Training in progress, step 9823, checkpoint
Browse files- last-checkpoint/1_Pooling/config.json +10 -0
- last-checkpoint/README.md +653 -0
- last-checkpoint/added_tokens.json +3 -0
- last-checkpoint/config.json +35 -0
- last-checkpoint/config_sentence_transformers.json +10 -0
- last-checkpoint/modules.json +14 -0
- last-checkpoint/optimizer.pt +3 -0
- last-checkpoint/pytorch_model.bin +3 -0
- last-checkpoint/rng_state.pth +3 -0
- last-checkpoint/scheduler.pt +3 -0
- last-checkpoint/sentence_bert_config.json +4 -0
- last-checkpoint/special_tokens_map.json +15 -0
- last-checkpoint/spm.model +3 -0
- last-checkpoint/tokenizer.json +0 -0
- last-checkpoint/tokenizer_config.json +58 -0
- last-checkpoint/trainer_state.json +383 -0
- last-checkpoint/training_args.bin +3 -0
last-checkpoint/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
last-checkpoint/README.md
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- dataset_size:100K<n<1M
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: microsoft/deberta-v3-base
|
12 |
+
metrics:
|
13 |
+
- pearson_cosine
|
14 |
+
- spearman_cosine
|
15 |
+
- pearson_manhattan
|
16 |
+
- spearman_manhattan
|
17 |
+
- pearson_euclidean
|
18 |
+
- spearman_euclidean
|
19 |
+
- pearson_dot
|
20 |
+
- spearman_dot
|
21 |
+
- pearson_max
|
22 |
+
- spearman_max
|
23 |
+
- cosine_accuracy
|
24 |
+
- cosine_accuracy_threshold
|
25 |
+
- cosine_f1
|
26 |
+
- cosine_f1_threshold
|
27 |
+
- cosine_precision
|
28 |
+
- cosine_recall
|
29 |
+
- cosine_ap
|
30 |
+
- dot_accuracy
|
31 |
+
- dot_accuracy_threshold
|
32 |
+
- dot_f1
|
33 |
+
- dot_f1_threshold
|
34 |
+
- dot_precision
|
35 |
+
- dot_recall
|
36 |
+
- dot_ap
|
37 |
+
- manhattan_accuracy
|
38 |
+
- manhattan_accuracy_threshold
|
39 |
+
- manhattan_f1
|
40 |
+
- manhattan_f1_threshold
|
41 |
+
- manhattan_precision
|
42 |
+
- manhattan_recall
|
43 |
+
- manhattan_ap
|
44 |
+
- euclidean_accuracy
|
45 |
+
- euclidean_accuracy_threshold
|
46 |
+
- euclidean_f1
|
47 |
+
- euclidean_f1_threshold
|
48 |
+
- euclidean_precision
|
49 |
+
- euclidean_recall
|
50 |
+
- euclidean_ap
|
51 |
+
- max_accuracy
|
52 |
+
- max_accuracy_threshold
|
53 |
+
- max_f1
|
54 |
+
- max_f1_threshold
|
55 |
+
- max_precision
|
56 |
+
- max_recall
|
57 |
+
- max_ap
|
58 |
+
widget:
|
59 |
+
- source_sentence: profit rather
|
60 |
+
sentences:
|
61 |
+
- Making money rather.
|
62 |
+
- A racecar is being watched.
|
63 |
+
- A man is standing in the doorway.
|
64 |
+
- source_sentence: life track
|
65 |
+
sentences:
|
66 |
+
- There is.
|
67 |
+
- The man is wearing an apron.
|
68 |
+
- A man playing billiards at a bar.
|
69 |
+
- source_sentence: Fiesta time!
|
70 |
+
sentences:
|
71 |
+
- It is a special day.
|
72 |
+
- The world is getting better.
|
73 |
+
- A man hammering nails on a shed.
|
74 |
+
- source_sentence: 'The family. '
|
75 |
+
sentences:
|
76 |
+
- A man is at his sisters party.
|
77 |
+
- the man is training some guys
|
78 |
+
- Commuters wait for to cross a street.
|
79 |
+
- source_sentence: I don't know.
|
80 |
+
sentences:
|
81 |
+
- I'm not sure about anything.
|
82 |
+
- A guy is outside in the snow
|
83 |
+
- The dogs run a race at the track.
|
84 |
+
pipeline_tag: sentence-similarity
|
85 |
+
model-index:
|
86 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-base
|
87 |
+
results:
|
88 |
+
- task:
|
89 |
+
type: semantic-similarity
|
90 |
+
name: Semantic Similarity
|
91 |
+
dataset:
|
92 |
+
name: Unknown
|
93 |
+
type: unknown
|
94 |
+
metrics:
|
95 |
+
- type: pearson_cosine
|
96 |
+
value: 0.35614155568929684
|
97 |
+
name: Pearson Cosine
|
98 |
+
- type: spearman_cosine
|
99 |
+
value: 0.4042062369647017
|
100 |
+
name: Spearman Cosine
|
101 |
+
- type: pearson_manhattan
|
102 |
+
value: 0.44470114795339144
|
103 |
+
name: Pearson Manhattan
|
104 |
+
- type: spearman_manhattan
|
105 |
+
value: 0.464389588301289
|
106 |
+
name: Spearman Manhattan
|
107 |
+
- type: pearson_euclidean
|
108 |
+
value: 0.4073816956345048
|
109 |
+
name: Pearson Euclidean
|
110 |
+
- type: spearman_euclidean
|
111 |
+
value: 0.42806381869427496
|
112 |
+
name: Spearman Euclidean
|
113 |
+
- type: pearson_dot
|
114 |
+
value: -0.033633706160895414
|
115 |
+
name: Pearson Dot
|
116 |
+
- type: spearman_dot
|
117 |
+
value: -0.026115764956036586
|
118 |
+
name: Spearman Dot
|
119 |
+
- type: pearson_max
|
120 |
+
value: 0.44470114795339144
|
121 |
+
name: Pearson Max
|
122 |
+
- type: spearman_max
|
123 |
+
value: 0.464389588301289
|
124 |
+
name: Spearman Max
|
125 |
+
- task:
|
126 |
+
type: binary-classification
|
127 |
+
name: Binary Classification
|
128 |
+
dataset:
|
129 |
+
name: Unknown
|
130 |
+
type: unknown
|
131 |
+
metrics:
|
132 |
+
- type: cosine_accuracy
|
133 |
+
value: 0.6648722420198651
|
134 |
+
name: Cosine Accuracy
|
135 |
+
- type: cosine_accuracy_threshold
|
136 |
+
value: 0.7642883062362671
|
137 |
+
name: Cosine Accuracy Threshold
|
138 |
+
- type: cosine_f1
|
139 |
+
value: 0.7061340941512125
|
140 |
+
name: Cosine F1
|
141 |
+
- type: cosine_f1_threshold
|
142 |
+
value: 0.6351689100265503
|
143 |
+
name: Cosine F1 Threshold
|
144 |
+
- type: cosine_precision
|
145 |
+
value: 0.5953693495038589
|
146 |
+
name: Cosine Precision
|
147 |
+
- type: cosine_recall
|
148 |
+
value: 0.8675332262304659
|
149 |
+
name: Cosine Recall
|
150 |
+
- type: cosine_ap
|
151 |
+
value: 0.7283929467215002
|
152 |
+
name: Cosine Ap
|
153 |
+
- type: dot_accuracy
|
154 |
+
value: 0.6397755705512169
|
155 |
+
name: Dot Accuracy
|
156 |
+
- type: dot_accuracy_threshold
|
157 |
+
value: 268.03167724609375
|
158 |
+
name: Dot Accuracy Threshold
|
159 |
+
- type: dot_f1
|
160 |
+
value: 0.7021864211737631
|
161 |
+
name: Dot F1
|
162 |
+
- type: dot_f1_threshold
|
163 |
+
value: 216.1470947265625
|
164 |
+
name: Dot F1 Threshold
|
165 |
+
- type: dot_precision
|
166 |
+
value: 0.5793221304471661
|
167 |
+
name: Dot Precision
|
168 |
+
- type: dot_recall
|
169 |
+
value: 0.8911932233094786
|
170 |
+
name: Dot Recall
|
171 |
+
- type: dot_ap
|
172 |
+
value: 0.6799114732445778
|
173 |
+
name: Dot Ap
|
174 |
+
- type: manhattan_accuracy
|
175 |
+
value: 0.6606262794753204
|
176 |
+
name: Manhattan Accuracy
|
177 |
+
- type: manhattan_accuracy_threshold
|
178 |
+
value: 248.9168701171875
|
179 |
+
name: Manhattan Accuracy Threshold
|
180 |
+
- type: manhattan_f1
|
181 |
+
value: 0.703255925305243
|
182 |
+
name: Manhattan F1
|
183 |
+
- type: manhattan_f1_threshold
|
184 |
+
value: 306.02117919921875
|
185 |
+
name: Manhattan F1 Threshold
|
186 |
+
- type: manhattan_precision
|
187 |
+
value: 0.5957813609167427
|
188 |
+
name: Manhattan Precision
|
189 |
+
- type: manhattan_recall
|
190 |
+
value: 0.8580400175259237
|
191 |
+
name: Manhattan Recall
|
192 |
+
- type: manhattan_ap
|
193 |
+
value: 0.7294072443461903
|
194 |
+
name: Manhattan Ap
|
195 |
+
- type: euclidean_accuracy
|
196 |
+
value: 0.6580483736447039
|
197 |
+
name: Euclidean Accuracy
|
198 |
+
- type: euclidean_accuracy_threshold
|
199 |
+
value: 12.722024917602539
|
200 |
+
name: Euclidean Accuracy Threshold
|
201 |
+
- type: euclidean_f1
|
202 |
+
value: 0.7027586626880216
|
203 |
+
name: Euclidean F1
|
204 |
+
- type: euclidean_f1_threshold
|
205 |
+
value: 16.08021354675293
|
206 |
+
name: Euclidean F1 Threshold
|
207 |
+
- type: euclidean_precision
|
208 |
+
value: 0.6026739085021935
|
209 |
+
name: Euclidean Precision
|
210 |
+
- type: euclidean_recall
|
211 |
+
value: 0.8427048342339711
|
212 |
+
name: Euclidean Recall
|
213 |
+
- type: euclidean_ap
|
214 |
+
value: 0.7268148607241872
|
215 |
+
name: Euclidean Ap
|
216 |
+
- type: max_accuracy
|
217 |
+
value: 0.6648722420198651
|
218 |
+
name: Max Accuracy
|
219 |
+
- type: max_accuracy_threshold
|
220 |
+
value: 268.03167724609375
|
221 |
+
name: Max Accuracy Threshold
|
222 |
+
- type: max_f1
|
223 |
+
value: 0.7061340941512125
|
224 |
+
name: Max F1
|
225 |
+
- type: max_f1_threshold
|
226 |
+
value: 306.02117919921875
|
227 |
+
name: Max F1 Threshold
|
228 |
+
- type: max_precision
|
229 |
+
value: 0.6026739085021935
|
230 |
+
name: Max Precision
|
231 |
+
- type: max_recall
|
232 |
+
value: 0.8911932233094786
|
233 |
+
name: Max Recall
|
234 |
+
- type: max_ap
|
235 |
+
value: 0.7294072443461903
|
236 |
+
name: Max Ap
|
237 |
+
---
|
238 |
+
|
239 |
+
# SentenceTransformer based on microsoft/deberta-v3-base
|
240 |
+
|
241 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
242 |
+
|
243 |
+
## Model Details
|
244 |
+
|
245 |
+
### Model Description
|
246 |
+
- **Model Type:** Sentence Transformer
|
247 |
+
- **Base model:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) <!-- at revision 8ccc9b6f36199bec6961081d44eb72fb3f7353f3 -->
|
248 |
+
- **Maximum Sequence Length:** 512 tokens
|
249 |
+
- **Output Dimensionality:** 768 tokens
|
250 |
+
- **Similarity Function:** Cosine Similarity
|
251 |
+
- **Training Dataset:**
|
252 |
+
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
|
253 |
+
- **Language:** en
|
254 |
+
<!-- - **License:** Unknown -->
|
255 |
+
|
256 |
+
### Model Sources
|
257 |
+
|
258 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
259 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
260 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
261 |
+
|
262 |
+
### Full Model Architecture
|
263 |
+
|
264 |
+
```
|
265 |
+
SentenceTransformer(
|
266 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
267 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
268 |
+
)
|
269 |
+
```
|
270 |
+
|
271 |
+
## Usage
|
272 |
+
|
273 |
+
### Direct Usage (Sentence Transformers)
|
274 |
+
|
275 |
+
First install the Sentence Transformers library:
|
276 |
+
|
277 |
+
```bash
|
278 |
+
pip install -U sentence-transformers
|
279 |
+
```
|
280 |
+
|
281 |
+
Then you can load this model and run inference.
|
282 |
+
```python
|
283 |
+
from sentence_transformers import SentenceTransformer
|
284 |
+
|
285 |
+
# Download from the 🤗 Hub
|
286 |
+
model = SentenceTransformer("bobox/DeBERTaV3-large-SentenceTransformer-0.01n")
|
287 |
+
# Run inference
|
288 |
+
sentences = [
|
289 |
+
"I don't know.",
|
290 |
+
"I'm not sure about anything.",
|
291 |
+
'A guy is outside in the snow',
|
292 |
+
]
|
293 |
+
embeddings = model.encode(sentences)
|
294 |
+
print(embeddings.shape)
|
295 |
+
# [3, 768]
|
296 |
+
|
297 |
+
# Get the similarity scores for the embeddings
|
298 |
+
similarities = model.similarity(embeddings, embeddings)
|
299 |
+
print(similarities.shape)
|
300 |
+
# [3, 3]
|
301 |
+
```
|
302 |
+
|
303 |
+
<!--
|
304 |
+
### Direct Usage (Transformers)
|
305 |
+
|
306 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
307 |
+
|
308 |
+
</details>
|
309 |
+
-->
|
310 |
+
|
311 |
+
<!--
|
312 |
+
### Downstream Usage (Sentence Transformers)
|
313 |
+
|
314 |
+
You can finetune this model on your own dataset.
|
315 |
+
|
316 |
+
<details><summary>Click to expand</summary>
|
317 |
+
|
318 |
+
</details>
|
319 |
+
-->
|
320 |
+
|
321 |
+
<!--
|
322 |
+
### Out-of-Scope Use
|
323 |
+
|
324 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
325 |
+
-->
|
326 |
+
|
327 |
+
## Evaluation
|
328 |
+
|
329 |
+
### Metrics
|
330 |
+
|
331 |
+
#### Semantic Similarity
|
332 |
+
|
333 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
334 |
+
|
335 |
+
| Metric | Value |
|
336 |
+
|:--------------------|:-----------|
|
337 |
+
| pearson_cosine | 0.3561 |
|
338 |
+
| **spearman_cosine** | **0.4042** |
|
339 |
+
| pearson_manhattan | 0.4447 |
|
340 |
+
| spearman_manhattan | 0.4644 |
|
341 |
+
| pearson_euclidean | 0.4074 |
|
342 |
+
| spearman_euclidean | 0.4281 |
|
343 |
+
| pearson_dot | -0.0336 |
|
344 |
+
| spearman_dot | -0.0261 |
|
345 |
+
| pearson_max | 0.4447 |
|
346 |
+
| spearman_max | 0.4644 |
|
347 |
+
|
348 |
+
#### Binary Classification
|
349 |
+
|
350 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
351 |
+
|
352 |
+
| Metric | Value |
|
353 |
+
|:-----------------------------|:-----------|
|
354 |
+
| cosine_accuracy | 0.6649 |
|
355 |
+
| cosine_accuracy_threshold | 0.7643 |
|
356 |
+
| cosine_f1 | 0.7061 |
|
357 |
+
| cosine_f1_threshold | 0.6352 |
|
358 |
+
| cosine_precision | 0.5954 |
|
359 |
+
| cosine_recall | 0.8675 |
|
360 |
+
| cosine_ap | 0.7284 |
|
361 |
+
| dot_accuracy | 0.6398 |
|
362 |
+
| dot_accuracy_threshold | 268.0317 |
|
363 |
+
| dot_f1 | 0.7022 |
|
364 |
+
| dot_f1_threshold | 216.1471 |
|
365 |
+
| dot_precision | 0.5793 |
|
366 |
+
| dot_recall | 0.8912 |
|
367 |
+
| dot_ap | 0.6799 |
|
368 |
+
| manhattan_accuracy | 0.6606 |
|
369 |
+
| manhattan_accuracy_threshold | 248.9169 |
|
370 |
+
| manhattan_f1 | 0.7033 |
|
371 |
+
| manhattan_f1_threshold | 306.0212 |
|
372 |
+
| manhattan_precision | 0.5958 |
|
373 |
+
| manhattan_recall | 0.858 |
|
374 |
+
| manhattan_ap | 0.7294 |
|
375 |
+
| euclidean_accuracy | 0.658 |
|
376 |
+
| euclidean_accuracy_threshold | 12.722 |
|
377 |
+
| euclidean_f1 | 0.7028 |
|
378 |
+
| euclidean_f1_threshold | 16.0802 |
|
379 |
+
| euclidean_precision | 0.6027 |
|
380 |
+
| euclidean_recall | 0.8427 |
|
381 |
+
| euclidean_ap | 0.7268 |
|
382 |
+
| max_accuracy | 0.6649 |
|
383 |
+
| max_accuracy_threshold | 268.0317 |
|
384 |
+
| max_f1 | 0.7061 |
|
385 |
+
| max_f1_threshold | 306.0212 |
|
386 |
+
| max_precision | 0.6027 |
|
387 |
+
| max_recall | 0.8912 |
|
388 |
+
| **max_ap** | **0.7294** |
|
389 |
+
|
390 |
+
<!--
|
391 |
+
## Bias, Risks and Limitations
|
392 |
+
|
393 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
394 |
+
-->
|
395 |
+
|
396 |
+
<!--
|
397 |
+
### Recommendations
|
398 |
+
|
399 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
400 |
+
-->
|
401 |
+
|
402 |
+
## Training Details
|
403 |
+
|
404 |
+
### Training Dataset
|
405 |
+
|
406 |
+
#### stanfordnlp/snli
|
407 |
+
|
408 |
+
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
|
409 |
+
* Size: 314,315 training samples
|
410 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
411 |
+
* Approximate statistics based on the first 1000 samples:
|
412 |
+
| | sentence1 | sentence2 | label |
|
413 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
|
414 |
+
| type | string | string | int |
|
415 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
|
416 |
+
* Samples:
|
417 |
+
| sentence1 | sentence2 | label |
|
418 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:---------------|
|
419 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
|
420 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>0</code> |
|
421 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>0</code> |
|
422 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
423 |
+
```json
|
424 |
+
{
|
425 |
+
"scale": 20.0,
|
426 |
+
"similarity_fct": "cos_sim"
|
427 |
+
}
|
428 |
+
```
|
429 |
+
|
430 |
+
### Evaluation Dataset
|
431 |
+
|
432 |
+
#### sentence-transformers/stsb
|
433 |
+
|
434 |
+
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
435 |
+
* Size: 13,189 evaluation samples
|
436 |
+
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
437 |
+
* Approximate statistics based on the first 1000 samples:
|
438 |
+
| | premise | hypothesis | label |
|
439 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
440 |
+
| type | string | string | int |
|
441 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 17.28 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.53 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~48.70%</li><li>1: ~51.30%</li></ul> |
|
442 |
+
* Samples:
|
443 |
+
| premise | hypothesis | label |
|
444 |
+
|:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------|:---------------|
|
445 |
+
| <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church has cracks in the ceiling.</code> | <code>0</code> |
|
446 |
+
| <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church is filled with song.</code> | <code>1</code> |
|
447 |
+
| <code>A woman with a green headscarf, blue shirt and a very big grin.</code> | <code>The woman is young.</code> | <code>0</code> |
|
448 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
449 |
+
```json
|
450 |
+
{
|
451 |
+
"scale": 20.0,
|
452 |
+
"similarity_fct": "cos_sim"
|
453 |
+
}
|
454 |
+
```
|
455 |
+
|
456 |
+
### Training Hyperparameters
|
457 |
+
#### Non-Default Hyperparameters
|
458 |
+
|
459 |
+
- `eval_strategy`: steps
|
460 |
+
- `per_device_train_batch_size`: 32
|
461 |
+
- `per_device_eval_batch_size`: 64
|
462 |
+
- `num_train_epochs`: 5
|
463 |
+
- `lr_scheduler_type`: cosine
|
464 |
+
- `warmup_ratio`: 0.25
|
465 |
+
- `save_safetensors`: False
|
466 |
+
- `fp16`: True
|
467 |
+
- `push_to_hub`: True
|
468 |
+
- `hub_model_id`: bobox/DeBERTaV3-large-SentenceTransformer-0.01n
|
469 |
+
- `hub_strategy`: checkpoint
|
470 |
+
- `batch_sampler`: no_duplicates
|
471 |
+
|
472 |
+
#### All Hyperparameters
|
473 |
+
<details><summary>Click to expand</summary>
|
474 |
+
|
475 |
+
- `overwrite_output_dir`: False
|
476 |
+
- `do_predict`: False
|
477 |
+
- `eval_strategy`: steps
|
478 |
+
- `prediction_loss_only`: True
|
479 |
+
- `per_device_train_batch_size`: 32
|
480 |
+
- `per_device_eval_batch_size`: 64
|
481 |
+
- `per_gpu_train_batch_size`: None
|
482 |
+
- `per_gpu_eval_batch_size`: None
|
483 |
+
- `gradient_accumulation_steps`: 1
|
484 |
+
- `eval_accumulation_steps`: None
|
485 |
+
- `learning_rate`: 5e-05
|
486 |
+
- `weight_decay`: 0.0
|
487 |
+
- `adam_beta1`: 0.9
|
488 |
+
- `adam_beta2`: 0.999
|
489 |
+
- `adam_epsilon`: 1e-08
|
490 |
+
- `max_grad_norm`: 1.0
|
491 |
+
- `num_train_epochs`: 5
|
492 |
+
- `max_steps`: -1
|
493 |
+
- `lr_scheduler_type`: cosine
|
494 |
+
- `lr_scheduler_kwargs`: {}
|
495 |
+
- `warmup_ratio`: 0.25
|
496 |
+
- `warmup_steps`: 0
|
497 |
+
- `log_level`: passive
|
498 |
+
- `log_level_replica`: warning
|
499 |
+
- `log_on_each_node`: True
|
500 |
+
- `logging_nan_inf_filter`: True
|
501 |
+
- `save_safetensors`: False
|
502 |
+
- `save_on_each_node`: False
|
503 |
+
- `save_only_model`: False
|
504 |
+
- `restore_callback_states_from_checkpoint`: False
|
505 |
+
- `no_cuda`: False
|
506 |
+
- `use_cpu`: False
|
507 |
+
- `use_mps_device`: False
|
508 |
+
- `seed`: 42
|
509 |
+
- `data_seed`: None
|
510 |
+
- `jit_mode_eval`: False
|
511 |
+
- `use_ipex`: False
|
512 |
+
- `bf16`: False
|
513 |
+
- `fp16`: True
|
514 |
+
- `fp16_opt_level`: O1
|
515 |
+
- `half_precision_backend`: auto
|
516 |
+
- `bf16_full_eval`: False
|
517 |
+
- `fp16_full_eval`: False
|
518 |
+
- `tf32`: None
|
519 |
+
- `local_rank`: 0
|
520 |
+
- `ddp_backend`: None
|
521 |
+
- `tpu_num_cores`: None
|
522 |
+
- `tpu_metrics_debug`: False
|
523 |
+
- `debug`: []
|
524 |
+
- `dataloader_drop_last`: False
|
525 |
+
- `dataloader_num_workers`: 0
|
526 |
+
- `dataloader_prefetch_factor`: None
|
527 |
+
- `past_index`: -1
|
528 |
+
- `disable_tqdm`: False
|
529 |
+
- `remove_unused_columns`: True
|
530 |
+
- `label_names`: None
|
531 |
+
- `load_best_model_at_end`: False
|
532 |
+
- `ignore_data_skip`: False
|
533 |
+
- `fsdp`: []
|
534 |
+
- `fsdp_min_num_params`: 0
|
535 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
536 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
537 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
538 |
+
- `deepspeed`: None
|
539 |
+
- `label_smoothing_factor`: 0.0
|
540 |
+
- `optim`: adamw_torch
|
541 |
+
- `optim_args`: None
|
542 |
+
- `adafactor`: False
|
543 |
+
- `group_by_length`: False
|
544 |
+
- `length_column_name`: length
|
545 |
+
- `ddp_find_unused_parameters`: None
|
546 |
+
- `ddp_bucket_cap_mb`: None
|
547 |
+
- `ddp_broadcast_buffers`: False
|
548 |
+
- `dataloader_pin_memory`: True
|
549 |
+
- `dataloader_persistent_workers`: False
|
550 |
+
- `skip_memory_metrics`: True
|
551 |
+
- `use_legacy_prediction_loop`: False
|
552 |
+
- `push_to_hub`: True
|
553 |
+
- `resume_from_checkpoint`: None
|
554 |
+
- `hub_model_id`: bobox/DeBERTaV3-large-SentenceTransformer-0.01n
|
555 |
+
- `hub_strategy`: checkpoint
|
556 |
+
- `hub_private_repo`: False
|
557 |
+
- `hub_always_push`: False
|
558 |
+
- `gradient_checkpointing`: False
|
559 |
+
- `gradient_checkpointing_kwargs`: None
|
560 |
+
- `include_inputs_for_metrics`: False
|
561 |
+
- `eval_do_concat_batches`: True
|
562 |
+
- `fp16_backend`: auto
|
563 |
+
- `push_to_hub_model_id`: None
|
564 |
+
- `push_to_hub_organization`: None
|
565 |
+
- `mp_parameters`:
|
566 |
+
- `auto_find_batch_size`: False
|
567 |
+
- `full_determinism`: False
|
568 |
+
- `torchdynamo`: None
|
569 |
+
- `ray_scope`: last
|
570 |
+
- `ddp_timeout`: 1800
|
571 |
+
- `torch_compile`: False
|
572 |
+
- `torch_compile_backend`: None
|
573 |
+
- `torch_compile_mode`: None
|
574 |
+
- `dispatch_batches`: None
|
575 |
+
- `split_batches`: None
|
576 |
+
- `include_tokens_per_second`: False
|
577 |
+
- `include_num_input_tokens_seen`: False
|
578 |
+
- `neftune_noise_alpha`: None
|
579 |
+
- `optim_target_modules`: None
|
580 |
+
- `batch_eval_metrics`: False
|
581 |
+
- `batch_sampler`: no_duplicates
|
582 |
+
- `multi_dataset_batch_sampler`: proportional
|
583 |
+
|
584 |
+
</details>
|
585 |
+
|
586 |
+
### Training Logs
|
587 |
+
| Epoch | Step | Training Loss | loss | max_ap | spearman_cosine |
|
588 |
+
|:------:|:----:|:-------------:|:------:|:------:|:---------------:|
|
589 |
+
| None | 0 | - | 3.2007 | 0.5917 | 0.4042 |
|
590 |
+
| 0.1250 | 1228 | 2.3115 | 1.3295 | 0.6783 | - |
|
591 |
+
| 0.2500 | 2456 | 1.1344 | 1.0007 | 0.7048 | - |
|
592 |
+
| 0.3750 | 3684 | 0.9827 | 0.8551 | 0.7091 | - |
|
593 |
+
| 0.5001 | 4912 | 0.9045 | 0.7483 | 0.7148 | - |
|
594 |
+
| 0.6251 | 6140 | 0.6488 | 0.6057 | 0.7276 | - |
|
595 |
+
| 0.7501 | 7368 | 0.1224 | 0.6683 | 0.7358 | - |
|
596 |
+
| 0.8751 | 8596 | 0.1063 | 0.6895 | 0.7294 | - |
|
597 |
+
|
598 |
+
|
599 |
+
### Framework Versions
|
600 |
+
- Python: 3.10.12
|
601 |
+
- Sentence Transformers: 3.0.0
|
602 |
+
- Transformers: 4.41.2
|
603 |
+
- PyTorch: 2.3.0+cu121
|
604 |
+
- Accelerate: 0.30.1
|
605 |
+
- Datasets: 2.19.2
|
606 |
+
- Tokenizers: 0.19.1
|
607 |
+
|
608 |
+
## Citation
|
609 |
+
|
610 |
+
### BibTeX
|
611 |
+
|
612 |
+
#### Sentence Transformers
|
613 |
+
```bibtex
|
614 |
+
@inproceedings{reimers-2019-sentence-bert,
|
615 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
616 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
617 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
618 |
+
month = "11",
|
619 |
+
year = "2019",
|
620 |
+
publisher = "Association for Computational Linguistics",
|
621 |
+
url = "https://arxiv.org/abs/1908.10084",
|
622 |
+
}
|
623 |
+
```
|
624 |
+
|
625 |
+
#### MultipleNegativesRankingLoss
|
626 |
+
```bibtex
|
627 |
+
@misc{henderson2017efficient,
|
628 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
629 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
630 |
+
year={2017},
|
631 |
+
eprint={1705.00652},
|
632 |
+
archivePrefix={arXiv},
|
633 |
+
primaryClass={cs.CL}
|
634 |
+
}
|
635 |
+
```
|
636 |
+
|
637 |
+
<!--
|
638 |
+
## Glossary
|
639 |
+
|
640 |
+
*Clearly define terms in order to be accessible across audiences.*
|
641 |
+
-->
|
642 |
+
|
643 |
+
<!--
|
644 |
+
## Model Card Authors
|
645 |
+
|
646 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
647 |
+
-->
|
648 |
+
|
649 |
+
<!--
|
650 |
+
## Model Card Contact
|
651 |
+
|
652 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
653 |
+
-->
|
last-checkpoint/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
last-checkpoint/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-base",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.41.2",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
last-checkpoint/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
last-checkpoint/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
last-checkpoint/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25831fee8a56126ffd94bd472a29dd638517430a70c9d55e5521916f42d41cd0
|
3 |
+
size 1470818042
|
last-checkpoint/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:964309fb41343f220f0134621218c2e95faf9b4c3b23ec32bf293a2c6dc0c7f2
|
3 |
+
size 735393442
|
last-checkpoint/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f787d94dbd33f4586c396382ebc4b31f1eb9a7ff215e29da3f8f0beae15a8ce7
|
3 |
+
size 14244
|
last-checkpoint/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5afa3d56abf40a30335967d6a0973486eb802f6a6a8af4dc50831b2b2486b3e8
|
3 |
+
size 1064
|
last-checkpoint/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
last-checkpoint/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
last-checkpoint/spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
last-checkpoint/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
last-checkpoint/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|
last-checkpoint/trainer_state.json
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 1228,
|
6 |
+
"global_step": 9823,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.1250127252366894,
|
13 |
+
"grad_norm": 15.43435287475586,
|
14 |
+
"learning_rate": 4.984119227950159e-06,
|
15 |
+
"loss": 2.3115,
|
16 |
+
"step": 1228
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.1250127252366894,
|
20 |
+
"eval_cosine_accuracy": 0.6210478428993859,
|
21 |
+
"eval_cosine_accuracy_threshold": 0.848922610282898,
|
22 |
+
"eval_cosine_ap": 0.6734391704854221,
|
23 |
+
"eval_cosine_f1": 0.6875199829478844,
|
24 |
+
"eval_cosine_f1_threshold": 0.6612564921379089,
|
25 |
+
"eval_cosine_precision": 0.5412366809296082,
|
26 |
+
"eval_cosine_recall": 0.9421644515846356,
|
27 |
+
"eval_dot_accuracy": 0.5711577830009856,
|
28 |
+
"eval_dot_accuracy_threshold": 343.60479736328125,
|
29 |
+
"eval_dot_ap": 0.5947527693779144,
|
30 |
+
"eval_dot_f1": 0.6843559977888336,
|
31 |
+
"eval_dot_f1_threshold": 204.2578887939453,
|
32 |
+
"eval_dot_precision": 0.5216825007661661,
|
33 |
+
"eval_dot_recall": 0.99445012414196,
|
34 |
+
"eval_euclidean_accuracy": 0.6265827583592387,
|
35 |
+
"eval_euclidean_accuracy_threshold": 12.094720840454102,
|
36 |
+
"eval_euclidean_ap": 0.6783368773007193,
|
37 |
+
"eval_euclidean_f1": 0.6879386675305043,
|
38 |
+
"eval_euclidean_f1_threshold": 17.03110122680664,
|
39 |
+
"eval_euclidean_precision": 0.545695931477516,
|
40 |
+
"eval_euclidean_recall": 0.9304805024098145,
|
41 |
+
"eval_loss": 1.3295445442199707,
|
42 |
+
"eval_manhattan_accuracy": 0.628023352793995,
|
43 |
+
"eval_manhattan_accuracy_threshold": 217.5894012451172,
|
44 |
+
"eval_manhattan_ap": 0.6782312637044651,
|
45 |
+
"eval_manhattan_f1": 0.6873385012919898,
|
46 |
+
"eval_manhattan_f1_threshold": 288.74737548828125,
|
47 |
+
"eval_manhattan_precision": 0.5511373655439957,
|
48 |
+
"eval_manhattan_recall": 0.9129545786475829,
|
49 |
+
"eval_max_accuracy": 0.628023352793995,
|
50 |
+
"eval_max_accuracy_threshold": 343.60479736328125,
|
51 |
+
"eval_max_ap": 0.6783368773007193,
|
52 |
+
"eval_max_f1": 0.6879386675305043,
|
53 |
+
"eval_max_f1_threshold": 288.74737548828125,
|
54 |
+
"eval_max_precision": 0.5511373655439957,
|
55 |
+
"eval_max_recall": 0.99445012414196,
|
56 |
+
"eval_runtime": 37.2407,
|
57 |
+
"eval_samples_per_second": 354.156,
|
58 |
+
"eval_steps_per_second": 5.558,
|
59 |
+
"step": 1228
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.2500254504733788,
|
63 |
+
"grad_norm": 15.62058162689209,
|
64 |
+
"learning_rate": 9.984526427233488e-06,
|
65 |
+
"loss": 1.1344,
|
66 |
+
"step": 2456
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.2500254504733788,
|
70 |
+
"eval_cosine_accuracy": 0.6382591553567367,
|
71 |
+
"eval_cosine_accuracy_threshold": 0.8384923934936523,
|
72 |
+
"eval_cosine_ap": 0.6979960206921748,
|
73 |
+
"eval_cosine_f1": 0.6956719817767655,
|
74 |
+
"eval_cosine_f1_threshold": 0.7339043617248535,
|
75 |
+
"eval_cosine_precision": 0.5701484178101373,
|
76 |
+
"eval_cosine_recall": 0.8920695194975902,
|
77 |
+
"eval_dot_accuracy": 0.5939040109181895,
|
78 |
+
"eval_dot_accuracy_threshold": 351.5899658203125,
|
79 |
+
"eval_dot_ap": 0.608546180214937,
|
80 |
+
"eval_dot_f1": 0.6888470841171728,
|
81 |
+
"eval_dot_f1_threshold": 282.84210205078125,
|
82 |
+
"eval_dot_precision": 0.5449906446674605,
|
83 |
+
"eval_dot_recall": 0.9358843289031693,
|
84 |
+
"eval_euclidean_accuracy": 0.6435666085374175,
|
85 |
+
"eval_euclidean_accuracy_threshold": 12.236141204833984,
|
86 |
+
"eval_euclidean_ap": 0.703382621150597,
|
87 |
+
"eval_euclidean_f1": 0.6971692663200463,
|
88 |
+
"eval_euclidean_f1_threshold": 15.051461219787598,
|
89 |
+
"eval_euclidean_precision": 0.5766988435439167,
|
90 |
+
"eval_euclidean_recall": 0.8812618665108807,
|
91 |
+
"eval_loss": 1.0007121562957764,
|
92 |
+
"eval_manhattan_accuracy": 0.6444764576541057,
|
93 |
+
"eval_manhattan_accuracy_threshold": 214.30072021484375,
|
94 |
+
"eval_manhattan_ap": 0.7047552016202201,
|
95 |
+
"eval_manhattan_f1": 0.6967445793320045,
|
96 |
+
"eval_manhattan_f1_threshold": 250.53140258789062,
|
97 |
+
"eval_manhattan_precision": 0.5940267765190526,
|
98 |
+
"eval_manhattan_recall": 0.8424127355046006,
|
99 |
+
"eval_max_accuracy": 0.6444764576541057,
|
100 |
+
"eval_max_accuracy_threshold": 351.5899658203125,
|
101 |
+
"eval_max_ap": 0.7047552016202201,
|
102 |
+
"eval_max_f1": 0.6971692663200463,
|
103 |
+
"eval_max_f1_threshold": 282.84210205078125,
|
104 |
+
"eval_max_precision": 0.5940267765190526,
|
105 |
+
"eval_max_recall": 0.9358843289031693,
|
106 |
+
"eval_runtime": 36.7273,
|
107 |
+
"eval_samples_per_second": 359.106,
|
108 |
+
"eval_steps_per_second": 5.636,
|
109 |
+
"step": 2456
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.3750381757100682,
|
113 |
+
"grad_norm": 11.62977123260498,
|
114 |
+
"learning_rate": 1.4984933626516816e-05,
|
115 |
+
"loss": 0.9827,
|
116 |
+
"step": 3684
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.3750381757100682,
|
120 |
+
"eval_cosine_accuracy": 0.6383349761164607,
|
121 |
+
"eval_cosine_accuracy_threshold": 0.8612147569656372,
|
122 |
+
"eval_cosine_ap": 0.7032393444334419,
|
123 |
+
"eval_cosine_f1": 0.6932498182428275,
|
124 |
+
"eval_cosine_f1_threshold": 0.7054703235626221,
|
125 |
+
"eval_cosine_precision": 0.5617183251767265,
|
126 |
+
"eval_cosine_recall": 0.9052139623192639,
|
127 |
+
"eval_dot_accuracy": 0.5945863977557055,
|
128 |
+
"eval_dot_accuracy_threshold": 339.2906188964844,
|
129 |
+
"eval_dot_ap": 0.6228302492866797,
|
130 |
+
"eval_dot_f1": 0.6876656472986747,
|
131 |
+
"eval_dot_f1_threshold": 224.48248291015625,
|
132 |
+
"eval_dot_precision": 0.528145306505911,
|
133 |
+
"eval_dot_recall": 0.9852490141667883,
|
134 |
+
"eval_euclidean_accuracy": 0.6429600424596255,
|
135 |
+
"eval_euclidean_accuracy_threshold": 12.074974060058594,
|
136 |
+
"eval_euclidean_ap": 0.7080982628872418,
|
137 |
+
"eval_euclidean_f1": 0.6952535685273297,
|
138 |
+
"eval_euclidean_f1_threshold": 15.344061851501465,
|
139 |
+
"eval_euclidean_precision": 0.576778665639742,
|
140 |
+
"eval_euclidean_recall": 0.8749817438294143,
|
141 |
+
"eval_loss": 0.8550812602043152,
|
142 |
+
"eval_manhattan_accuracy": 0.646523618166654,
|
143 |
+
"eval_manhattan_accuracy_threshold": 216.00611877441406,
|
144 |
+
"eval_manhattan_ap": 0.7091050987827672,
|
145 |
+
"eval_manhattan_f1": 0.6948782931573053,
|
146 |
+
"eval_manhattan_f1_threshold": 267.3834228515625,
|
147 |
+
"eval_manhattan_precision": 0.5825098814229249,
|
148 |
+
"eval_manhattan_recall": 0.860961004819629,
|
149 |
+
"eval_max_accuracy": 0.646523618166654,
|
150 |
+
"eval_max_accuracy_threshold": 339.2906188964844,
|
151 |
+
"eval_max_ap": 0.7091050987827672,
|
152 |
+
"eval_max_f1": 0.6952535685273297,
|
153 |
+
"eval_max_f1_threshold": 267.3834228515625,
|
154 |
+
"eval_max_precision": 0.5825098814229249,
|
155 |
+
"eval_max_recall": 0.9852490141667883,
|
156 |
+
"eval_runtime": 37.837,
|
157 |
+
"eval_samples_per_second": 348.574,
|
158 |
+
"eval_steps_per_second": 5.471,
|
159 |
+
"step": 3684
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.5000509009467576,
|
163 |
+
"grad_norm": 6.6275715827941895,
|
164 |
+
"learning_rate": 1.9985340825800148e-05,
|
165 |
+
"loss": 0.9045,
|
166 |
+
"step": 4912
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 0.5000509009467576,
|
170 |
+
"eval_cosine_accuracy": 0.64644779740693,
|
171 |
+
"eval_cosine_accuracy_threshold": 0.8346654772758484,
|
172 |
+
"eval_cosine_ap": 0.7120759823214882,
|
173 |
+
"eval_cosine_f1": 0.7009007975213725,
|
174 |
+
"eval_cosine_f1_threshold": 0.7283114790916443,
|
175 |
+
"eval_cosine_precision": 0.5772065772065772,
|
176 |
+
"eval_cosine_recall": 0.8920695194975902,
|
177 |
+
"eval_dot_accuracy": 0.6088407005838199,
|
178 |
+
"eval_dot_accuracy_threshold": 372.897705078125,
|
179 |
+
"eval_dot_ap": 0.648631541530839,
|
180 |
+
"eval_dot_f1": 0.6931595400837175,
|
181 |
+
"eval_dot_f1_threshold": 278.7884216308594,
|
182 |
+
"eval_dot_precision": 0.5439048727756528,
|
183 |
+
"eval_dot_recall": 0.9553088944063093,
|
184 |
+
"eval_euclidean_accuracy": 0.6481916748805823,
|
185 |
+
"eval_euclidean_accuracy_threshold": 12.667613983154297,
|
186 |
+
"eval_euclidean_ap": 0.7129650302942496,
|
187 |
+
"eval_euclidean_f1": 0.7006925449572251,
|
188 |
+
"eval_euclidean_f1_threshold": 15.448726654052734,
|
189 |
+
"eval_euclidean_precision": 0.5824303405572755,
|
190 |
+
"eval_euclidean_recall": 0.879217175405287,
|
191 |
+
"eval_loss": 0.7482573986053467,
|
192 |
+
"eval_manhattan_accuracy": 0.6497080900750626,
|
193 |
+
"eval_manhattan_accuracy_threshold": 228.42645263671875,
|
194 |
+
"eval_manhattan_ap": 0.7148163923267561,
|
195 |
+
"eval_manhattan_f1": 0.7008231143961029,
|
196 |
+
"eval_manhattan_f1_threshold": 289.23284912109375,
|
197 |
+
"eval_manhattan_precision": 0.5682891391209589,
|
198 |
+
"eval_manhattan_recall": 0.9139769242003797,
|
199 |
+
"eval_max_accuracy": 0.6497080900750626,
|
200 |
+
"eval_max_accuracy_threshold": 372.897705078125,
|
201 |
+
"eval_max_ap": 0.7148163923267561,
|
202 |
+
"eval_max_f1": 0.7009007975213725,
|
203 |
+
"eval_max_f1_threshold": 289.23284912109375,
|
204 |
+
"eval_max_precision": 0.5824303405572755,
|
205 |
+
"eval_max_recall": 0.9553088944063093,
|
206 |
+
"eval_runtime": 36.72,
|
207 |
+
"eval_samples_per_second": 359.178,
|
208 |
+
"eval_steps_per_second": 5.637,
|
209 |
+
"step": 4912
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.625063626183447,
|
213 |
+
"grad_norm": 8.070146560668945,
|
214 |
+
"learning_rate": 2.4985748025083476e-05,
|
215 |
+
"loss": 0.6488,
|
216 |
+
"step": 6140
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.625063626183447,
|
220 |
+
"eval_cosine_accuracy": 0.6679050724088256,
|
221 |
+
"eval_cosine_accuracy_threshold": 0.7640305757522583,
|
222 |
+
"eval_cosine_ap": 0.7260649988715485,
|
223 |
+
"eval_cosine_f1": 0.7124000968757568,
|
224 |
+
"eval_cosine_f1_threshold": 0.6364777088165283,
|
225 |
+
"eval_cosine_precision": 0.6084393422277381,
|
226 |
+
"eval_cosine_recall": 0.8592084124434058,
|
227 |
+
"eval_dot_accuracy": 0.6316627492607476,
|
228 |
+
"eval_dot_accuracy_threshold": 238.4151611328125,
|
229 |
+
"eval_dot_ap": 0.6571882757637728,
|
230 |
+
"eval_dot_f1": 0.7046040103058139,
|
231 |
+
"eval_dot_f1_threshold": 183.28378295898438,
|
232 |
+
"eval_dot_precision": 0.5714545289361316,
|
233 |
+
"eval_dot_recall": 0.9186505038703081,
|
234 |
+
"eval_euclidean_accuracy": 0.6656304496171052,
|
235 |
+
"eval_euclidean_accuracy_threshold": 12.852251052856445,
|
236 |
+
"eval_euclidean_ap": 0.7254103624891234,
|
237 |
+
"eval_euclidean_f1": 0.7062990731448138,
|
238 |
+
"eval_euclidean_f1_threshold": 16.455379486083984,
|
239 |
+
"eval_euclidean_precision": 0.5927467300832342,
|
240 |
+
"eval_euclidean_recall": 0.873667299547247,
|
241 |
+
"eval_loss": 0.6056942343711853,
|
242 |
+
"eval_manhattan_accuracy": 0.6666919402532413,
|
243 |
+
"eval_manhattan_accuracy_threshold": 238.08731079101562,
|
244 |
+
"eval_manhattan_ap": 0.7275797275536158,
|
245 |
+
"eval_manhattan_f1": 0.7068183230778792,
|
246 |
+
"eval_manhattan_f1_threshold": 281.99066162109375,
|
247 |
+
"eval_manhattan_precision": 0.6152347976628435,
|
248 |
+
"eval_manhattan_recall": 0.8304366876004089,
|
249 |
+
"eval_max_accuracy": 0.6679050724088256,
|
250 |
+
"eval_max_accuracy_threshold": 238.4151611328125,
|
251 |
+
"eval_max_ap": 0.7275797275536158,
|
252 |
+
"eval_max_f1": 0.7124000968757568,
|
253 |
+
"eval_max_f1_threshold": 281.99066162109375,
|
254 |
+
"eval_max_precision": 0.6152347976628435,
|
255 |
+
"eval_max_recall": 0.9186505038703081,
|
256 |
+
"eval_runtime": 36.5244,
|
257 |
+
"eval_samples_per_second": 361.101,
|
258 |
+
"eval_steps_per_second": 5.667,
|
259 |
+
"step": 6140
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 0.7500763514201364,
|
263 |
+
"grad_norm": 3.4847946166992188,
|
264 |
+
"learning_rate": 2.9986155224366808e-05,
|
265 |
+
"loss": 0.1224,
|
266 |
+
"step": 7368
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.7500763514201364,
|
270 |
+
"eval_cosine_accuracy": 0.6698005914019258,
|
271 |
+
"eval_cosine_accuracy_threshold": 0.766596794128418,
|
272 |
+
"eval_cosine_ap": 0.7285326578175677,
|
273 |
+
"eval_cosine_f1": 0.7130742480629613,
|
274 |
+
"eval_cosine_f1_threshold": 0.6729254722595215,
|
275 |
+
"eval_cosine_precision": 0.6123218776194468,
|
276 |
+
"eval_cosine_recall": 0.8535124872206806,
|
277 |
+
"eval_dot_accuracy": 0.6206687391007658,
|
278 |
+
"eval_dot_accuracy_threshold": 261.77471923828125,
|
279 |
+
"eval_dot_ap": 0.6459102507978051,
|
280 |
+
"eval_dot_f1": 0.7029659625697713,
|
281 |
+
"eval_dot_f1_threshold": 202.47332763671875,
|
282 |
+
"eval_dot_precision": 0.5620897873457601,
|
283 |
+
"eval_dot_recall": 0.9380750693734482,
|
284 |
+
"eval_euclidean_accuracy": 0.6688149215255137,
|
285 |
+
"eval_euclidean_accuracy_threshold": 12.95585823059082,
|
286 |
+
"eval_euclidean_ap": 0.732777449339851,
|
287 |
+
"eval_euclidean_f1": 0.7106249615928225,
|
288 |
+
"eval_euclidean_f1_threshold": 15.783571243286133,
|
289 |
+
"eval_euclidean_precision": 0.6134097178018247,
|
290 |
+
"eval_euclidean_recall": 0.8444574266101943,
|
291 |
+
"eval_loss": 0.6682662963867188,
|
292 |
+
"eval_manhattan_accuracy": 0.6737432709075745,
|
293 |
+
"eval_manhattan_accuracy_threshold": 239.43251037597656,
|
294 |
+
"eval_manhattan_ap": 0.7357876112808931,
|
295 |
+
"eval_manhattan_f1": 0.7108785592601606,
|
296 |
+
"eval_manhattan_f1_threshold": 293.34881591796875,
|
297 |
+
"eval_manhattan_precision": 0.6092397538846595,
|
298 |
+
"eval_manhattan_recall": 0.8532203884913101,
|
299 |
+
"eval_max_accuracy": 0.6737432709075745,
|
300 |
+
"eval_max_accuracy_threshold": 261.77471923828125,
|
301 |
+
"eval_max_ap": 0.7357876112808931,
|
302 |
+
"eval_max_f1": 0.7130742480629613,
|
303 |
+
"eval_max_f1_threshold": 293.34881591796875,
|
304 |
+
"eval_max_precision": 0.6134097178018247,
|
305 |
+
"eval_max_recall": 0.9380750693734482,
|
306 |
+
"eval_runtime": 36.5369,
|
307 |
+
"eval_samples_per_second": 360.977,
|
308 |
+
"eval_steps_per_second": 5.666,
|
309 |
+
"step": 7368
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.8750890766568258,
|
313 |
+
"grad_norm": 7.982311725616455,
|
314 |
+
"learning_rate": 3.498656242365014e-05,
|
315 |
+
"loss": 0.1063,
|
316 |
+
"step": 8596
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.8750890766568258,
|
320 |
+
"eval_cosine_accuracy": 0.6648722420198651,
|
321 |
+
"eval_cosine_accuracy_threshold": 0.7642883062362671,
|
322 |
+
"eval_cosine_ap": 0.7283929467215002,
|
323 |
+
"eval_cosine_f1": 0.7061340941512125,
|
324 |
+
"eval_cosine_f1_threshold": 0.6351689100265503,
|
325 |
+
"eval_cosine_precision": 0.5953693495038589,
|
326 |
+
"eval_cosine_recall": 0.8675332262304659,
|
327 |
+
"eval_dot_accuracy": 0.6397755705512169,
|
328 |
+
"eval_dot_accuracy_threshold": 268.03167724609375,
|
329 |
+
"eval_dot_ap": 0.6799114732445778,
|
330 |
+
"eval_dot_f1": 0.7021864211737631,
|
331 |
+
"eval_dot_f1_threshold": 216.1470947265625,
|
332 |
+
"eval_dot_precision": 0.5793221304471661,
|
333 |
+
"eval_dot_recall": 0.8911932233094786,
|
334 |
+
"eval_euclidean_accuracy": 0.6580483736447039,
|
335 |
+
"eval_euclidean_accuracy_threshold": 12.722024917602539,
|
336 |
+
"eval_euclidean_ap": 0.7268148607241872,
|
337 |
+
"eval_euclidean_f1": 0.7027586626880216,
|
338 |
+
"eval_euclidean_f1_threshold": 16.08021354675293,
|
339 |
+
"eval_euclidean_precision": 0.6026739085021935,
|
340 |
+
"eval_euclidean_recall": 0.8427048342339711,
|
341 |
+
"eval_loss": 0.6895074248313904,
|
342 |
+
"eval_manhattan_accuracy": 0.6606262794753204,
|
343 |
+
"eval_manhattan_accuracy_threshold": 248.9168701171875,
|
344 |
+
"eval_manhattan_ap": 0.7294072443461903,
|
345 |
+
"eval_manhattan_f1": 0.703255925305243,
|
346 |
+
"eval_manhattan_f1_threshold": 306.02117919921875,
|
347 |
+
"eval_manhattan_precision": 0.5957813609167427,
|
348 |
+
"eval_manhattan_recall": 0.8580400175259237,
|
349 |
+
"eval_max_accuracy": 0.6648722420198651,
|
350 |
+
"eval_max_accuracy_threshold": 268.03167724609375,
|
351 |
+
"eval_max_ap": 0.7294072443461903,
|
352 |
+
"eval_max_f1": 0.7061340941512125,
|
353 |
+
"eval_max_f1_threshold": 306.02117919921875,
|
354 |
+
"eval_max_precision": 0.6026739085021935,
|
355 |
+
"eval_max_recall": 0.8911932233094786,
|
356 |
+
"eval_runtime": 36.5151,
|
357 |
+
"eval_samples_per_second": 361.193,
|
358 |
+
"eval_steps_per_second": 5.669,
|
359 |
+
"step": 8596
|
360 |
+
}
|
361 |
+
],
|
362 |
+
"logging_steps": 1228,
|
363 |
+
"max_steps": 49115,
|
364 |
+
"num_input_tokens_seen": 0,
|
365 |
+
"num_train_epochs": 5,
|
366 |
+
"save_steps": 9823,
|
367 |
+
"stateful_callbacks": {
|
368 |
+
"TrainerControl": {
|
369 |
+
"args": {
|
370 |
+
"should_epoch_stop": false,
|
371 |
+
"should_evaluate": false,
|
372 |
+
"should_log": false,
|
373 |
+
"should_save": true,
|
374 |
+
"should_training_stop": false
|
375 |
+
},
|
376 |
+
"attributes": {}
|
377 |
+
}
|
378 |
+
},
|
379 |
+
"total_flos": 0.0,
|
380 |
+
"train_batch_size": 32,
|
381 |
+
"trial_name": null,
|
382 |
+
"trial_params": null
|
383 |
+
}
|
last-checkpoint/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f3a4722bf017fa7a86c21655fdafd309cec23645bee218eafdd9a69e1939ff7
|
3 |
+
size 5560
|