File size: 189,095 Bytes
3e933cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 |
---
base_model: microsoft/deberta-v2-xlarge
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99622
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: in medical terms what does o.d. mean
sentences:
- "The SDIF format is a sequence of frames, similar to chunks in the IFF/ AIFF /RIFF\
\ formats, but not strictly compatible. Every frameâ\x80\x99s length is a multiple\
\ of 8 bytes. Every SDIF file or stream must begin with a small opening frame.The\
\ body of the file or stream is a contiguous sequence of time-tagged frames, sorted\
\ in ascending temporal order, with multiple types of frames allowed in a single\
\ file or stream.The most recent version of this format, SDIF-3, is the standard\
\ multi-channel hardware connection employed in DSD recording systems.he body\
\ of the file or stream is a contiguous sequence of time-tagged frames, sorted\
\ in ascending temporal order, with multiple types of frames allowed in a single\
\ file or stream. The most recent version of this format, SDIF-3, is the standard\
\ multi-channel hardware connection employed in DSD recording systems."
- Well Phillip, my neighbor had a very similar houseboat and it weighed @ 11-12,000
pounds. It was a 33 foot Nautaline Houseboat, however a 1970, which shouldn't
make a difference. Lastly, hopefully some of our readers and visitors will share
and post comments about their houseboat trailer and weight experiences.
- Jupiterimages/Photos.com/Getty Images. When writing eye exam results on a chart
or for a prescription, an eye doctor uses the abbreviations for the Latin terms
meaning right and left eye. O.D. stands for oculus dexter, or right eye; it means
pertaining to the right eye. O.S. means oculus sinister, or left eye.
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
mainland China .
sentences:
- 'More than 3,700 people have died : around 3,100 in mainland China and around
550 in all other countries combined .'
- 'More than 3,200 people have died : almost 3,000 in mainland China and around
275 in other countries .'
- more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: When electrons return to a lower energy level, they emit the excess
energy in the form of light.
sentences:
- When electrons return to a lower energy level, they emit the excess energy in
the form of what?
- What part of a cell do proteins travel to to be modified for the specific job
they will do?
- What is the first thing a student should do if an accident happens during a science
experiment?
- source_sentence: The study of energy and energy transfer involving physical matter
is called thermodynamics.
sentences:
- Photoautotrophs and chemoautotrophs are two basic types of what?
- The study of energy and energy transfer involving physical matter is what?
- What causes acid rain, ozone depletion, and global warming?
- source_sentence: Which Olympic Games were the first to be telecast worldwide?
sentences:
- 'List of countryside birds in more urban areas - Telegraph Wildlife List of countryside
birds in more urban areas Countryside birds are increasingly moving into towns
because the big freeze has meant food is harder to find, according to the RSPB.
Follow Here is a list of the unusual visitors, courtesy of the RSPB: Redwing:
Most commonly encountered as a winter bird and is Britain''s smallest true thrush.
Its creamy strip above the eye and orange-red flank patches make it distinctive.
They roam across the countryside, feeding in fields and hedgerows, rarely visiting
gardens, except in the coldest weather when snow covers the fields. Fieldfare:
Large, colourful thrushes, much like a mistle thrush in general size, shape and
behaviour. They stand very upright and move forward with purposeful hops. They
are very social birds, spending the winter in flocks of anything from a dozen
or two to several hundred strong. Bittern: A thickset heron with all-over bright,
pale, buffy-brown plumage covered with dark streaks and bars. It flies on broad,
rounded, bowed wings. Very difficult to see, as it moves silently through reeds
at water''s edge, looking for fish. The males make a far-carrying, booming sound
in spring. Its dependence on reedbeds and very small population make it a Red
List species - one of the most threatened in the country. Woodcock: A large bulky
wading bird with short legs, and a very long straight tapering bill. It is largely
nocturnal, spending most of the day in dense cover. Most of the birds in the UK
are residents; in the autumn birds move to the UK from Finland and Russia to winter
here. Related Articles'
- First televised Olympics | Guinness World Records First televised Olympics When
1936 The Olympics made broadcasting history in 1936 when the Berlin Games was
beamed out live in black and white to athletes in the Olympic village and to the
wider public in 25 special viewing rooms located in Berlin and Potsdam. This was
the first time a sporting event had ever been seen live on television screens
and it opened the floodgates. Rome 1960 was the first Olympics to be broadcast
live across Europe, while Tokyo 1964 was the first to reach a worldwide audience.
Colour pictures arrived four years later at the 1968 Mexico City Games. All records
listed on our website are current and up-to-date. For a full list of record titles,
please use our Record Application Search. (You will be need to register / login
for access)
- BBC NEWS | Entertainment | Beverley Sisters' years in limelight Beverley Sisters'
years in limelight Teddy, Babs and Joy got their first break in an advertising
campaign Veteran singing trio The Beverley Sisters, who have been made MBEs in
the New Year Honours List, were one of the most popular acts of the 50s and 60s.
Joy - born in 1929 - and the twins Babs and Teddie - born in 1932 - were brought
up in Bethnal Green in east London. During the Second World War the girls were
evacuated to the Midlands. There they secured a contract to become "Bonnie Babies"
in an advertising campaign for the bedtime drink Ovaltine. Radio appearances for
the BBC followed, and with support from bandleader Glenn Miller they became professional
singers. After the war the siblings were given their own TV show, Those Beverley
Sisters. Chart success In 1951 the trio signed a recording contract with Columbia
Records that helped them become the highest paid female act in the UK. They were
the first British female group to break into the US top 10 and enjoyed chart success
with Christmas records like Little Drummer Boy and I Saw Mommy Kissing Santa Claus.
Other favourites included Bye Bye Love and Always and Forever. Joy married Billy
Wright, then captain of the England football team, in 1958 and had two daughters
and a son. Teddie also had a daughter. In 2002 they sang for the Queen and the
Duke of Edinburgh at a Jubilee concert, while last year saw them take part in
D-Day celebrations in Portsmouth. The trio, now in their 70s, still perform but
have had to cut back their workload due to health concerns.
model-index:
- name: SentenceTransformer based on microsoft/deberta-v2-xlarge
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9059824822945504
name: Pearson Cosine
- type: spearman_cosine
value: 0.9099404652396526
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9138764030584118
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9097054966996683
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9143064951884331
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9102612870325675
name: Spearman Euclidean
- type: pearson_dot
value: 0.8934118861402478
name: Pearson Dot
- type: spearman_dot
value: 0.8907050753070487
name: Spearman Dot
- type: pearson_max
value: 0.9143064951884331
name: Pearson Max
- type: spearman_max
value: 0.9102612870325675
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allNLI dev
type: allNLI-dev
metrics:
- type: cosine_accuracy
value: 0.71484375
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8244803547859192
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6026785714285714
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6709309816360474
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.4909090909090909
name: Cosine Precision
- type: cosine_recall
value: 0.7803468208092486
name: Cosine Recall
- type: cosine_ap
value: 0.5598399809421326
name: Cosine Ap
- type: dot_accuracy
value: 0.7109375
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 769.110107421875
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.5976470588235294
name: Dot F1
- type: dot_f1_threshold
value: 639.0211181640625
name: Dot F1 Threshold
- type: dot_precision
value: 0.503968253968254
name: Dot Precision
- type: dot_recall
value: 0.7341040462427746
name: Dot Recall
- type: dot_ap
value: 0.5522830058603818
name: Dot Ap
- type: manhattan_accuracy
value: 0.705078125
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 494.8561706542969
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.593886462882096
name: Manhattan F1
- type: manhattan_f1_threshold
value: 772.1622314453125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.47719298245614034
name: Manhattan Precision
- type: manhattan_recall
value: 0.7861271676300579
name: Manhattan Recall
- type: manhattan_ap
value: 0.5596244537722644
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.705078125
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 15.881658554077148
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.589010989010989
name: Euclidean F1
- type: euclidean_f1_threshold
value: 24.65237808227539
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.475177304964539
name: Euclidean Precision
- type: euclidean_recall
value: 0.7745664739884393
name: Euclidean Recall
- type: euclidean_ap
value: 0.5573704039417041
name: Euclidean Ap
- type: max_accuracy
value: 0.71484375
name: Max Accuracy
- type: max_accuracy_threshold
value: 769.110107421875
name: Max Accuracy Threshold
- type: max_f1
value: 0.6026785714285714
name: Max F1
- type: max_f1_threshold
value: 772.1622314453125
name: Max F1 Threshold
- type: max_precision
value: 0.503968253968254
name: Max Precision
- type: max_recall
value: 0.7861271676300579
name: Max Recall
- type: max_ap
value: 0.5598399809421326
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Qnli dev
type: Qnli-dev
metrics:
- type: cosine_accuracy
value: 0.6796875
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7387017011642456
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6812816188870151
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5850255489349365
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5658263305322129
name: Cosine Precision
- type: cosine_recall
value: 0.8559322033898306
name: Cosine Recall
- type: cosine_ap
value: 0.7232227658329593
name: Cosine Ap
- type: dot_accuracy
value: 0.6796875
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 610.0311279296875
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6843853820598007
name: Dot F1
- type: dot_f1_threshold
value: 513.2543334960938
name: Dot F1 Threshold
- type: dot_precision
value: 0.5628415300546448
name: Dot Precision
- type: dot_recall
value: 0.8728813559322034
name: Dot Recall
- type: dot_ap
value: 0.7080904391300955
name: Dot Ap
- type: manhattan_accuracy
value: 0.68359375
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 695.5964965820312
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.679245283018868
name: Manhattan F1
- type: manhattan_f1_threshold
value: 890.5444946289062
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.54
name: Manhattan Precision
- type: manhattan_recall
value: 0.9152542372881356
name: Manhattan Recall
- type: manhattan_ap
value: 0.7224600475409794
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.68359375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 22.151939392089844
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6771653543307087
name: Euclidean F1
- type: euclidean_f1_threshold
value: 28.56058692932129
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5388471177944862
name: Euclidean Precision
- type: euclidean_recall
value: 0.9110169491525424
name: Euclidean Recall
- type: euclidean_ap
value: 0.7234064908940119
name: Euclidean Ap
- type: max_accuracy
value: 0.68359375
name: Max Accuracy
- type: max_accuracy_threshold
value: 695.5964965820312
name: Max Accuracy Threshold
- type: max_f1
value: 0.6843853820598007
name: Max F1
- type: max_f1_threshold
value: 890.5444946289062
name: Max F1 Threshold
- type: max_precision
value: 0.5658263305322129
name: Max Precision
- type: max_recall
value: 0.9152542372881356
name: Max Recall
- type: max_ap
value: 0.7234064908940119
name: Max Ap
---
# SentenceTransformer based on microsoft/deberta-v2-xlarge
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) <!-- at revision 1d134961d4db8e7e8eb1bc1ab81cb370244c57f7 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1536 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- negation-triplets
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- xsum-pairs
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
- openbookqa_pairs
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
- global_dataset
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa3-0.4B-ST-v1-checkpoints-tmp")
# Run inference
sentences = [
'Which Olympic Games were the first to be telecast worldwide?',
'First televised Olympics | Guinness World Records First televised Olympics When 1936 The Olympics made broadcasting history in 1936 when the Berlin Games was beamed out live in black and white to athletes in the Olympic village and to the wider public in 25 special viewing rooms located in Berlin and Potsdam. This was the first time a sporting event had ever been seen live on television screens and it opened the floodgates. Rome 1960 was the first Olympics to be broadcast live across Europe, while Tokyo 1964 was the first to reach a worldwide audience. Colour pictures arrived four years later at the 1968 Mexico City Games. All records listed on our website are current and up-to-date. For a full list of record titles, please use our Record Application Search. (You will be need to register / login for access)',
'BBC NEWS | Entertainment | Beverley Sisters\' years in limelight Beverley Sisters\' years in limelight Teddy, Babs and Joy got their first break in an advertising campaign Veteran singing trio The Beverley Sisters, who have been made MBEs in the New Year Honours List, were one of the most popular acts of the 50s and 60s. Joy - born in 1929 - and the twins Babs and Teddie - born in 1932 - were brought up in Bethnal Green in east London. During the Second World War the girls were evacuated to the Midlands. There they secured a contract to become "Bonnie Babies" in an advertising campaign for the bedtime drink Ovaltine. Radio appearances for the BBC followed, and with support from bandleader Glenn Miller they became professional singers. After the war the siblings were given their own TV show, Those Beverley Sisters. Chart success In 1951 the trio signed a recording contract with Columbia Records that helped them become the highest paid female act in the UK. They were the first British female group to break into the US top 10 and enjoyed chart success with Christmas records like Little Drummer Boy and I Saw Mommy Kissing Santa Claus. Other favourites included Bye Bye Love and Always and Forever. Joy married Billy Wright, then captain of the England football team, in 1958 and had two daughters and a son. Teddie also had a daughter. In 2002 they sang for the Queen and the Duke of Edinburgh at a Jubilee concert, while last year saw them take part in D-Day celebrations in Portsmouth. The trio, now in their 70s, still perform but have had to cut back their workload due to health concerns.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1536]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.906 |
| **spearman_cosine** | **0.9099** |
| pearson_manhattan | 0.9139 |
| spearman_manhattan | 0.9097 |
| pearson_euclidean | 0.9143 |
| spearman_euclidean | 0.9103 |
| pearson_dot | 0.8934 |
| spearman_dot | 0.8907 |
| pearson_max | 0.9143 |
| spearman_max | 0.9103 |
#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.7148 |
| cosine_accuracy_threshold | 0.8245 |
| cosine_f1 | 0.6027 |
| cosine_f1_threshold | 0.6709 |
| cosine_precision | 0.4909 |
| cosine_recall | 0.7803 |
| cosine_ap | 0.5598 |
| dot_accuracy | 0.7109 |
| dot_accuracy_threshold | 769.1101 |
| dot_f1 | 0.5976 |
| dot_f1_threshold | 639.0211 |
| dot_precision | 0.504 |
| dot_recall | 0.7341 |
| dot_ap | 0.5523 |
| manhattan_accuracy | 0.7051 |
| manhattan_accuracy_threshold | 494.8562 |
| manhattan_f1 | 0.5939 |
| manhattan_f1_threshold | 772.1622 |
| manhattan_precision | 0.4772 |
| manhattan_recall | 0.7861 |
| manhattan_ap | 0.5596 |
| euclidean_accuracy | 0.7051 |
| euclidean_accuracy_threshold | 15.8817 |
| euclidean_f1 | 0.589 |
| euclidean_f1_threshold | 24.6524 |
| euclidean_precision | 0.4752 |
| euclidean_recall | 0.7746 |
| euclidean_ap | 0.5574 |
| max_accuracy | 0.7148 |
| max_accuracy_threshold | 769.1101 |
| max_f1 | 0.6027 |
| max_f1_threshold | 772.1622 |
| max_precision | 0.504 |
| max_recall | 0.7861 |
| **max_ap** | **0.5598** |
#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6797 |
| cosine_accuracy_threshold | 0.7387 |
| cosine_f1 | 0.6813 |
| cosine_f1_threshold | 0.585 |
| cosine_precision | 0.5658 |
| cosine_recall | 0.8559 |
| cosine_ap | 0.7232 |
| dot_accuracy | 0.6797 |
| dot_accuracy_threshold | 610.0311 |
| dot_f1 | 0.6844 |
| dot_f1_threshold | 513.2543 |
| dot_precision | 0.5628 |
| dot_recall | 0.8729 |
| dot_ap | 0.7081 |
| manhattan_accuracy | 0.6836 |
| manhattan_accuracy_threshold | 695.5965 |
| manhattan_f1 | 0.6792 |
| manhattan_f1_threshold | 890.5445 |
| manhattan_precision | 0.54 |
| manhattan_recall | 0.9153 |
| manhattan_ap | 0.7225 |
| euclidean_accuracy | 0.6836 |
| euclidean_accuracy_threshold | 22.1519 |
| euclidean_f1 | 0.6772 |
| euclidean_f1_threshold | 28.5606 |
| euclidean_precision | 0.5388 |
| euclidean_recall | 0.911 |
| euclidean_ap | 0.7234 |
| max_accuracy | 0.6836 |
| max_accuracy_threshold | 695.5965 |
| max_f1 | 0.6844 |
| max_f1_threshold | 890.5445 |
| max_precision | 0.5658 |
| max_recall | 0.9153 |
| **max_ap** | **0.7234** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### negation-triplets
* Dataset: negation-triplets
* Size: 5,025 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 22.85 tokens</li><li>max: 151 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.95 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.22 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------|
| <code>um yeah they're they're convenient you know that's that's a</code> | <code>They are convenient.</code> | <code>They are inconvenient.</code> |
| <code>The 1978 Formula One season crowned as champion Mario Andretti .</code> | <code>Mario Andretti was the season Champion and the last American to date to win a Formula One race .</code> | <code>Mario Andretti was the season Runner-up and the first American to date to lose a Formula One race.</code> |
| <code>a bathroom with urinals sinks and towel dispensers</code> | <code>A couple of urinals mounted to a wall in a restroom.</code> | <code>A couple of urinals not mounted to a wall in a restroom.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 5,025 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.33 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 37.23 tokens</li><li>max: 181 tokens</li></ul> |
* Samples:
| claim | evidence |
|:----------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The 2018-2019 FA Cup fifth round was on February 19 , 2019 .</code> | <code>The draw for the Fifth Round will take place on 18 February 2019 .</code> |
| <code>Shad Moss , who stars in The Fast and the Furious : Tokyo Drift , is also known as Bow Wow .</code> | <code>`` The film stars Lucas Black , Nathalie Kelley , Sung Kang , Shad `` '' Bow Wow '' '' Moss and Brian Tee . ''</code> |
| <code>In Drive Angry , Isaiah Oltiano portrays ICE .</code> | <code>She is a waitress at a local bar and has a cheating fiancee Isaiah Oltiano as ICE , whom she abandons to join with Milton to save his granddaughter . *</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.73 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.89 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------|:--------------------------------------------------------------------|
| <code>Most metals exist as solids at room temperature.</code> | <code>Most metals exist in which form at room temperature?</code> |
| <code>Monatomic ions form when a single atom gains or loses electrons.</code> | <code>What form when a single atom gains or loses electrons?</code> |
| <code>Carbon dioxide chemically weather rocks by creating acids.</code> | <code>How does carbon dioxide chemically weather rocks?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 23.4 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.53 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The small intestine further breaks down the fats through the bile in the gall bladder, which wears out quicker with the large amount of fats.</code> | <code>To solubilize the fats so that they can be absorbed, the gall bladder secretes a fluid called bile into the small intestine.</code> |
| <code>Activation energy, which is defined as the amount of energy required to make the reaction start and carry on spontaneously.</code> | <code>The amount of energy required to begin a chemical reaction is known as the activation energy.</code> |
| <code>Hydraulic fracturing (fracking) fluid.</code> | <code>Fracking is another term for hydraulic fracturing.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 5,025 training samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | summary | document |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 25.61 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 53 tokens</li><li>mean: 214.37 tokens</li><li>max: 371 tokens</li></ul> |
* Samples:
| summary | document |
|:------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Phil Mickelson has ended his 25-year partnership with caddie Jim Mackay.</code> | <code>Mickelson won five majors and 41 PGA Tour titles with Mackay - nicknamed 'Bones' - on his bag.<br>The 47-year-old said the separation was "mutual" and confirmed his brother, Tim, will take over from Mackay.<br>"Our decision is not based on a single incident. We just feel it's the right time for change. Bones is one of the most knowledgeable and dedicated caddies in the world," said Mickelson.<br>"The next player to work with him will obviously be very lucky. My relationship and history with Bones far exceeds golf. He has been one of the most important and special people in my life since the day we met, and I will always be grateful for everything he has done for me."<br>Mickelson has earned in excess of $80m (£63m) in prize money since working with Mackay. He has won the Masters three times, the Open Championship and the US PGA, as well as finishing second or tied for second six times at golf's other major, the US Open.<br>Mackay was at Erin Hills last week to prepare for the US Open in the event Mickelson was able to take part in the tournament, which clashed with his daughter's graduation ceremony.<br>In a statement Mackay said: "When Phil hired me in 1992, I had one dream: to caddie in a Ryder Cup. Last year, at Hazeltine, Phil played in his 11th straight Ryder Cup. It was so cool to have a front-row seat.<br>"I wish Phil nothing but the best. His game is still at an elite level, and when he wins in the future (definitely the Masters), I will be among the first to congratulate him."</code> |
| <code>Ice cream maker Ben & Jerry's has recalled tubs of one of its best-selling products over concern they may contain small pieces of metal.</code> | <code>Some consumers who bought 500ml cartons of Cookie Dough are being told not to eat it and instead throw it away.<br>The company has issued an alert over four batches of the ice cream which it says could be affected.<br>Tubs affected have codes L62110L011, L62111L011, L62112L011 and L62113L011 printed on the bottom of the pots.<br>The company issued an "important safety notice" after internal quality assurance checks showed that a limited number of products could be affected.<br>Ben & Jerry's said: "The company has identified a specific production period during which Ben & Jerry's Cookie Dough 500ml may have been affected and, as safety remains a top priority, Ben & Jerry's is voluntarily recalling four batch codes of Cookie Dough 500ml from sale.<br>"As a precaution, everyone with a 500ml tub of Ben & Jerry's Cookie Dough in their freezers at home should check the batch number on the bottom of their tub to make sure it's not affected.<br>"And, if it matches the batch numbers listed above, they should not eat the product and, instead, we ask them to discard the product in the usual household bin."<br>It is unclear how many pots of ice cream could be affected.<br>The company said that consumers who have to throw away a tub of the ice cream can call 0800 146 252 to find out how to receive a voucher for a free pot.</code> |
| <code>Plans to redevelop the former British Sugar factory site that could create more than 400 jobs in Worcestershire have been approved.</code> | <code>Developers St Francis Group submitted plans<br> to Wyre Forest District Council for the Stourport Road site in April.<br>The first phase of the plans includes 200 homes, a care home, medical centre, hotel, shops and restaurants.<br>A spokesperson for the project, called Silverwoods, said building work is likely to start next year.<br>The second phase would include more homes and the construction of a link road in the town to the Worcester Road, the spokesperson said.<br>The developers bought the former sugar beet processing and production plant in 2006. British Sugar closed its Kidderminster operation in 2004.<br>All the buildings on the site have been knocked down apart from 70 metre (230ft) twin silos, which will soon be demolished.<br>The redevelopment is part of the South Kidderminster Enterprise Park.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.98 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 83.86 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Digestive enzymes secreted in the acidic environment (low ph) of the stomach help break down what?</code> | <code>Digestive enzymes secreted in the acidic environment (low pH) of the stomach help break down proteins into smaller molecules. The main digestive enzyme in the stomach is pepsin , which works best at a pH of about 1.5. These enzymes would not work optimally at other pHs. Trypsin is another enzyme in the digestive system, which breaks protein chains in food into smaller parts. Trypsin works in the small intestine, which is not an acidic environment. Trypsin's optimum pH is about 8.</code> |
| <code>How much can the bacteria in your gut weigh?</code> | <code>Lastly, keep in mind the small size of bacteria. Together, all the bacteria in your gut may weight just about 2 pounds.</code> |
| <code>What are the outpocketings of the digestive tract that remove nitrogenous wastes and function in osmoregulation?</code> | <code></code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.52 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 34.06 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Phototropism means growing toward what?</code> | <code>Plants exhibit phototropism, or growing toward a light source.. Green plants use light as their primary energy source. <br> Phototropism means growing toward the energy of light</code> |
| <code>What can cause a thermal conductor to become hot?</code> | <code>if a thermal conductor is exposed to a source of heat then that conductor may become hot. Radiant heat is the way the sun heats the planet. <br> if a thermal conductor is exposed to the sun then that conductor may become hot</code> |
| <code>What kind of feet do echinoids have?</code> | <code>Echinoderms have a unique water vascular system with tube feet.. Another group of echinoderms are the echinoids. <br> echinoids have tube feet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 3,029 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.9 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.41 tokens</li><li>max: 26 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| <code>Which statement is true?</code> | <code>aluminum is a nonrenewable resource</code> |
| <code>Water in a sealed jar might do what when placed in the freezer?</code> | <code>when water freezes , that water expands</code> |
| <code>When trees are harvested, the trees</code> | <code>cutting down trees in a forest causes the number of trees to decrease in that forest</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.69 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 74.93 tokens</li><li>max: 246 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>airman leadership school college credit hours</code> | <code>Master Sgt. Joseph P. Cook, the commandant of James M. McCoy Airman Leadership School at Offutt said that the leadership course consists of 192 hours where airmen will also receive nine college credit hours towards their Community College of the Air Force degree.</code> |
| <code>how to use a magnehelic gauge</code> | <code>Hereâs how to use your Magnehelic Gauge: 1) Prior to cleaning the dryer vent, install our SmartTap Fitting in the transition hose (see pic to the right). Using the same tubing from the LintAlert, connect the SmartTap Fitting to the High Pressure barb on the magnehelic gauge.2) Turn the dryer ON and take note of the high pressure reading on the gauge. 3) After cleaning the dryer vent, turn the dryer back ON and see how much the back pressure has been reduced.sing the same tubing from the LintAlert, connect the SmartTap Fitting to the High Pressure barb on the magnehelic gauge. 2) Turn the dryer ON and take note of the high pressure reading on the gauge. 3) After cleaning the dryer vent, turn the dryer back ON and see how much the back pressure has been reduced.</code> |
| <code>cbs television stations phone number</code> | <code>CBS2/KCAL9 is part of CBS Television Stations, a division of CBS Corp. and one of the largest network-owned station groups in the country. CBS Studio City Broadcast Center. 4200 Radford Avenue. Studio City, CA 91604 (818) 655-2000.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 11.71 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 126.25 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what the folds in a chefs hat mean</code> | <code>Chef's uniform The toque is a chef's hat that dates back to the 16th century.[1][2] Different heights may indicate rank within a kitchen,[1] and they are designed to prevent hair from falling into the food when cooking.[2] The 100 folds of the toque are said to represent the many different ways a chef knows to cook an egg.[citation needed]</code> |
| <code>when did brian come back to family guy</code> | <code>Brian Griffin As a character, Brian has been very well received by critics and fans. When Brian was killed off in the season 12 episode "Life of Brian", the events of the episode received substantial attention from the media and elicited strongly negative reactions from fans of the show. Brian subsequently returned two episodes later, in "Christmas Guy", after Stewie travels back in time to save him.[1][2]</code> |
| <code>who plays bart in i can only imagine movie</code> | <code>I Can Only Imagine (film) I Can Only Imagine is a 2018 American Christian drama film directed by the Erwin Brothers and written by Alex Cramer, Jon Erwin, and Brent McCorkle, based on the story behind the MercyMe song of the same name, the best-selling Christian single of all time.[3] The film stars J. Michael Finley as Bart Millard, the lead singer who wrote the song about his relationship with his father (Dennis Quaid). Madeline Carroll, Priscilla Shirer, Cloris Leachman, and Trace Adkins also star.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 5,025 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 17.17 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 203.37 tokens</li><li>max: 469 tokens</li></ul> |
* Samples:
| query | answer |
|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The song Diamonds are a Girl’s Best Friend comes from which musical?</code> | <code>Marilyn Monroe — Diamonds Are a Girl's Best Friend — Listen, watch, download and discover music for free at Last.fm Monroe's rendition of the song "Diamonds Are a Girl's Best Friend" (in Gentlemen prefer Blondes) is considered an iconic performance that has been copied by the likes of Madonna, Geri Haliwell, Kylie Minogue, Nicole Kidman and Anna Nicole Smith. Don't want to see ads? Subscribe now Similar Tracks</code> |
| <code>What is the Internet country code top-level domain (ccTLD) for Armenia?</code> | <code>.AM Domains • Armenia Domain Names Why choose a .am domain extension? .AM has taken off as a great extension for podcast and audio-related websites. The domain is perfect for radio broadcasting, internet-only radio stations, and broadcasting service providers. Useful for domain hacks, such as greeneggsandh.AM or shaz.AM Why should I register a .AM domain name? Registering ccTLDs offers another way to protect your online identity, as well as your business’ identity. We all know how important it is to protect our personal identity. The same should be true when considering the identity of your business or trademark online. Your assets are important whether in the form of a bank account or a domain name, and they need to be protected. When you register your trademark in a ccTLD domain, you are taking one more step to protect what is critical to you and your livelihood. By purchasing your trademark in a ccTLD, you do not have to worry about a competitor acquiring that name. Think how much easier it is to be the original owner instead of attempting to procure the domain from another party. Are there any restriction for registering a .AM? .AM has no restrictions for registering a domain. Any person from any part of the world and/or any company is welcome to register. However, every domain is subject to review. For religious reasons, Armenian law prohibits its domain names from being used for obscene sites. The right to revoke registrations due to obscenity or other illegal or immoral activity is reserved by the registry. More information</code> |
| <code>Na2SO4 is the chemical formula for what compound?</code> | <code>What compound is Na2so4? | Reference.com What compound is Na2so4? A: Quick Answer The compound Na2SO4 is called sodium sulfate. It occurs naturally in many places in the world, including Canada, Mexico, China, South Africa and Spain. It exists in Washington, Wyoming, Nevada and Utah in the United States. Full Answer Sodium sulfate is an important compound in the chemical industry and is used widely in the manufacturing of soap and detergent. Sodium sulfate develops naturally when igneous rocks erode and release sodium into nearby water. When that sodium reacts with sulfur from one of a number of possible sources in the environment, sodium sulfate is the resulting precipitate. The mineral thenardite, a naturally occurring sodium sulfate, occurs in salt lakes, such as the Great Salt Lake in Utah.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.63 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 55.23 tokens</li><li>max: 126 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how much weight should i gain during each month of pregnancy?</code> | <code>Underweight women should gain 28 to 40 pounds. And overweight women may need to gain only 15 to 25 pounds during pregnancy. In general, you should gain about 2 to 4 pounds during the first three months you're pregnant and 1 pound a week during the rest of your pregnancy.</code> |
| <code>what is difference between rebuild index and reorganize in sql server?</code> | <code>REORGANIZE is a pure cleanup operation which leaves all system state as is. There are a number of differences. Basically, rebuilding is a total rebuild of an index - it will build a new index, then drop the existing one, whereas reorganising it will simply, well... it will reorganise it.</code> |
| <code>how much cash can i withdraw from a bank?</code> | <code>Canadian banks are legally obligated to report all cash transactions above 10k to FINTRAC, the financial crime intelligence agency. Making multiple deposits/withdrawals under 10k individually, but above 10k together is 100% illegal, even if the reason is legal/legitimate for needing that money.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 25.58 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 25.46 tokens</li><li>max: 52 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The branch codice 2 is updated daily , the codice 3 branch is updated every 6 months .</code> | <code>The codice _ 2 branch gets updated daily , and the codice _ 3 branch is updated for every 6 months .</code> |
| <code>It ended in 1955 , shortly after the new mayor Norris Poulson opened all new public housing in the city .</code> | <code>It ended in 1955 , shortly after new mayor Norris Poulson opened all new public housing in the city .</code> |
| <code>In July 2011 , ARTC transferred the responsibility for the Werris Creek to North Star to the Country Rail Infrastructure Authority .</code> | <code>In July 2011 , responsibility for the Werris Creek to North Star line was transferred from the ARTC to the Country Rail Infrastructure Authority .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### global_dataset
* Dataset: global_dataset
* Size: 36,293 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 32.06 tokens</li><li>max: 320 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 51.23 tokens</li><li>max: 400 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
| <code>Dallas Stars goalie Kari Lehtonen, who has missed four games with a back problem, returned to practice on Wednesday.</code> | <code>Kari Lehtonen returns to practice</code> |
| <code>Four children born at one birth are called quadruplets.</code> | <code>What are four children born at one birth called?</code> |
| <code>Her movies, including Captain America: Civil War and the Coen Brothers' Hail Caesar!, earned $1.2bn (£978m) globally over the past 12 months.<br>Johansson's Marvel co-stars Chris Evans and Robert Downey Jr tied for second place with $1.15bn (£938m) each.<br>Last year, the list was topped by Chris Pratt while, in 2014, Jennifer Lawrence took the top honours.<br>Forbes curates the annual list by adding up global ticket sales using data from analysis site Box Office Mojo.<br>Animated movies, where only actors' voices were used, are not included and only top-billed performances are counted.<br>Johansson is joined in the top five by two other actresses - Australian Margot Robbie, who starred in the successful yet critically mauled Suicide Squad, which grossed $746m ($609m) worldwide, and Amy Adams.<br>Adams earns her place through her current film, sci-fi hit Arrival, and Batman v Superman: Dawn of Justice, in which she played Lois Lane.<br>British actress Felicity Jones made her debut on the list after making $805m (£656m) thanks, largely, to Rogue One: A Star Wars Story, only released earlier this month.<br>She also starred in fantasy film drama A Monster Calls and alongside Tom Hanks in Inferno.</code> | <code>Scarlett Johansson has been named as the top grossing actor of 2016 by Forbes magazine.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Evaluation Datasets
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 128 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
| | claim | evidence |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 19.71 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 32.5 tokens</li><li>max: 78 tokens</li></ul> |
* Samples:
| claim | evidence |
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### negation-triplets
* Dataset: negation-triplets
* Size: 128 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 14.62 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.23 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.52 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| anchor | entailment | negative |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-------------------------------------------------------------|
| <code>A cafeteria type kitchen that is not in use.</code> | <code>A commercial kitchen with pots several pots on the stove.</code> | <code>A commercial kitchen with no pots on the stove.</code> |
| <code>The sightseeing boat streams along the river joined by a plane</code> | <code>a photo of a boat with an airplane in back</code> | <code>a photo of a boat without an airplane in back</code> |
| <code>Three men, one holding pipes, another holding a large object above his head, and one resting against the pipe bed on the truck, are looking at the camera.</code> | <code>three men look at the camera</code> | <code>three men ignore the camera</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 20.13 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> |
| <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code> | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
| <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.63 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 14.96 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| <code>The term elastic potential energy is used to describe potential energy due to an object’s shape.</code> | <code>What term is used to describe potential energy due to an object’s shape?</code> |
| <code>Structures that protect the coast like barrier islands are called breakwaters.</code> | <code>What are structures that protect the coast like barrier islands called?</code> |
| <code>The urinary system system controls the amount of water in the body and removes wastes.</code> | <code>Which human body system controls the amount of water in the body and removes wastes?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### xsum-pairs
* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | summary | document |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 24.88 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 51 tokens</li><li>mean: 208.57 tokens</li><li>max: 359 tokens</li></ul> |
* Samples:
| summary | document |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The Russian and Ukrainian leaders have had a telephone conversation over the fate of jailed high-profile prisoners, raising the possibility of a swap.</code> | <code>The call came after Ukraine jailed two alleged Russian special forces soldiers for several crimes including terrorism.<br>Yevgeny Yerofeyev and Alexander Alexandrov are accused of involvement in Ukraine's conflict with pro-Russian rebels in the east.<br>A Russian court jailed Ukrainian Nadiya Savchenko for 22 years in March.<br>She was captured by eastern separatists in 2015 and accused of directing artillery fire that killed two Russian journalists.<br>Relations between Russia and Ukraine badly deteriorated following Moscow's annexation of the Crimea peninsula in 2014 and its alleged support for pro-Russian rebels in eastern Ukraine.<br>Russian President Vladimir Putin spoke with Ukrainian counterpart Petro Poroshenko on Monday night, the Kremlin said.<br>During the phone call, the pair agreed Savchenko would be allowed a consular visit "in the very near future", according to a statement.<br>Her trial caused an international outcry and her lawyers have said her condition has deteriorated after she started a hunger strike in protest against her treatment.<br>On Monday a court in Kiev found Yerofeyev and Alexandrov guilty of waging an "aggressive war" against Ukraine, committing a terrorist act and using weapons to provoke an armed conflict.<br>They were sentenced to 14 years in jail.<br>Russia has always denied sending troops to eastern Ukraine and said the men were volunteers who had left active service.<br>Mr Poroshenko has previously proposed swapping the two Russian men for Savchenko.</code> |
| <code>Police in the far south of Italy have arrested two top fugitives - 'Ndrangheta mafia bosses who were hiding in a camouflaged bunker.</code> | <code>Giuseppe Ferraro, 47, had been on the run since 1998, and Giuseppe Crea, 37, since 2006. Vegetation concealed their mountain hideout in Reggio Calabria.<br>Various weapons were seized in the small bunker, which also had cooking equipment and electricity.<br>The convicted pair have been linked to gangland murders and other crimes.<br>The police raid took place near the town of Maropati.<br>The 'Ndrangheta controls much of the world's cocaine trade. Last year Italian police seized several billion euros' worth of 'Ndrangheta assets.<br>The pair were "living like animals... cut off from society", according to prosecutor Federico Cafiero De Raho, quoted by the AFP news agency. But they were still controlling other gang members from the bunker, he said.</code> |
| <code>The Scottish child abuse inquiry will investigate care establishments run by Catholic organisations as part of the second phase of its hearings.</code> | <code>The inquiry will begin its investigation in the autumn of five homes run by the Daughters of Charity of St Vincent de Paul.<br>In 2018, it will look into a further four children's homes run by the Sisters of Nazareth.<br>It has asked people with experience of the homes to contact them.<br>The inquiry is continuing to privately take statements from abuse survivors in Scotland, and will hold its first public sessions in May.<br>More than 60 institutions, including several top private schools, are being investigated by the inquiry, which is expected to last for four years.<br>Other institutions being investigated include those run by faith-based organisations and major care providers like Quarriers and Barnardo's.<br>Daughters of Charity of St Vincent de Paul<br>• Smyllum Park in Lanark<br>• Bellevue House in Rutherglen<br>• St Joseph's Hospital in Rosewell<br>• St Vincent's School for the Deaf/Blind in Glasgow<br>• Roseangle Orphanage (St Vincent's) in Dundee.<br>Sisters of Nazareth<br>• Nazareth House in Aberdeen<br>• Nazareth House in Cardonald<br>• Nazareth House in Kilmarnock<br>• Nazareth House in Lasswade</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### sciq_pairs
* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.23 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 95.3 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Which reproduction produces offspring genetically identical to the one parent?</code> | <code>That is the main difference between sexual and asexual reproduction. Sexual reproduction just means combining genetic material from two parents. Asexual reproduction produces offspring genetically identical to the one parent.</code> |
| <code>Transition metals are superior conductors of heat as well as what else?</code> | <code>Transition metals are superior conductors of heat as well as electricity. They are malleable, which means they can be shaped into sheets, and ductile, which means they can be shaped into wires. They have high melting and boiling points, and all are solids at room temperature, except for mercury (Hg), which is a liquid. Transition metals are also high in density and very hard. Most of them are white or silvery in color, and they are generally lustrous, or shiny. The compounds that transition metals form with other elements are often very colorful. You can see several examples in the Figure below .</code> |
| <code>Alkanes are nonpolar and therefore do not attract what?</code> | <code>Alkanes are nonpolar; they do not attract ions.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### qasc_pairs
* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.29 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 34.06 tokens</li><li>max: 59 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What might fall on land may soak into the ground, becoming groundwater?</code> | <code>Some precipitation that falls on land may soak into the ground, becoming groundwater.. Hail, rain, sleet, and snow are referred to as precipitation . <br> Hail that falls on land may soak into the ground, becoming groundwater.</code> |
| <code>what shares some of the same structures and basic functions?</code> | <code>All cells share some of the same structures and basic functions.. Hair cells are also a type of skin cell. <br> hair and skin share some of the same structures and basic functions</code> |
| <code>Mutation leads to _.</code> | <code>Mutation creates new genetic variation in a gene pool.. Genetic variation is the raw material for evolution. <br> Mutation leads to evolution.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### openbookqa_pairs
* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
| | question | fact |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 13.96 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
| question | fact |
|:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code> |
| <code>What creates a valley?</code> | <code>a valley is formed by a river flowing</code> |
| <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### msmarco_pairs
* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.52 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 77.12 tokens</li><li>max: 181 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is heavy periods called</code> | <code>When you get your period, it may seem like a lot of blood loss. But because itâs impossible (or at least impractical) to actually measure your menstrual flow, it can be hard to know whether yours falls within whatâs considered a normal amount â or if it indicates heavy menstrual bleeding, called menorrhagia.</code> |
| <code>largest baby born vaginally</code> | <code>In March, a British mother gave birth vaginally to a 15 lb., 7 oz. baby boy named George. According to the Guinness Book of World Records, the heaviest baby ever was born to Anna Bates of Canada in 1879. The 7'5 mother and her 7'11 husband welcomed a 23 lb. 12 oz. baby boy, but he died 11 hours later.</code> |
| <code>singapore average manager salary</code> | <code>(Singapore). The average salary for an Information Technology (IT) Manager is S$83,116 per year. Skills that are associated with high pay for this job are UNIX, Information Technology Infrastructure Library (ITIL), and Linux. Experience has a moderate effect on income for this job.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### nq_pairs
* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.7 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 129.95 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when is the mother day celebrated every year</code> | <code>Mother's Day Mother's Day is a celebration honoring the mother of the family, as well as motherhood, maternal bonds, and the influence of mothers in society. It is celebrated on various days in many parts of the world, most commonly in the months of March or May. It complements similar celebrations honoring family members, such as Father's Day, Siblings Day, and Grandparents Day.</code> |
| <code>who wrote the book of john the gospel</code> | <code>Gospel of John Although the Gospel of John is anonymous,[1] Christian tradition historically has attributed it to John the Apostle, son of Zebedee and one of Jesus' Twelve Apostles. The gospel is so closely related in style and content to the three surviving Johannine epistles that commentators treat the four books,[2] along with the Book of Revelation, as a single corpus of Johannine literature, albeit not necessarily written by the same author.[Notes 1]</code> |
| <code>where does the blackstone river start and end</code> | <code>Blackstone River The river is formed in Worcester, Massachusetts by the confluence of the Middle River and Mill Brook. From there, it follows a rough southeast course through Millbury, Sutton, Grafton, Northbridge, Uxbridge, Millville, and Blackstone. It then continues into Rhode Island, where it flows through Woonsocket, Cumberland, Lincoln, Central Falls, and Pawtucket, where the river then reaches Pawtucket Falls. After that, the river becomes tidal, and flows into the Seekonk River just north of Providence. Other tributaries join the Blackstone along the way, such as the West and Mumford River, at Uxbridge, and The Branch River in North Smithfield.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### trivia_pairs
* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 17.22 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 31 tokens</li><li>mean: 208.3 tokens</li><li>max: 406 tokens</li></ul> |
* Samples:
| query | answer |
|:---------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Which county cricket club is based at Grace Road?</code> | <code>Leicestershire County Cricket Club Leicestershire County Cricket Club 0116 283 2128 (Main Switchboard) 0116 2440363 © 2017 by Leicestershire County Cricket Club . All Rights Reserved. Website Design and Build by threebit</code> |
| <code>In food, ‘E’ numbers 110 – 119 are which colour?</code> | <code>Food-Info.net : E-numbers : E100- E200 Food Colours E100- E200 Food Colours Alfa-, Beta- and Gamma- Carotene Natural orange-yellow colour</code> |
| <code>What orbits the Sun between Earth and Mercury?</code> | <code>What are the orbital lengths and distances of objects in our solar system? How do objects in space travel? What are the orbital lengths and distances of objects in our solar system? Space is huge, and even our immediate environment is gigantic. We are the third planet from the Sun, and the third of three inner planets, all of which are right next to the Sun compared to others. The picture below shows the planets in their orbits on the orbital plane. You have to look carefully to see our home. The four inner planets (Mercury, Venus, Earth and Mars) are in the tiny disk in the center, inside of Jupiter's orbit. Image from The Nine Planets, a Multimedia tour of the Solar System by Bill Arnett http://seds.lpl.arizona.edu/nineplanets/nineplanets/nineplanets.html The planets are far from the Sun, travel huge distances in space, and take a long time to do so. Pluto takes almost 250 years to go around the Sun completely and travels almost 23 billion miles to do so! OBJECT</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### gooaq_pairs
* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.48 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 57.15 tokens</li><li>max: 90 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>are chewing gums banned in singapore?</code> | <code>Chewing gum ban in Singapore. ... Since 2004, an exception has existed for therapeutic, dental, nicotine chewing gum, which can be bought from a doctor or registered pharmacist. It is currently not illegal to chew gum in Singapore, merely to import it and sell it, apart from the aforementioned exceptions.</code> |
| <code>how to change father name in uan account online?</code> | <code>To update an EPF member's name & Date of Birth, the EPFO has launched a new online provision. However, to update or correct EPF member's Father's name then (as of now) there is no online facility to get this done. The PF member has to contact his/her employer, submit a joint declaration form to them.</code> |
| <code>how many calories can i burn from swimming?</code> | <code>A 130-pound person swimming freestyle for one hour will burn 590 calories swimming fast, and 413 calories swimming slower. A 155-pound person swimming freestyle for one hour will burn 704 calories swimming fast, and 493 calories swimming slower.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### paws-pos
* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 25.58 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.4 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>They were there to enjoy us and they were there to pray for us .</code> | <code>They were there for us to enjoy and they were there for us to pray .</code> |
| <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
| <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code> | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
#### global_dataset
* Dataset: global_dataset
* Size: 325 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 31.96 tokens</li><li>max: 359 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 56.79 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>cardiotonics definition</code> | <code>Define cardiotonic: tending to increase the tonus of heart muscle â cardiotonic in a sentence tending to increase the tonus of heart muscle⦠See the full definition</code> |
| <code>After the hosts had a goal disallowed when Ben Strevens was flagged offside, Cheek headed in the opener in the 27th minute.<br>Graham Stack kept Eastleigh in the game by producing a fine double save to deny Reece Hall-Johnson twice on the stroke of half-time.<br>But Cheek added a second in the 73rd minute to move Braintree seven points above the relegation zone and leave Eastleigh without a win in 2017.<br>Report supplied by the Press Association.<br>Match ends, Eastleigh 0, Braintree Town 2.<br>Second Half ends, Eastleigh 0, Braintree Town 2.<br>Substitution, Braintree Town. Lee Barnard replaces Michael Cheek.<br>Jake Goodman (Braintree Town) is shown the yellow card.<br>Substitution, Braintree Town. Sam Corne replaces Kyron Farrell.<br>Substitution, Braintree Town. Ian Gayle replaces Sean Clohessy.<br>Goal! Eastleigh 0, Braintree Town 2. Michael Cheek (Braintree Town).<br>Sean Clohessy (Braintree Town) is shown the yellow card.<br>Ben Strevens (Eastleigh) is shown the yellow card.<br>Substitution, Eastleigh. Sam Muggleton replaces Tyler Garrett.<br>Substitution, Eastleigh. James Constable replaces Ben Close.<br>Second Half begins Eastleigh 0, Braintree Town 1.<br>First Half ends, Eastleigh 0, Braintree Town 1.<br>Substitution, Eastleigh. Ayo Obileye replaces Reda Johnson.<br>Goal! Eastleigh 0, Braintree Town 1. Michael Cheek (Braintree Town).<br>Hakeem Odoffin (Eastleigh) is shown the yellow card.<br>First Half begins.<br>Lineups are announced and players are warming up.</code> | <code>Michael Cheek scored twice as Braintree boosted their National League survival hopes with victory over struggling Eastleigh.</code> |
| <code>is eeyore at disney world?</code> | <code>At Walt Disney World, Eeyore can be sometimes be met in the Magic Kingdom next to the Pooh attraction, but not all the time. Eeyore features everyday, all day, at the Crystal Palace Buffet on Main Street. ... In California, Eeyore can usually be found in Critter Country near the Pooh attraction.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `weight_decay`: 0.001
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 4.000000000000001e-06}
- `warmup_ratio`: 0.3
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa3-0.4B-ST-v1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 4.000000000000001e-06}
- `warmup_ratio`: 0.3
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa3-0.4B-ST-v1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | openbookqa pairs loss | trivia pairs loss | scitail-pairs-pos loss | nq pairs loss | negation-triplets loss | qasc pairs loss | gooaq pairs loss | xsum-pairs loss | scitail-pairs-qa loss | paws-pos loss | msmarco pairs loss | vitaminc-pairs loss | global dataset loss | sciq pairs loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:---------------------:|:-----------------:|:----------------------:|:-------------:|:----------------------:|:---------------:|:----------------:|:---------------:|:---------------------:|:-------------:|:------------------:|:-------------------:|:-------------------:|:---------------:|:---------------:|:-----------------:|:------------------------:|
| 0.0102 | 16 | 7.0465 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0205 | 32 | 9.0583 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0307 | 48 | 8.6271 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0409 | 64 | 5.6026 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0512 | 80 | 4.6908 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0614 | 96 | 3.1954 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0716 | 112 | 2.1179 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0818 | 128 | 1.2636 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0921 | 144 | 0.8325 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1004 | 157 | - | 0.8188 | 0.3046 | 0.0716 | 0.9823 | 1.4375 | 0.9191 | 0.4534 | 0.2841 | 0.1112 | 0.0382 | 0.6015 | 3.7648 | 0.4414 | 0.1556 | 0.6679 | 0.5184 | 0.8753 |
| 0.1023 | 160 | 0.5674 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1125 | 176 | 0.6077 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1228 | 192 | 0.4102 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1330 | 208 | 0.4442 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1432 | 224 | 0.3306 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1535 | 240 | 0.3002 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1637 | 256 | 0.2485 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1739 | 272 | 0.274 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1841 | 288 | 0.2093 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1944 | 304 | 0.3521 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2008 | 314 | - | 0.4536 | 0.1331 | 0.0218 | 0.1832 | 0.7851 | 0.1173 | 0.1327 | 0.0783 | 0.0102 | 0.0247 | 0.1522 | 3.2338 | 0.2332 | 0.0630 | 0.7162 | 0.5844 | 0.9121 |
| 0.2046 | 320 | 0.2628 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2148 | 336 | 0.2167 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2251 | 352 | 0.1816 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2353 | 368 | 0.1327 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2455 | 384 | 0.2178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2558 | 400 | 0.0993 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2660 | 416 | 0.2293 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2762 | 432 | 0.4346 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2864 | 448 | 1.0288 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2967 | 464 | 0.4893 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3012 | 471 | - | 0.4600 | 0.1118 | 0.0123 | 0.1312 | 0.6801 | 0.0442 | 0.1744 | 0.0580 | 0.0050 | 0.0246 | 0.2256 | 3.6716 | 0.2594 | 0.0472 | 0.7369 | 0.5816 | 0.9159 |
| 0.3069 | 480 | 0.1706 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3171 | 496 | 0.1083 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3274 | 512 | 0.1036 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3376 | 528 | 0.4057 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3478 | 544 | 0.1629 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3581 | 560 | 0.6291 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3683 | 576 | 0.7985 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3785 | 592 | 0.3209 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3887 | 608 | 0.2933 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3990 | 624 | 0.1887 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4015 | 628 | - | 0.6150 | 1.0560 | 0.0180 | 1.1085 | 0.8490 | 0.0974 | 0.7939 | 1.8987 | 0.0684 | 0.1763 | 2.7715 | 3.6695 | 0.6787 | 0.2227 | 0.7234 | 0.5598 | 0.9099 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |