File size: 189,095 Bytes
3e933cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
---
base_model: microsoft/deberta-v2-xlarge
datasets:
- tals/vitaminc
- allenai/scitail
- allenai/sciq
- allenai/qasc
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/gooaq
- google-research-datasets/paws
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99622
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: in medical terms what does o.d. mean
  sentences:
  - "The SDIF format is a sequence of frames, similar to chunks in the IFF/ AIFF /RIFF\
    \ formats, but not strictly compatible. Every frameâ\x80\x99s length is a multiple\
    \ of 8 bytes. Every SDIF file or stream must begin with a small opening frame.The\
    \ body of the file or stream is a contiguous sequence of time-tagged frames, sorted\
    \ in ascending temporal order, with multiple types of frames allowed in a single\
    \ file or stream.The most recent version of this format, SDIF-3, is the standard\
    \ multi-channel hardware connection employed in DSD recording systems.he body\
    \ of the file or stream is a contiguous sequence of time-tagged frames, sorted\
    \ in ascending temporal order, with multiple types of frames allowed in a single\
    \ file or stream. The most recent version of this format, SDIF-3, is the standard\
    \ multi-channel hardware connection employed in DSD recording systems."
  - Well Phillip, my neighbor had a very similar houseboat and it weighed @ 11-12,000
    pounds. It was a 33 foot Nautaline Houseboat, however a 1970, which shouldn't
    make a difference. Lastly, hopefully some of our readers and visitors will share
    and post comments about their houseboat trailer and weight experiences.
  - Jupiterimages/Photos.com/Getty Images. When writing eye exam results on a chart
    or for a prescription, an eye doctor uses the abbreviations for the Latin terms
    meaning right and left eye. O.D. stands for oculus dexter, or right eye; it means
    pertaining to the right eye. O.S. means oculus sinister, or left eye.
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
    mainland China .
  sentences:
  - 'More than 3,700 people have died : around 3,100 in mainland China and around
    550 in all other countries combined .'
  - 'More than 3,200 people have died : almost 3,000 in mainland China and around
    275 in other countries .'
  - more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: When electrons return to a lower energy level, they emit the excess
    energy in the form of light.
  sentences:
  - When electrons return to a lower energy level, they emit the excess energy in
    the form of what?
  - What part of a cell do proteins travel to to be modified for the specific job
    they will do?
  - What is the first thing a student should do if an accident happens during a science
    experiment?
- source_sentence: The study of energy and energy transfer involving physical matter
    is called thermodynamics.
  sentences:
  - Photoautotrophs and chemoautotrophs are two basic types of what?
  - The study of energy and energy transfer involving physical matter is what?
  - What causes acid rain, ozone depletion, and global warming?
- source_sentence: Which Olympic Games were the first to be telecast worldwide?
  sentences:
  - 'List of countryside birds in more urban areas - Telegraph Wildlife List of countryside
    birds in more urban areas Countryside birds are increasingly moving into towns
    because the big freeze  has meant food is harder to find, according to the RSPB.
      Follow Here is a list of the unusual visitors, courtesy of the RSPB: Redwing:
    Most commonly encountered as a winter bird and is Britain''s smallest true thrush.
    Its creamy strip above the eye and orange-red flank patches make it distinctive.
    They roam across the countryside, feeding in fields and hedgerows, rarely visiting
    gardens, except in the coldest weather when snow covers the fields. Fieldfare:
    Large, colourful thrushes, much like a mistle thrush in general size, shape and
    behaviour. They stand very upright and move forward with purposeful hops. They
    are very social birds, spending the winter in flocks of anything from a dozen
    or two to several hundred strong. Bittern: A thickset heron with all-over bright,
    pale, buffy-brown plumage covered with dark streaks and bars. It flies on broad,
    rounded, bowed wings. Very difficult to see, as it moves silently through reeds
    at water''s edge, looking for fish. The males make a far-carrying, booming sound
    in spring. Its dependence on reedbeds and very small population make it a Red
    List species - one of the most threatened in the country. Woodcock: A large bulky
    wading bird with short legs, and a very long straight tapering bill. It is largely
    nocturnal, spending most of the day in dense cover. Most of the birds in the UK
    are residents; in the autumn birds move to the UK from Finland and Russia to winter
    here. Related Articles'
  - First televised Olympics | Guinness World Records First televised Olympics When
    1936 The Olympics made broadcasting history in 1936 when the Berlin Games was
    beamed out live in black and white to athletes in the Olympic village and to the
    wider public in 25 special viewing rooms located in Berlin and Potsdam. This was
    the first time a sporting event had ever been seen live on television screens
    and it opened the floodgates. Rome 1960 was the first Olympics to be broadcast
    live across Europe, while Tokyo 1964 was the first to reach a worldwide audience.
    Colour pictures arrived four years later at the 1968 Mexico City Games. All records
    listed on our website are current and up-to-date. For a full list of record titles,
    please use our Record Application Search. (You will be need to register / login
    for access)
  - BBC NEWS | Entertainment | Beverley Sisters' years in limelight Beverley Sisters'
    years in limelight Teddy, Babs and Joy got their first break in an advertising
    campaign Veteran singing trio The Beverley Sisters, who have been made MBEs in
    the New Year Honours List, were one of the most popular acts of the 50s and 60s.
    Joy - born in 1929 - and the twins Babs and Teddie - born in 1932 - were brought
    up in Bethnal Green in east London. During the Second World War the girls were
    evacuated to the Midlands. There they secured a contract to become "Bonnie Babies"
    in an advertising campaign for the bedtime drink Ovaltine. Radio appearances for
    the BBC followed, and with support from bandleader Glenn Miller they became professional
    singers. After the war the siblings were given their own TV show, Those Beverley
    Sisters. Chart success In 1951 the trio signed a recording contract with Columbia
    Records that helped them become the highest paid female act in the UK. They were
    the first British female group to break into the US top 10 and enjoyed chart success
    with Christmas records like Little Drummer Boy and I Saw Mommy Kissing Santa Claus.
    Other favourites included Bye Bye Love and Always and Forever. Joy married Billy
    Wright, then captain of the England football team, in 1958 and had two daughters
    and a son. Teddie also had a daughter. In 2002 they sang for the Queen and the
    Duke of Edinburgh at a Jubilee concert, while last year saw them take part in
    D-Day celebrations in Portsmouth. The trio, now in their 70s, still perform but
    have had to cut back their workload due to health concerns.
model-index:
- name: SentenceTransformer based on microsoft/deberta-v2-xlarge
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.9059824822945504
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9099404652396526
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9138764030584118
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.9097054966996683
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9143064951884331
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9102612870325675
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8934118861402478
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8907050753070487
      name: Spearman Dot
    - type: pearson_max
      value: 0.9143064951884331
      name: Pearson Max
    - type: spearman_max
      value: 0.9102612870325675
      name: Spearman Max
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: allNLI dev
      type: allNLI-dev
    metrics:
    - type: cosine_accuracy
      value: 0.71484375
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8244803547859192
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6026785714285714
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.6709309816360474
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.4909090909090909
      name: Cosine Precision
    - type: cosine_recall
      value: 0.7803468208092486
      name: Cosine Recall
    - type: cosine_ap
      value: 0.5598399809421326
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.7109375
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 769.110107421875
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.5976470588235294
      name: Dot F1
    - type: dot_f1_threshold
      value: 639.0211181640625
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.503968253968254
      name: Dot Precision
    - type: dot_recall
      value: 0.7341040462427746
      name: Dot Recall
    - type: dot_ap
      value: 0.5522830058603818
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.705078125
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 494.8561706542969
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.593886462882096
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 772.1622314453125
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.47719298245614034
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.7861271676300579
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.5596244537722644
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.705078125
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 15.881658554077148
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.589010989010989
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 24.65237808227539
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.475177304964539
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.7745664739884393
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.5573704039417041
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.71484375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 769.110107421875
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6026785714285714
      name: Max F1
    - type: max_f1_threshold
      value: 772.1622314453125
      name: Max F1 Threshold
    - type: max_precision
      value: 0.503968253968254
      name: Max Precision
    - type: max_recall
      value: 0.7861271676300579
      name: Max Recall
    - type: max_ap
      value: 0.5598399809421326
      name: Max Ap
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Qnli dev
      type: Qnli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.6796875
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7387017011642456
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6812816188870151
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.5850255489349365
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5658263305322129
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8559322033898306
      name: Cosine Recall
    - type: cosine_ap
      value: 0.7232227658329593
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.6796875
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 610.0311279296875
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6843853820598007
      name: Dot F1
    - type: dot_f1_threshold
      value: 513.2543334960938
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.5628415300546448
      name: Dot Precision
    - type: dot_recall
      value: 0.8728813559322034
      name: Dot Recall
    - type: dot_ap
      value: 0.7080904391300955
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.68359375
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 695.5964965820312
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.679245283018868
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 890.5444946289062
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.54
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.9152542372881356
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.7224600475409794
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.68359375
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 22.151939392089844
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6771653543307087
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 28.56058692932129
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.5388471177944862
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.9110169491525424
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.7234064908940119
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.68359375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 695.5964965820312
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6843853820598007
      name: Max F1
    - type: max_f1_threshold
      value: 890.5444946289062
      name: Max F1 Threshold
    - type: max_precision
      value: 0.5658263305322129
      name: Max Precision
    - type: max_recall
      value: 0.9152542372881356
      name: Max Recall
    - type: max_ap
      value: 0.7234064908940119
      name: Max Ap
---

# SentenceTransformer based on microsoft/deberta-v2-xlarge

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) <!-- at revision 1d134961d4db8e7e8eb1bc1ab81cb370244c57f7 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1536 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - negation-triplets
    - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
    - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
    - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
    - xsum-pairs
    - [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
    - [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
    - openbookqa_pairs
    - [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
    - [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
    - [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
    - [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
    - [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
    - global_dataset
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa3-0.4B-ST-v1-checkpoints-tmp")
# Run inference
sentences = [
    'Which Olympic Games were the first to be telecast worldwide?',
    'First televised Olympics | Guinness World Records First televised Olympics When 1936 The Olympics made broadcasting history in 1936 when the Berlin Games was beamed out live in black and white to athletes in the Olympic village and to the wider public in 25 special viewing rooms located in Berlin and Potsdam. This was the first time a sporting event had ever been seen live on television screens and it opened the floodgates. Rome 1960 was the first Olympics to be broadcast live across Europe, while Tokyo 1964 was the first to reach a worldwide audience. Colour pictures arrived four years later at the 1968 Mexico City Games. All records listed on our website are current and up-to-date. For a full list of record titles, please use our Record Application Search. (You will be need to register / login for access)',
    'BBC NEWS | Entertainment | Beverley Sisters\' years in limelight Beverley Sisters\' years in limelight Teddy, Babs and Joy got their first break in an advertising campaign Veteran singing trio The Beverley Sisters, who have been made MBEs in the New Year Honours List, were one of the most popular acts of the 50s and 60s. Joy - born in 1929 - and the twins Babs and Teddie - born in 1932 - were brought up in Bethnal Green in east London. During the Second World War the girls were evacuated to the Midlands. There they secured a contract to become "Bonnie Babies" in an advertising campaign for the bedtime drink Ovaltine. Radio appearances for the BBC followed, and with support from bandleader Glenn Miller they became professional singers. After the war the siblings were given their own TV show, Those Beverley Sisters. Chart success In 1951 the trio signed a recording contract with Columbia Records that helped them become the highest paid female act in the UK. They were the first British female group to break into the US top 10 and enjoyed chart success with Christmas records like Little Drummer Boy and I Saw Mommy Kissing Santa Claus. Other favourites included Bye Bye Love and Always and Forever. Joy married Billy Wright, then captain of the England football team, in 1958 and had two daughters and a son. Teddie also had a daughter. In 2002 they sang for the Queen and the Duke of Edinburgh at a Jubilee concert, while last year saw them take part in D-Day celebrations in Portsmouth. The trio, now in their 70s, still perform but have had to cut back their workload due to health concerns.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1536]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.906      |
| **spearman_cosine** | **0.9099** |
| pearson_manhattan   | 0.9139     |
| spearman_manhattan  | 0.9097     |
| pearson_euclidean   | 0.9143     |
| spearman_euclidean  | 0.9103     |
| pearson_dot         | 0.8934     |
| spearman_dot        | 0.8907     |
| pearson_max         | 0.9143     |
| spearman_max        | 0.9103     |

#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.7148     |
| cosine_accuracy_threshold    | 0.8245     |
| cosine_f1                    | 0.6027     |
| cosine_f1_threshold          | 0.6709     |
| cosine_precision             | 0.4909     |
| cosine_recall                | 0.7803     |
| cosine_ap                    | 0.5598     |
| dot_accuracy                 | 0.7109     |
| dot_accuracy_threshold       | 769.1101   |
| dot_f1                       | 0.5976     |
| dot_f1_threshold             | 639.0211   |
| dot_precision                | 0.504      |
| dot_recall                   | 0.7341     |
| dot_ap                       | 0.5523     |
| manhattan_accuracy           | 0.7051     |
| manhattan_accuracy_threshold | 494.8562   |
| manhattan_f1                 | 0.5939     |
| manhattan_f1_threshold       | 772.1622   |
| manhattan_precision          | 0.4772     |
| manhattan_recall             | 0.7861     |
| manhattan_ap                 | 0.5596     |
| euclidean_accuracy           | 0.7051     |
| euclidean_accuracy_threshold | 15.8817    |
| euclidean_f1                 | 0.589      |
| euclidean_f1_threshold       | 24.6524    |
| euclidean_precision          | 0.4752     |
| euclidean_recall             | 0.7746     |
| euclidean_ap                 | 0.5574     |
| max_accuracy                 | 0.7148     |
| max_accuracy_threshold       | 769.1101   |
| max_f1                       | 0.6027     |
| max_f1_threshold             | 772.1622   |
| max_precision                | 0.504      |
| max_recall                   | 0.7861     |
| **max_ap**                   | **0.5598** |

#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.6797     |
| cosine_accuracy_threshold    | 0.7387     |
| cosine_f1                    | 0.6813     |
| cosine_f1_threshold          | 0.585      |
| cosine_precision             | 0.5658     |
| cosine_recall                | 0.8559     |
| cosine_ap                    | 0.7232     |
| dot_accuracy                 | 0.6797     |
| dot_accuracy_threshold       | 610.0311   |
| dot_f1                       | 0.6844     |
| dot_f1_threshold             | 513.2543   |
| dot_precision                | 0.5628     |
| dot_recall                   | 0.8729     |
| dot_ap                       | 0.7081     |
| manhattan_accuracy           | 0.6836     |
| manhattan_accuracy_threshold | 695.5965   |
| manhattan_f1                 | 0.6792     |
| manhattan_f1_threshold       | 890.5445   |
| manhattan_precision          | 0.54       |
| manhattan_recall             | 0.9153     |
| manhattan_ap                 | 0.7225     |
| euclidean_accuracy           | 0.6836     |
| euclidean_accuracy_threshold | 22.1519    |
| euclidean_f1                 | 0.6772     |
| euclidean_f1_threshold       | 28.5606    |
| euclidean_precision          | 0.5388     |
| euclidean_recall             | 0.911      |
| euclidean_ap                 | 0.7234     |
| max_accuracy                 | 0.6836     |
| max_accuracy_threshold       | 695.5965   |
| max_f1                       | 0.6844     |
| max_f1_threshold             | 890.5445   |
| max_precision                | 0.5658     |
| max_recall                   | 0.9153     |
| **max_ap**                   | **0.7234** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### negation-triplets

* Dataset: negation-triplets
* Size: 5,025 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | entailment                                                                        | negative                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.85 tokens</li><li>max: 151 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.95 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.22 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | anchor                                                                        | entailment                                                                                                    | negative                                                                                                        |
  |:------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------|
  | <code>um yeah they're they're convenient you know that's that's a</code>      | <code>They are convenient.</code>                                                                             | <code>They are inconvenient.</code>                                                                             |
  | <code>The 1978 Formula One season crowned as champion Mario Andretti .</code> | <code>Mario Andretti was the season Champion and the last American to date to win a Formula One race .</code> | <code>Mario Andretti was the season Runner-up and the first American to date to lose a Formula One race.</code> |
  | <code>a bathroom with urinals sinks and towel dispensers</code>               | <code>A couple of urinals mounted to a wall in a restroom.</code>                                             | <code>A couple of urinals not mounted to a wall in a restroom.</code>                                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 5,025 training samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 16.33 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 37.23 tokens</li><li>max: 181 tokens</li></ul> |
* Samples:
  | claim                                                                                                     | evidence                                                                                                                                                             |
  |:----------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The 2018-2019 FA Cup fifth round was on February 19 , 2019 .</code>                                 | <code>The draw for the Fifth Round will take place on 18 February 2019 .</code>                                                                                      |
  | <code>Shad Moss , who stars in The Fast and the Furious : Tokyo Drift , is also known as Bow Wow .</code> | <code>`` The film stars Lucas Black , Nathalie Kelley , Sung Kang , Shad `` '' Bow Wow '' '' Moss and Brian Tee . ''</code>                                          |
  | <code>In Drive Angry , Isaiah Oltiano portrays ICE .</code>                                               | <code>She is a waitress at a local bar and has a cheating fiancee Isaiah Oltiano as ICE , whom she abandons to join with Milton to save his granddaughter . *</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 15.73 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.89 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
  | sentence1                                                                     | sentence2                                                           |
  |:------------------------------------------------------------------------------|:--------------------------------------------------------------------|
  | <code>Most metals exist as solids at room temperature.</code>                 | <code>Most metals exist in which form at room temperature?</code>   |
  | <code>Monatomic ions form when a single atom gains or loses electrons.</code> | <code>What form when a single atom gains or loses electrons?</code> |
  | <code>Carbon dioxide chemically weather rocks by creating acids.</code>       | <code>How does carbon dioxide chemically weather rocks?</code>      |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                         |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 23.4 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.53 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                  | sentence2                                                                                                                                 |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The small intestine further breaks down the fats through the bile in the gall bladder, which wears out quicker with the large amount of fats.</code> | <code>To solubilize the fats so that they can be absorbed, the gall bladder secretes a fluid called bile into the small intestine.</code> |
  | <code>Activation energy, which is defined as the amount of energy required to make the reaction start and carry on spontaneously.</code>                   | <code>The amount of energy required to begin a chemical reaction is known as the activation energy.</code>                                |
  | <code>Hydraulic fracturing (fracking) fluid.</code>                                                                                                        | <code>Fracking is another term for hydraulic fracturing.</code>                                                                           |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 5,025 training samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
  |         | summary                                                                           | document                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 9 tokens</li><li>mean: 25.61 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 53 tokens</li><li>mean: 214.37 tokens</li><li>max: 371 tokens</li></ul> |
* Samples:
  | summary                                                                                                                                               | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Phil Mickelson has ended his 25-year partnership with caddie Jim Mackay.</code>                                                                 | <code>Mickelson won five majors and 41 PGA Tour titles with Mackay - nicknamed 'Bones' - on his bag.<br>The 47-year-old said the separation was "mutual" and confirmed his brother, Tim, will take over from Mackay.<br>"Our decision is not based on a single incident. We just feel it's the right time for change. Bones is one of the most knowledgeable and dedicated caddies in the world," said Mickelson.<br>"The next player to work with him will obviously be very lucky. My relationship and history with Bones far exceeds golf. He has been one of the most important and special people in my life since the day we met, and I will always be grateful for everything he has done for me."<br>Mickelson has earned in excess of $80m (£63m) in prize money since working with Mackay. He has won the Masters three times, the Open Championship and the US PGA, as well as finishing second or tied for second six times at golf's other major, the US Open.<br>Mackay was at Erin Hills last week to prepare for the US Open in the event Mickelson was able to take part in the tournament, which clashed with his daughter's graduation ceremony.<br>In a statement Mackay said: "When Phil hired me in 1992, I had one dream: to caddie in a Ryder Cup. Last year, at Hazeltine, Phil played in his 11th straight Ryder Cup. It was so cool to have a front-row seat.<br>"I wish Phil nothing but the best. His game is still at an elite level, and when he wins in the future (definitely the Masters), I will be among the first to congratulate him."</code> |
  | <code>Ice cream maker Ben & Jerry's has recalled tubs of one of its best-selling products over concern they may contain small pieces of metal.</code> | <code>Some consumers who bought 500ml cartons of Cookie Dough are being told not to eat it and instead throw it away.<br>The company has issued an alert over four batches of the ice cream which it says could be affected.<br>Tubs affected have codes L62110L011, L62111L011, L62112L011 and L62113L011 printed on the bottom of the pots.<br>The company issued an "important safety notice" after internal quality assurance checks showed that a limited number of products could be affected.<br>Ben & Jerry's said: "The company has identified a specific production period during which Ben & Jerry's Cookie Dough 500ml may have been affected and, as safety remains a top priority, Ben & Jerry's is voluntarily recalling four batch codes of Cookie Dough 500ml from sale.<br>"As a precaution, everyone with a 500ml tub of Ben & Jerry's Cookie Dough in their freezers at home should check the batch number on the bottom of their tub to make sure it's not affected.<br>"And, if it matches the batch numbers listed above, they should not eat the product and, instead, we ask them to discard the product in the usual household bin."<br>It is unclear how many pots of ice cream could be affected.<br>The company said that consumers who have to throw away a tub of the ice cream can call 0800 146 252 to find out how to receive a voucher for a free pot.</code>                                                                                                                                                                                    |
  | <code>Plans to redevelop the former British Sugar factory site that could create more than 400 jobs in Worcestershire have been approved.</code>      | <code>Developers St Francis Group submitted plans<br> to Wyre Forest District Council for the Stourport Road site in April.<br>The first phase of the plans includes 200 homes, a care home, medical centre, hotel, shops and restaurants.<br>A spokesperson for the project, called Silverwoods, said building work is likely to start next year.<br>The second phase would include more homes and the construction of a link road in the town to the Worcester Road, the spokesperson said.<br>The developers bought the former sugar beet processing and production plant in 2006. British Sugar closed its Kidderminster operation in 2004.<br>All the buildings on the site have been knocked down apart from 70 metre (230ft) twin silos, which will soon be demolished.<br>The redevelopment is part of the South Kidderminster Enterprise Park.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.98 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 83.86 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                     | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Digestive enzymes secreted in the acidic environment (low ph) of the stomach help break down what?</code>               | <code>Digestive enzymes secreted in the acidic environment (low pH) of the stomach help break down proteins into smaller molecules. The main digestive enzyme in the stomach is pepsin , which works best at a pH of about 1.5. These enzymes would not work optimally at other pHs. Trypsin is another enzyme in the digestive system, which breaks protein chains in food into smaller parts. Trypsin works in the small intestine, which is not an acidic environment. Trypsin's optimum pH is about 8.</code> |
  | <code>How much can the bacteria in your gut weigh?</code>                                                                     | <code>Lastly, keep in mind the small size of bacteria. Together, all the bacteria in your gut may weight just about 2 pounds.</code>                                                                                                                                                                                                                                                                                                                                                                              |
  | <code>What are the outpocketings of the digestive tract that remove nitrogenous wastes and function in osmoregulation?</code> | <code></code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 11.52 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 34.06 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
  | sentence1                                                      | sentence2                                                                                                                                                                                                                                     |
  |:---------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Phototropism means growing toward what?</code>           | <code>Plants exhibit phototropism, or growing toward a light source.. Green plants use light as their primary energy source. <br> Phototropism means growing toward the energy of light</code>                                                |
  | <code>What can cause a thermal conductor to become hot?</code> | <code>if a thermal conductor is exposed to a source of heat then that conductor may become hot. Radiant heat is the way the sun heats the planet. <br> if a thermal conductor is exposed to the sun then that conductor may become hot</code> |
  | <code>What kind of feet do echinoids have?</code>              | <code>Echinoderms have a unique water vascular system with tube feet.. Another group of echinoderms are the echinoids. <br> echinoids have tube feet</code>                                                                                   |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 3,029 training samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                         | fact                                                                              |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.9 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.41 tokens</li><li>max: 26 tokens</li></ul> |
* Samples:
  | question                                                                     | fact                                                                                              |
  |:-----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | <code>Which statement is true?</code>                                        | <code>aluminum is a nonrenewable resource</code>                                                  |
  | <code>Water in a sealed jar might do what when placed in the freezer?</code> | <code>when water freezes , that water expands</code>                                              |
  | <code>When trees are harvested, the trees</code>                             | <code>cutting down trees in a forest causes the number of trees to decrease in that forest</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.69 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 74.93 tokens</li><li>max: 246 tokens</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:-----------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>airman leadership school college credit hours</code> | <code>Master Sgt. Joseph P. Cook, the commandant of James M. McCoy Airman Leadership School at Offutt said that the leadership course consists of 192 hours where airmen will also receive nine college credit hours towards their Community College of the Air Force degree.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  | <code>how to use a magnehelic gauge</code>                 | <code>Here’s how to use your Magnehelic Gauge: 1) Prior to cleaning the dryer vent, install our SmartTap Fitting in the transition hose (see pic to the right). Using the same tubing from the LintAlert, connect the SmartTap Fitting to the High Pressure barb on the magnehelic gauge.2) Turn the dryer ON and take note of the high pressure reading on the gauge. 3) After cleaning the dryer vent, turn the dryer back ON and see how much the back pressure has been reduced.sing the same tubing from the LintAlert, connect the SmartTap Fitting to the High Pressure barb on the magnehelic gauge. 2) Turn the dryer ON and take note of the high pressure reading on the gauge. 3) After cleaning the dryer vent, turn the dryer back ON and see how much the back pressure has been reduced.</code> |
  | <code>cbs television stations phone number</code>          | <code>CBS2/KCAL9 is part of CBS Television Stations, a division of CBS Corp. and one of the largest network-owned station groups in the country. CBS Studio City Broadcast Center. 4200 Radford Avenue. Studio City, CA 91604 (818) 655-2000.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 9 tokens</li><li>mean: 11.71 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 126.25 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                               | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:--------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what the folds in a chefs hat mean</code>         | <code>Chef's uniform The toque is a chef's hat that dates back to the 16th century.[1][2] Different heights may indicate rank within a kitchen,[1] and they are designed to prevent hair from falling into the food when cooking.[2] The 100 folds of the toque are said to represent the many different ways a chef knows to cook an egg.[citation needed]</code>                                                                                                                                                                      |
  | <code>when did brian come back to family guy</code>     | <code>Brian Griffin As a character, Brian has been very well received by critics and fans. When Brian was killed off in the season 12 episode "Life of Brian", the events of the episode received substantial attention from the media and elicited strongly negative reactions from fans of the show. Brian subsequently returned two episodes later, in "Christmas Guy", after Stewie travels back in time to save him.[1][2]</code>                                                                                                  |
  | <code>who plays bart in i can only imagine movie</code> | <code>I Can Only Imagine (film) I Can Only Imagine is a 2018 American Christian drama film directed by the Erwin Brothers and written by Alex Cramer, Jon Erwin, and Brent McCorkle, based on the story behind the MercyMe song of the same name, the best-selling Christian single of all time.[3] The film stars J. Michael Finley as Bart Millard, the lead singer who wrote the song about his relationship with his father (Dennis Quaid). Madeline Carroll, Priscilla Shirer, Cloris Leachman, and Trace Adkins also star.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 5,025 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | answer                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 17.17 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 203.37 tokens</li><li>max: 469 tokens</li></ul> |
* Samples:
  | query                                                                                | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  |:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The song Diamonds are a Girl’s Best Friend comes from which musical?</code>    | <code>Marilyn Monroe — Diamonds Are a Girl's Best Friend — Listen, watch, download and discover music for free at Last.fm Monroe's rendition of the song "Diamonds Are a Girl's Best Friend" (in Gentlemen prefer Blondes) is considered an iconic performance that has been copied by the likes of Madonna, Geri Haliwell, Kylie Minogue, Nicole Kidman and Anna Nicole Smith. Don't want to see ads? Subscribe now Similar Tracks</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>What is the Internet country code top-level domain (ccTLD) for Armenia?</code> | <code>.AM Domains • Armenia Domain Names Why choose a .am domain extension? .AM has taken off as a great extension for podcast and audio-related websites. The domain is perfect for radio broadcasting, internet-only radio stations, and broadcasting service providers. Useful for domain hacks, such as greeneggsandh.AM or shaz.AM Why should I register a .AM domain name? Registering ccTLDs offers another way to protect your online identity, as well as your business’ identity. We all know how important it is to protect our personal identity. The same should be true when considering the identity of your business or trademark online. Your assets are important whether in the form of a bank account or a domain name, and they need to be protected. When you register your trademark in a ccTLD domain, you are taking one more step to protect what is critical to you and your livelihood. By purchasing your trademark in a ccTLD, you do not have to worry about a competitor acquiring that name. Think how much easier it is to be the original owner instead of attempting to procure the domain from another party. Are there any restriction for registering a .AM? .AM has no restrictions for registering a domain. Any person from any part of the world and/or any company is welcome to register. However, every domain is subject to review. For religious reasons, Armenian law prohibits its domain names from being used for obscene sites. The right to revoke registrations due to obscenity or other illegal or immoral activity is reserved by the registry. More information</code> |
  | <code>Na2SO4 is the chemical formula for what compound?</code>                       | <code>What compound is Na2so4? | Reference.com What compound is Na2so4? A: Quick Answer The compound Na2SO4 is called sodium sulfate. It occurs naturally in many places in the world, including Canada, Mexico, China, South Africa and Spain. It exists in Washington, Wyoming, Nevada and Utah in the United States. Full Answer Sodium sulfate is an important compound in the chemical industry and is used widely in the manufacturing of soap and detergent. Sodium sulfate develops naturally when igneous rocks erode and release sodium into nearby water. When that sodium reacts with sulfur from one of a number of possible sources in the environment, sodium sulfate is the resulting precipitate. The mineral thenardite, a naturally occurring sodium sulfate, occurs in salt lakes, such as the Great Salt Lake in Utah.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.63 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 55.23 tokens</li><li>max: 126 tokens</li></ul> |
* Samples:
  | sentence1                                                                           | sentence2                                                                                                                                                                                                                                                                                                            |
  |:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how much weight should i gain during each month of pregnancy?</code>          | <code>Underweight women should gain 28 to 40 pounds. And overweight women may need to gain only 15 to 25 pounds during pregnancy. In general, you should gain about 2 to 4 pounds during the first three months you're pregnant and 1 pound a week during the rest of your pregnancy.</code>                         |
  | <code>what is difference between rebuild index and reorganize in sql server?</code> | <code>REORGANIZE is a pure cleanup operation which leaves all system state as is. There are a number of differences. Basically, rebuilding is a total rebuild of an index - it will build a new index, then drop the existing one, whereas reorganising it will simply, well... it will reorganise it.</code>        |
  | <code>how much cash can i withdraw from a bank?</code>                              | <code>Canadian banks are legally obligated to report all cash transactions above 10k to FINTRAC, the financial crime intelligence agency. Making multiple deposits/withdrawals under 10k individually, but above 10k together is 100% illegal, even if the reason is legal/legitimate for needing that money.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 5,025 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 25.58 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 25.46 tokens</li><li>max: 52 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                         | sentence2                                                                                                                                                       |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The branch codice 2 is updated daily , the codice 3 branch is updated every 6 months .</code>                                               | <code>The codice _ 2 branch gets updated daily , and the codice _ 3 branch is updated for every 6 months .</code>                                               |
  | <code>It ended in 1955 , shortly after the new mayor Norris Poulson opened all new public housing in the city .</code>                            | <code>It ended in 1955 , shortly after new mayor Norris Poulson opened all new public housing in the city .</code>                                              |
  | <code>In July 2011 , ARTC transferred the responsibility for the Werris Creek to North Star to the Country Rail Infrastructure Authority .</code> | <code>In July 2011 , responsibility for the Werris Creek to North Star line was transferred from the ARTC to the Country Rail Infrastructure Authority .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### global_dataset

* Dataset: global_dataset
* Size: 36,293 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 32.06 tokens</li><li>max: 320 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 51.23 tokens</li><li>max: 400 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sentence2                                                                                            |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
  | <code>Dallas Stars goalie Kari Lehtonen, who has missed four games with a back problem, returned to practice on Wednesday.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>Kari Lehtonen returns to practice</code>                                                       |
  | <code>Four children born at one birth are called quadruplets.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <code>What are four children born at one birth called?</code>                                        |
  | <code>Her movies, including Captain America: Civil War and the Coen Brothers' Hail Caesar!, earned $1.2bn (£978m) globally over the past 12 months.<br>Johansson's Marvel co-stars Chris Evans and Robert Downey Jr tied for second place with $1.15bn (£938m) each.<br>Last year, the list was topped by Chris Pratt while, in 2014, Jennifer Lawrence took the top honours.<br>Forbes curates the annual list by adding up global ticket sales using data from analysis site Box Office Mojo.<br>Animated movies, where only actors' voices were used, are not included and only top-billed performances are counted.<br>Johansson is joined in the top five by two other actresses - Australian Margot Robbie, who starred in the successful yet critically mauled Suicide Squad, which grossed $746m ($609m) worldwide, and Amy Adams.<br>Adams earns her place through her current film, sci-fi hit Arrival, and Batman v Superman: Dawn of Justice, in which she played Lois Lane.<br>British actress Felicity Jones made her debut on the list after making $805m (£656m) thanks, largely, to Rogue One: A Star Wars Story, only released earlier this month.<br>She also starred in fantasy film drama A Monster Calls and alongside Tom Hanks in Inferno.</code> | <code>Scarlett Johansson has been named as the top grossing actor of 2016 by Forbes magazine.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Evaluation Datasets

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 128 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 1000 samples:
  |         | claim                                                                             | evidence                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           |
  | details | <ul><li>min: 9 tokens</li><li>mean: 19.71 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 32.5 tokens</li><li>max: 78 tokens</li></ul> |
* Samples:
  | claim                                                                               | evidence                                                                                                                                                                                                                                                                                                                                               |
  |:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Dragon Con had over 5000 guests .</code>                                      | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code>                                                                                                          |
  | <code>COVID-19 has reached more than 185 countries .</code>                         | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code>                                                                                                                                                                                                   |
  | <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### negation-triplets

* Dataset: negation-triplets
* Size: 128 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | entailment                                                                        | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 14.62 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.23 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.52 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                  | entailment                                                             | negative                                                     |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-------------------------------------------------------------|
  | <code>A cafeteria type kitchen that is not in use.</code>                                                                                                               | <code>A commercial kitchen with pots several pots on the stove.</code> | <code>A commercial kitchen with no pots on the stove.</code> |
  | <code>The sightseeing boat streams along the river joined by a plane</code>                                                                                             | <code>a photo of  a boat with an airplane in back</code>               | <code>a photo of a boat without an airplane in back</code>   |
  | <code>Three men, one holding pipes, another holding a large object above his head, and one resting against the pipe bed on the truck, are looking at the camera.</code> | <code>three men look at the camera</code>                              | <code>three men ignore the camera</code>                     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 20.13 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.48 tokens</li><li>max: 23 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                     | sentence2                                                                              |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>humans normally have 23 pairs of chromosomes.</code>                                                                                                                                    | <code>Humans typically have 23 pairs pairs of chromosomes.</code>                      |
  | <code>A solution is a homogenous mixture of two or more substances that exist in a single phase.</code>                                                                                       | <code>Solution is the term for a homogeneous mixture of two or more substances.</code> |
  | <code>Upwelling The physical process in near-shore ocean systems of rising of nutrients and colder bottom waters to the surface because of constant wind patterns along the shoreline.</code> | <code>Upwelling is the term for when deep ocean water rises to the surface.</code>     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 15.63 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 14.96 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                     | sentence2                                                                                         |
  |:--------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | <code>The term elastic potential energy is used to describe potential energy due to an object’s shape.</code> | <code>What term is used to describe potential energy due to an object’s shape?</code>             |
  | <code>Structures that protect the coast like barrier islands are called breakwaters.</code>                   | <code>What are structures that protect the coast like barrier islands called?</code>              |
  | <code>The urinary system system controls the amount of water in the body and removes wastes.</code>           | <code>Which human body system controls the amount of water in the body and removes wastes?</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### xsum-pairs

* Dataset: xsum-pairs
* Size: 128 evaluation samples
* Columns: <code>summary</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
  |         | summary                                                                           | document                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 24.88 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 51 tokens</li><li>mean: 208.57 tokens</li><li>max: 359 tokens</li></ul> |
* Samples:
  | summary                                                                                                                                                             | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The Russian and Ukrainian leaders have had a telephone conversation over the fate of jailed high-profile prisoners, raising the possibility of a swap.</code> | <code>The call came after Ukraine jailed two alleged Russian special forces soldiers for several crimes including terrorism.<br>Yevgeny Yerofeyev and Alexander Alexandrov are accused of involvement in Ukraine's conflict with pro-Russian rebels in the east.<br>A Russian court jailed Ukrainian Nadiya Savchenko for 22 years in March.<br>She was captured by eastern separatists in 2015 and accused of directing artillery fire that killed two Russian journalists.<br>Relations between Russia and Ukraine badly deteriorated following Moscow's annexation of the Crimea peninsula in 2014 and its alleged support for pro-Russian rebels in eastern Ukraine.<br>Russian President Vladimir Putin spoke with Ukrainian counterpart Petro Poroshenko on Monday night, the Kremlin said.<br>During the phone call, the pair agreed Savchenko would be allowed a consular visit "in the very near future", according to a statement.<br>Her trial caused an international outcry and her lawyers have said her condition has deteriorated after she started a hunger strike in protest against her treatment.<br>On Monday a court in Kiev found Yerofeyev and Alexandrov guilty of waging an "aggressive war" against Ukraine, committing a terrorist act and using weapons to provoke an armed conflict.<br>They were sentenced to 14 years in jail.<br>Russia has always denied sending troops to eastern Ukraine and said the men were volunteers who had left active service.<br>Mr Poroshenko has previously proposed swapping the two Russian men for Savchenko.</code> |
  | <code>Police in the far south of Italy have arrested two top fugitives - 'Ndrangheta mafia bosses who were hiding in a camouflaged bunker.</code>                   | <code>Giuseppe Ferraro, 47, had been on the run since 1998, and Giuseppe Crea, 37, since 2006. Vegetation concealed their mountain hideout in Reggio Calabria.<br>Various weapons were seized in the small bunker, which also had cooking equipment and electricity.<br>The convicted pair have been linked to gangland murders and other crimes.<br>The police raid took place near the town of Maropati.<br>The 'Ndrangheta controls much of the world's cocaine trade. Last year Italian police seized several billion euros' worth of 'Ndrangheta assets.<br>The pair were "living like animals... cut off from society", according to prosecutor Federico Cafiero De Raho, quoted by the AFP news agency. But they were still controlling other gang members from the bunker, he said.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  | <code>The Scottish child abuse inquiry will investigate care establishments run by Catholic organisations as part of the second phase of its hearings.</code>       | <code>The inquiry will begin its investigation in the autumn of five homes run by the Daughters of Charity of St Vincent de Paul.<br>In 2018, it will look into a further four children's homes run by the Sisters of Nazareth.<br>It has asked people with experience of the homes to contact them.<br>The inquiry is continuing to privately take statements from abuse survivors in Scotland, and will hold its first public sessions in May.<br>More than 60 institutions, including several top private schools, are being investigated by the inquiry, which is expected to last for four years.<br>Other institutions being investigated include those run by faith-based organisations and major care providers like Quarriers and Barnardo's.<br>Daughters of Charity of St Vincent de Paul<br>•         Smyllum Park in Lanark<br>•         Bellevue House in Rutherglen<br>•         St Joseph's Hospital in Rosewell<br>•         St Vincent's School for the Deaf/Blind in Glasgow<br>•         Roseangle Orphanage (St Vincent's) in Dundee.<br>Sisters of Nazareth<br>•         Nazareth House in Aberdeen<br>•         Nazareth House in Cardonald<br>•         Nazareth House in Kilmarnock<br>•         Nazareth House in Lasswade</code>                                                                                                                                                                                                                                                                                                                            |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.23 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 95.3 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                   | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Which reproduction produces offspring genetically identical to the one parent?</code> | <code>That is the main difference between sexual and asexual reproduction. Sexual reproduction just means combining genetic material from two parents. Asexual reproduction produces offspring genetically identical to the one parent.</code>                                                                                                                                                                                                                                                                                                                                                                                           |
  | <code>Transition metals are superior conductors of heat as well as what else?</code>        | <code>Transition metals are superior conductors of heat as well as electricity. They are malleable, which means they can be shaped into sheets, and ductile, which means they can be shaped into wires. They have high melting and boiling points, and all are solids at room temperature, except for mercury (Hg), which is a liquid. Transition metals are also high in density and very hard. Most of them are white or silvery in color, and they are generally lustrous, or shiny. The compounds that transition metals form with other elements are often very colorful. You can see several examples in the Figure below .</code> |
  | <code>Alkanes are nonpolar and therefore do not attract what?</code>                        | <code>Alkanes are nonpolar; they do not attract ions.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 11.29 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 34.06 tokens</li><li>max: 59 tokens</li></ul> |
* Samples:
  | sentence1                                                                            | sentence2                                                                                                                                                                                                                                       |
  |:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What might fall on land may soak into the ground, becoming groundwater?</code> | <code>Some precipitation that falls on land may soak into the ground, becoming groundwater.. Hail, rain, sleet, and snow are referred to as precipitation . <br> Hail that falls on land may soak into the ground, becoming groundwater.</code> |
  | <code>what shares some of the same structures and basic functions?</code>            | <code>All cells share some of the same structures and basic functions.. Hair cells are also a type of skin cell. <br> hair and skin share some of the same structures and basic functions</code>                                                |
  | <code>Mutation leads to _.</code>                                                    | <code>Mutation creates new genetic variation in a gene pool.. Genetic variation is the raw material for evolution. <br> Mutation leads to evolution.</code>                                                                                     |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### openbookqa_pairs

* Dataset: openbookqa_pairs
* Size: 128 evaluation samples
* Columns: <code>question</code> and <code>fact</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | fact                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.96 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.78 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
  | question                                                               | fact                                                                         |
  |:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>The thermal production of a stove is generically used for</code> | <code>a stove generates heat for cooking usually</code>                      |
  | <code>What creates a valley?</code>                                    | <code>a valley is formed by a river flowing</code>                           |
  | <code>when it turns day and night on a planet, what cause this?</code> | <code>a planet rotating causes cycles of day and night on that planet</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.52 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 77.12 tokens</li><li>max: 181 tokens</li></ul> |
* Samples:
  | sentence1                                     | sentence2                                                                                                                                                                                                                                                                                                                                |
  |:----------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what is heavy periods called</code>     | <code>When you get your period, it may seem like a lot of blood loss. But because it’s impossible (or at least impractical) to actually measure your menstrual flow, it can be hard to know whether yours falls within what’s considered a normal amount — or if it indicates heavy menstrual bleeding, called menorrhagia.</code> |
  | <code>largest baby born vaginally</code>      | <code>In March, a British mother gave birth vaginally to a 15 lb., 7 oz. baby boy named George. According to the Guinness Book of World Records, the heaviest baby ever was born to Anna Bates of Canada in 1879. The 7'5 mother and her 7'11 husband welcomed a 23 lb. 12 oz. baby boy, but he died 11 hours later.</code>              |
  | <code>singapore average manager salary</code> | <code>(Singapore). The average salary for an Information Technology (IT) Manager is S$83,116 per year. Skills that are associated with high pay for this job are UNIX, Information Technology Infrastructure Library (ITIL), and Linux. Experience has a moderate effect on income for this job.</code>                                  |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.7 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 129.95 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:-----------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>when is the mother day celebrated every year</code>  | <code>Mother's Day Mother's Day is a celebration honoring the mother of the family, as well as motherhood, maternal bonds, and the influence of mothers in society. It is celebrated on various days in many parts of the world, most commonly in the months of March or May. It complements similar celebrations honoring family members, such as Father's Day, Siblings Day, and Grandparents Day.</code>                                                                                                                                                                                                                                                                                       |
  | <code>who wrote the book of john the gospel</code>         | <code>Gospel of John Although the Gospel of John is anonymous,[1] Christian tradition historically has attributed it to John the Apostle, son of Zebedee and one of Jesus' Twelve Apostles. The gospel is so closely related in style and content to the three surviving Johannine epistles that commentators treat the four books,[2] along with the Book of Revelation, as a single corpus of Johannine literature, albeit not necessarily written by the same author.[Notes 1]</code>                                                                                                                                                                                                          |
  | <code>where does the blackstone river start and end</code> | <code>Blackstone River The river is formed in Worcester, Massachusetts by the confluence of the Middle River and Mill Brook. From there, it follows a rough southeast course through Millbury, Sutton, Grafton, Northbridge, Uxbridge, Millville, and Blackstone. It then continues into Rhode Island, where it flows through Woonsocket, Cumberland, Lincoln, Central Falls, and Pawtucket, where the river then reaches Pawtucket Falls. After that, the river becomes tidal, and flows into the Seekonk River just north of Providence. Other tributaries join the Blackstone along the way, such as the West and Mumford River, at Uxbridge, and The Branch River in North Smithfield.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 128 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 10 tokens</li><li>mean: 17.22 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 31 tokens</li><li>mean: 208.3 tokens</li><li>max: 406 tokens</li></ul> |
* Samples:
  | query                                                          | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:---------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Which county cricket club is based at Grace Road?</code> | <code>Leicestershire County Cricket Club Leicestershire County Cricket Club 0116 283 2128 (Main Switchboard) 0116 2440363 © 2017 by Leicestershire County Cricket Club . All Rights Reserved. Website Design and Build by threebit</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  | <code>In food, ‘E’ numbers 110 – 119 are which colour?</code>  | <code>Food-Info.net : E-numbers : E100- E200 Food Colours E100- E200 Food Colours Alfa-, Beta- and Gamma- Carotene Natural orange-yellow colour</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>What orbits the Sun between Earth and Mercury?</code>    | <code>What are the orbital lengths and distances of objects in our solar system? How do objects in space travel? What are the orbital lengths and distances of objects in our solar system? Space is huge, and even our immediate environment is gigantic. We are the third  planet from the Sun, and the third of three inner planets, all of which are  right next to the Sun compared to others. The picture below shows the planets  in their orbits on the orbital plane. You have to look carefully to see our  home. The four inner planets (Mercury, Venus, Earth and Mars) are in the tiny  disk in the center, inside of Jupiter's orbit. Image from The Nine Planets, a Multimedia tour of the Solar System by Bill  Arnett http://seds.lpl.arizona.edu/nineplanets/nineplanets/nineplanets.html The planets are far from the Sun, travel huge distances in space, and take  a long time to do so. Pluto takes almost 250 years to go around the Sun completely  and travels almost 23 billion miles to do so! OBJECT</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.48 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 57.15 tokens</li><li>max: 90 tokens</li></ul> |
* Samples:
  | sentence1                                                     | sentence2                                                                                                                                                                                                                                                                                                                       |
  |:--------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>are chewing gums banned in singapore?</code>            | <code>Chewing gum ban in Singapore. ... Since 2004, an exception has existed for therapeutic, dental, nicotine chewing gum, which can be bought from a doctor or registered pharmacist. It is currently not illegal to chew gum in Singapore, merely to import it and sell it, apart from the aforementioned exceptions.</code> |
  | <code>how to change father name in uan account online?</code> | <code>To update an EPF member's name & Date of Birth, the EPFO has launched a new online provision. However, to update or correct EPF member's Father's name then (as of now) there is no online facility to get this done. The PF member has to contact his/her employer, submit a joint declaration form to them.</code>      |
  | <code>how many calories can i burn from swimming?</code>      | <code>A 130-pound person swimming freestyle for one hour will burn 590 calories swimming fast, and 413 calories swimming slower. A 155-pound person swimming freestyle for one hour will burn 704 calories swimming fast, and 493 calories swimming slower.</code>                                                              |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### paws-pos

* Dataset: [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) at [161ece9](https://huggingface.co/datasets/google-research-datasets/paws/tree/161ece9501cf0a11f3e48bd356eaa82de46d6a09)
* Size: 128 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 10 tokens</li><li>mean: 25.58 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.4 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                      | sentence2                                                                                                                                                      |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>They were there to enjoy us and they were there to pray for us .</code>                                                                                  | <code>They were there for us to enjoy and they were there for us to pray .</code>                                                                              |
  | <code>After the end of the war in June 1902 , Higgins left Southampton in the `` SSBavarian '' in August , returning to Cape Town the following month .</code> | <code>In August , after the end of the war in June 1902 , Higgins Southampton left the `` SSBavarian '' and returned to Cape Town the following month .</code> |
  | <code>From the merger of the Four Rivers Council and the Audubon Council , the Shawnee Trails Council was born .</code>                                        | <code>Shawnee Trails Council was formed from the merger of the Four Rivers Council and the Audubon Council .</code>                                            |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

#### global_dataset

* Dataset: global_dataset
* Size: 325 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 31.96 tokens</li><li>max: 359 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 56.79 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sentence2                                                                                                                                                                                                                                                                                                             |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>cardiotonics definition</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <code>Define cardiotonic: tending to increase the tonus of heart muscle — cardiotonic in a sentence tending to increase the tonus of heart muscle… See the full definition</code>                                                                                                                                 |
  | <code>After the hosts had a goal disallowed when Ben Strevens was flagged offside, Cheek headed in the opener in the 27th minute.<br>Graham Stack kept Eastleigh in the game by producing a fine double save to deny Reece Hall-Johnson twice on the stroke of half-time.<br>But Cheek added a second in the 73rd minute to move Braintree seven points above the relegation zone and leave Eastleigh without a win in 2017.<br>Report supplied by the Press Association.<br>Match ends, Eastleigh 0, Braintree Town 2.<br>Second Half ends, Eastleigh 0, Braintree Town 2.<br>Substitution, Braintree Town. Lee Barnard replaces Michael Cheek.<br>Jake Goodman (Braintree Town) is shown the yellow card.<br>Substitution, Braintree Town. Sam Corne replaces Kyron Farrell.<br>Substitution, Braintree Town. Ian Gayle replaces Sean Clohessy.<br>Goal!  Eastleigh 0, Braintree Town 2. Michael Cheek (Braintree Town).<br>Sean Clohessy (Braintree Town) is shown the yellow card.<br>Ben Strevens (Eastleigh) is shown the yellow card.<br>Substitution, Eastleigh. Sam Muggleton replaces Tyler Garrett.<br>Substitution, Eastleigh. James Constable replaces Ben Close.<br>Second Half begins Eastleigh 0, Braintree Town 1.<br>First Half ends, Eastleigh 0, Braintree Town 1.<br>Substitution, Eastleigh. Ayo Obileye replaces Reda Johnson.<br>Goal!  Eastleigh 0, Braintree Town 1. Michael Cheek (Braintree Town).<br>Hakeem Odoffin (Eastleigh) is shown the yellow card.<br>First Half begins.<br>Lineups are announced and players are warming up.</code> | <code>Michael Cheek scored twice as Braintree boosted their National League survival hopes with victory over struggling Eastleigh.</code>                                                                                                                                                                             |
  | <code>is eeyore at disney world?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <code>At Walt Disney World, Eeyore can be sometimes be met in the Magic Kingdom next to the Pooh attraction, but not all the time. Eeyore features everyday, all day, at the Crystal Palace Buffet on Main Street. ... In California, Eeyore can usually be found in Critter Country near the Pooh attraction.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `weight_decay`: 0.001
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 4.000000000000001e-06}
- `warmup_ratio`: 0.3
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa3-0.4B-ST-v1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 4.000000000000001e-06}
- `warmup_ratio`: 0.3
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa3-0.4B-ST-v1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | openbookqa pairs loss | trivia pairs loss | scitail-pairs-pos loss | nq pairs loss | negation-triplets loss | qasc pairs loss | gooaq pairs loss | xsum-pairs loss | scitail-pairs-qa loss | paws-pos loss | msmarco pairs loss | vitaminc-pairs loss | global dataset loss | sciq pairs loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:---------------------:|:-----------------:|:----------------------:|:-------------:|:----------------------:|:---------------:|:----------------:|:---------------:|:---------------------:|:-------------:|:------------------:|:-------------------:|:-------------------:|:---------------:|:---------------:|:-----------------:|:------------------------:|
| 0.0102 | 16   | 7.0465        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.0205 | 32   | 9.0583        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.0307 | 48   | 8.6271        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.0409 | 64   | 5.6026        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.0512 | 80   | 4.6908        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.0614 | 96   | 3.1954        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.0716 | 112  | 2.1179        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.0818 | 128  | 1.2636        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.0921 | 144  | 0.8325        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1004 | 157  | -             | 0.8188                | 0.3046            | 0.0716                 | 0.9823        | 1.4375                 | 0.9191          | 0.4534           | 0.2841          | 0.1112                | 0.0382        | 0.6015             | 3.7648              | 0.4414              | 0.1556          | 0.6679          | 0.5184            | 0.8753                   |
| 0.1023 | 160  | 0.5674        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1125 | 176  | 0.6077        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1228 | 192  | 0.4102        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1330 | 208  | 0.4442        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1432 | 224  | 0.3306        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1535 | 240  | 0.3002        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1637 | 256  | 0.2485        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1739 | 272  | 0.274         | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1841 | 288  | 0.2093        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.1944 | 304  | 0.3521        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2008 | 314  | -             | 0.4536                | 0.1331            | 0.0218                 | 0.1832        | 0.7851                 | 0.1173          | 0.1327           | 0.0783          | 0.0102                | 0.0247        | 0.1522             | 3.2338              | 0.2332              | 0.0630          | 0.7162          | 0.5844            | 0.9121                   |
| 0.2046 | 320  | 0.2628        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2148 | 336  | 0.2167        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2251 | 352  | 0.1816        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2353 | 368  | 0.1327        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2455 | 384  | 0.2178        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2558 | 400  | 0.0993        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2660 | 416  | 0.2293        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2762 | 432  | 0.4346        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2864 | 448  | 1.0288        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.2967 | 464  | 0.4893        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3012 | 471  | -             | 0.4600                | 0.1118            | 0.0123                 | 0.1312        | 0.6801                 | 0.0442          | 0.1744           | 0.0580          | 0.0050                | 0.0246        | 0.2256             | 3.6716              | 0.2594              | 0.0472          | 0.7369          | 0.5816            | 0.9159                   |
| 0.3069 | 480  | 0.1706        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3171 | 496  | 0.1083        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3274 | 512  | 0.1036        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3376 | 528  | 0.4057        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3478 | 544  | 0.1629        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3581 | 560  | 0.6291        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3683 | 576  | 0.7985        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3785 | 592  | 0.3209        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3887 | 608  | 0.2933        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.3990 | 624  | 0.1887        | -                     | -                 | -                      | -             | -                      | -               | -                | -               | -                     | -             | -                  | -                   | -                   | -               | -               | -                 | -                        |
| 0.4015 | 628  | -             | 0.6150                | 1.0560            | 0.0180                 | 1.1085        | 0.8490                 | 0.0974          | 0.7939           | 1.8987          | 0.0684                | 0.1763        | 2.7715             | 3.6695              | 0.6787              | 0.2227          | 0.7234          | 0.5598            | 0.9099                   |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->