the Nairobi home of Ben Ekumbo, who is vice-president of the country's Olympic committee and head of its swimming federation.<br>He was reportedly hiding under a bed.<br>Officers found boxes of new Nike running shoes and unused Kenyan team uniforms that were meant to be given to athletes competing at the Games.<br>The arrest came as it was alleged in a forthcoming report by investigators that high-ranking sports officials stole more than £6.4m in athletes' expenses and equipment at the Olympics.<br>Four other officials were arrested in September.<br>Kenya's team leader at the Rio Olympics, Stephen Arap Soi, was charged with stealing over $250,000 (£200,400) that was meant to be used for athletes' travel, accommodation and other expenses in Rio. Another vice president, Pius Ochieng, and secretary general Francis Kinyili Paul were charged with stealing Nike kit.<br>They have all denied the charges and are out on bail.<br>The other official, committee treasurer Fridah Shiroya, had charges against her dropped and she is expected to be a state witness and testify against the others.</code>                                                                   |
  | <code>Manchester City have extended the contract of midfielder Frank Lampard until the end of the season.</code>                                        | <code>The 36-year-old's deal from New York City was due to expire at midnight on 31 December but he will now stay until the summer and miss the start of the MLS season.<br>Former England international Lampard is available to face Sunderland in the Premier League on Thursday.<br>Lampard has scored six goals in 17 appearances for City this season.<br>He signed for New York after being released by Chelsea last June and his new starting date in the US will be confirmed "as the Premier League and MLS seasons unfold", New York City said in a statement.<br>New York City FC director of football Claudio Reyna said: "Frank is a star and it is no surprise Manchester City is rewarded by his contributions on the field every single day.<br>"He is eager to get to New York once his commitment ends in England and will be available to play on arrival as a permanent member of the squad, given he will come to us having played at the highest level."</code>                                                                                                                                                                                                                                                |
  | <code>A Texas man has died two months after contracting a flesh-eating bacterium through a new tattoo on his leg, medical officials say.</code>         | <code>The man, who has not been identified, had received a tattoo with the words "Jesus is my life" five days before going for a swim in the Gulf of Mexico.<br>The man was then admitted to a Dallas hospital complaining of severe pains nearby to the tattoo on his calf.<br>Doctors advise that new tattoos be kept clean in order to prevent infection.<br>The man had a history of alcohol cirrhosis of the liver, and reportedly told doctors that he drank six beers daily.<br>Doctors at the Parkland Memorial Hospital put the man on life support 24 hours after he was admitted, as he went into septic shock.<br>Doctors say he tested positive for the flesh-eating bacterium Vibrio vulnificus.<br>The British Medical Journal reports that the pathogen is common in the Gulf of Mexico's coastal waters, and the risks of infection rises during warmer months.<br>According to the US Centers for Disease Control and Prevention, V. vulnificus causes 80,000 illnesses and 100 deaths each year in the US with most infections being attributed to eating raw shellfish.<br>Medical professionals advise that new tattoos be covered during bathing, and that people avoid swimming after getting new ink.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 87 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.85 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 74.61 tokens</li><li>max: 382 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                         | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Saturn is made mostly of helium and what else?</code>                                                       | <code>Saturn’s composition is similar to Jupiter's. The planet is made mostly of hydrogen and helium. These elements are gases in the outer layers and liquids in the deeper layers. Saturn may also have a small solid core. Saturn's upper atmosphere has clouds in bands of different colors. These clouds rotate rapidly around the planet. But Saturn has fewer storms than Jupiter. Thunder and lightning have been seen in the storms on Saturn ( Figure below ).</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  | <code>What is a device that changes kinetic energy to electrical energy through electromagnetic induction?</code> | <code>An electric generator is a device that changes kinetic energy to electrical energy through electromagnetic induction. A simple diagram of an electric generator is shown in Figure below . In a generator, some form of energy is applied to turn a shaft. This causes a coil of wire to rotate between opposite poles of a magnet. Because the coil is rotating in a magnetic field, electric current is generated in the wire. If the diagram in Figure below looks familiar to you, that’s because a generator is an electric motor in reverse. Look back at the electric motor in Figure above . If you were to mechanically turn the shaft of the motor (instead of using electromagnetism to turn it), the motor would generate electricity just like an electric generator. You can learn how to make a very simple electric generator by watching the video at the URL below. Making your own generator will help you understand how a generator works.</code> |
  | <code>What results when the water vapor from a hot shower contacts the cooler surface of a mirror?</code>         | <code>If you take a hot shower in a closed bathroom, the mirror is likely to "fog" up. The "fog" consists of tiny droplets of water that form on the cool surface of the mirror. Why does this happen? Some of the hot water from the shower evaporates, so the air in the bathroom contains a lot of water vapor. When the water vapor contacts cooler surfaces, such as the mirror, it cools and loses energy. The cooler water particles no longer have enough energy to overcome the forces of attraction between them. They come together and form droplets of liquid water.</code>                                                                                                                                                                                                                                                                                                                                                                                     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 87 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 11.48 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 34.82 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
  | sentence1                                                                      | sentence2                                                                                                                                                                                                                                    |
  |:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is it called when an animal needs to replenish bodily water?</code> | <code>thirst is used to make an animal realize that it needs to replenish its bodily water by the body. Dehydration causes increased thirst and water consumption. <br> dehydration is when an animal needs to replenish bodily water</code> |
  | <code>What can enhance a plant's growth?</code>                                | <code>the looseness of soil has a positive impact on a plant 's roots' growth in that soil. Air exchange in the root zone is essential for root growth. <br> Loose soil has increased air exchange, which is essential for plants.</code>    |
  | <code>What can a flashlight use to produce light?</code>                       | <code>a flashlight requires a source of electricity to produce light. Electricity is usually provided by batteries or AC current. <br> a flashlight can use batteries to produce light</code>                                                |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | fact                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
  | question                                                               | fact                                                                         |
  |:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code>                      |
  | <code>What creates a valley?</code>                                    | <code>a valley is formed by a river flowing</code>                           |
  | <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 87 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.55 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 73.72 tokens</li><li>max: 210 tokens</li></ul> |
* Samples:
  | sentence1                                               | sentence2                                                                                                                                                                                                                                                                                                                          |
  |:--------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what is sales tax rate in lower burrell pa</code> | <code>The unemployment rate in Lower Burrell, Pennsylvania, is 6.10%, with job growth of 0.81%. Future job growth over the next ten years is predicted to be 35.51%. Lower Burrell, Pennsylvania Taxes. Lower Burrell, Pennsylvania,sales tax rate is 6.00%.</code>                                                                |
  | <code>what is vertebral column</code>                   | <code>spinal column. n. 1. (Anatomy) a series of contiguous or interconnecting bony or cartilaginous segments that surround and protect the spinal cord. Also called: spine, vertebral column or rachis Nontechnical name: backbone.</code>                                                                                        |
  | <code>what does carbon anhydrase form</code>            | <code>From Wikipedia, the free encyclopedia. The carbonic anhydrases (or carbonate dehydratases) form a family of enzymes that catalyze the rapid interconversion of carbon dioxide and water to bicarbonate and protons (or vice versa), a reversible reaction that occurs relatively slowly in the absence of a catalyst.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 87 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.32 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 140.38 tokens</li><li>max: 421 tokens</li></ul> |
* Samples:
  | sentence1                                                       | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:----------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how many california state senate members are there</code> | <code>California State Senate The California State Senate is the upper house of the California State Legislature. Due to the state's large population and relatively small legislature, the State Senate has the largest population per representative ratio of any state legislative house. In the United States House of Representatives, California is apportioned 53 representatives, each representing approximately 704,566 people,[1] while in the State Senate, each of the 40 Senators represents approximately 931,349 people,[2] with the result that California state senators each actually represent more voters than California's representatives to the United States Congress do. Each member represents a population roughly equivalent to the state of Delaware. As a result of Proposition 140 in 1990 and Proposition 28 in 2012, members elected to the legislature prior to 2012 are restricted by term limits to two four-year terms (eight years), while those elected in or after 2012 are allowed to serve 12 years in the legislature in any combination of four-year state senate or two-year state assembly terms.[3]</code> |
  | <code>who is known as the father of statistics in india</code>  | <code>Prasanta Chandra Mahalanobis Prasanta Chandra Mahalanobis OBE, FRS[1] (29 June 1893 – 28 June 1972) was an Indian scientist and applied statistician. He is best remembered for the Mahalanobis distance, a statistical measure and for being one of the members of the first Planning commission of free India. He made pioneering studies in anthropometry in India. He founded the Indian Statistical Institute, and contributed to the design of large-scale sample surveys.[1][4][5][6]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>what was the purpose of the kirby-bauer method</code>     | <code>Agar diffusion test The agar diffusion test (Kirby–Bauer antibiotic testing, KB testing, or disc diffusion antibiotic sensitivity testing) is a test of the antibiotic sensitivity of bacteria. It uses antibiotic discs to test the extent to which bacteria are affected by those antibiotics. In this test, wafers containing antibiotics are placed on an agar plate where bacteria have been placed, and the plate is left to incubate. If an antibiotic stops the bacteria from growing or kills the bacteria, there will be an area around the wafer where the bacteria have not grown enough to be visible. This is called a zone of inhibition.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 100 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | answer                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 9 tokens</li><li>mean: 15.73 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 206.38 tokens</li><li>max: 377 tokens</li></ul> |
* Samples:
  | query                                                                         | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  |:------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Anderlecht Football Club is based in which European country?</code>     | <code>Belgium Football - Football.com | Europe Europe Belgium Are You Visible? Register for a Player Page and get your talent in front of the people who matter to your career.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>Roman Numerals CD represent which number?</code>                        | <code>CD in Roman Numerals | InRomanNumerals.com CD in Roman Numerals The Roman Numerals CD represents 400 Decimal Number People find this page searching for: what does CD mean in roman numerals</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  | <code>The phrase ‘Sweets to the sweet’ is from which Shakespeare play?</code> | <code>Sweets to the sweet - eNotes Shakespeare Quotes Sweets to the sweet [Scattering flowers] Sweets to the sweet, farewell! I hop'd thou shouldst have been my Hamlet's wife: I thought thy bride-bed to have deck'd, sweet maid, And not have strew'd thy grave. Read on Owl Eyes This eText is now on Owl Eyes. Clicking this link will open a new window. When Hamlet's mother, the queen, delivers "Sweets to the sweet," she's not bearing a hostess gift or offering candy to her date. The queen's "sweets" are funeral bouquets scattered in the grave of Ophelia, Hamlet's former flame. The prince, who has just finished addressing the skull of Yorick [see ALAS, POOR YORICK ], stumbles upon the funeral, ignorant that Ophelia has likely committed suicide. The murder of her father had driven Ophelia mad; Hamlet was the murderer, and the queen a witness. This is all bad enough. But the queen's elegiac nostalgia for her son's courtship of this deceased "sweet" is all the more disturbing in light of Hamlet's somewhat over-arduous attachment to his mother. It's therefore ironic that "sweets to the sweet" has become a corny quotation for those special romantic moments. How effective the line proves depends on how vividly one's "sweet" is likely to recall the graveyard scene in Hamlet . You might, however, find these bons mots most winning when offered with a willow branch and a whiff of charm to a soon-to-be-insignificant other.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 87 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.64 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 57.25 tokens</li><li>max: 101 tokens</li></ul> |
* Samples:
  | sentence1                                                                  | sentence2                                                                                                                                                                                                                                                                                                                             |
  |:---------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how can i see if someone is connected to my wifi?</code>             | <code>Use Your Router's Web Interface The best way to find this information will be to check your router's web interface. Your router hosts your Wi-Fi network, so it has the most accurate data about which devices are connected to it. Most routers offer a way to view a list of connected devices, although some may not.</code> |
  | <code>are heart palpitations normal during perimenopause?</code>           | <code>Women and men can have heart palpitations. In healthy people, they are most common in perimenopausal and menopausal women as a result of fluctuating hormones such as estrogen and progesterone. Some perimenopausal and menopausal women suggest their palpitations occur during or after a hot flash.</code>                  |
  | <code>do klaus and caroline end up together in the vampire diaries?</code> | <code>together for the last few seasons of The Vampire Diaries and continued to keep Klaus in check in the final season of The Originals. ... When all is said and done, Caroline remains the last love of both Stefan Salvatore and Klaus Mikaelson. However, in the end, they both picked someone else over her.</code>             |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 25.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.55 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                      | sentence2                                                                                                                                                      |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>They were there to enjoy us and they were there to pray for us .</code>                                                                                  | <code>They were there for us to enjoy and they were there for us to pray .</code>                                                                              |
  | <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
  | <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code>                                        | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code>                                            |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### global_dataset

* Dataset: global_dataset
* Size: 663 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 30.18 tokens</li><li>max: 351 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 56.34 tokens</li><li>max: 421 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sentence2                                                                                                                                                           |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Seeds can be dispersed through all sorts of creative ways, such as</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>seed dispersal is when the seeds of a plant are moved from the plant to a new environment</code>                                                              |
  | <code>It was part of the Hanover Township , then Chatham Township , before being recorded in 1899 as Florham Park .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>It was part of Hanover Township , then Chatham Township before being incorporated as Florham Park in 1899 .</code>                                            |
  | <code>Darren Jones, standing for Bristol North West, felt unwell and left his podium about 45 seconds before the programme on Made in Bristol TV began.<br>Tory Charlotte Leslie rushed to assist Mr Jones as he lay on the studio floor.<br>Mr Jones said he was "perfectly fine now" and was "raring to get back on the campaign trail".<br>He was taking part in a live debate, on Wednesday, with other candidates standing in the constituency, including Liberal Democrat Clare Campion-Smith and UKIP's Michael Frost.<br>An ambulance was called but cancelled after Mr Jones said it was "not needed".<br>Mr Jones said his fainting was not due to a medical condition but "the fact that I had a cold, it was a hot room, I'd had a busy day".<br>He said he had been feeling "quite poorly all day" but he had wanted to ensure Labour was represented in the debate.<br>Mr Jones said he was very grateful to Ms Leslie, the TV production team and the audience but added he was "amazed that having a cold is so newsworthy".<br>The candidates for the constituency are:<br>Clare Campion-Smith, Liberal Democrat<br>Michael Frost. UKIP<br>Darren Jones, Labour<br>Anne Lemon, TUSC<br>Charlotte Leslie, Conservative<br>Justin Quinnell, Green</code> | <code>A Labour candidate who fainted during a live TV election debate in Bristol and was helped by his Conservative rival has blamed his collapse on a cold.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 96
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `learning_rate`: 4.5e-05
- `weight_decay`: 0.001
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 9e-06}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 96
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4.5e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 9e-06}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa2-0.9B-ST-v2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | xsum-pairs loss | nq pairs loss | trivia pairs loss | sciq pairs loss | paws-pos loss | openbookqa pairs loss | global dataset loss | vitaminc-pairs loss | qasc pairs loss | scitail-pairs-qa loss | scitail-pairs-pos loss | msmarco pairs loss | gooaq pairs loss | negation-triplets loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:-------------:|:-----------------:|:---------------:|:-------------:|:---------------------:|:-------------------:|:-------------------:|:---------------:|:---------------------:|:----------------------:|:------------------:|:----------------:|:----------------------:|:---------------:|:-----------------:|:------------------------:|
| 0.0097 | 1    | 0.1607        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.0194 | 2    | 0.1664        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.0291 | 3    | 0.2686        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.0388 | 4    | 0.1656        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.0485 | 5    | 0.1269        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.0583 | 6    | 0.1066        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.0680 | 7    | 0.1936        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.0777 | 8    | 0.087         | 0.0002          | 0.0051        | 0.2676            | 0.0582          | 0.0459        | 1.3787                | 0.4902              | 2.8019              | 0.0736          | 0.0000                | 0.0607                 | 0.1278             | 0.0576           | 1.3557                 | 0.7325          | 0.6417            | 0.9075                   |
| 0.0874 | 9    | 0.1952        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.0971 | 10   | 0.4167        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1068 | 11   | 0.7876        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1165 | 12   | 0.3714        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1262 | 13   | 0.1852        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1359 | 14   | 0.1144        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1456 | 15   | 0.1234        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1553 | 16   | 0.0569        | 0.0002          | 0.0057        | 0.2679            | 0.0570          | 0.0460        | 1.3709                | 0.4804              | 2.7995              | 0.0738          | 0.0000                | 0.0608                 | 0.1316             | 0.0578           | 1.3501                 | 0.7327          | 0.6415            | 0.9079                   |
| 0.1650 | 17   | 0.3203        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1748 | 18   | 0.2113        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1845 | 19   | 0.3137        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.1942 | 20   | 0.4048        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2039 | 21   | 0.2855        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2136 | 22   | 0.0593        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2233 | 23   | 0.1228        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2330 | 24   | 0.0811        | 0.0002          | 0.0068        | 0.2693            | 0.0549          | 0.0461        | 1.3630                | 0.4664              | 2.7943              | 0.0752          | 0.0000                | 0.0608                 | 0.1415             | 0.0585           | 1.3403                 | 0.7327          | 0.6396            | 0.9079                   |
| 0.2427 | 25   | 0.2806        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2524 | 26   | 0.2202        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2621 | 27   | 0.195         | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2718 | 28   | 0.1986        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2816 | 29   | 0.0546        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.2913 | 30   | 0.3083        | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.3010 | 31   | 0.127         | -               | -             | -                 | -               | -             | -                     | -                   | -                   | -               | -                     | -                      | -                  | -                | -                      | -               | -                 | -                        |
| 0.3107 | 32   | 0.2447        | 0.0002          | 0.0076        | 0.2705            | 0.0537          | 0.0461        | 1.3624                | 0.4507              | 2.7907              | 0.0768          | 0.0000                | 0.0607                 | 0.1503             | 0.0594           | 1.3333                 | 0.7325          | 0.6392            | 0.9078                   |


### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->