--- library_name: peft tags: - generated_from_trainer base_model: bofenghuang/vigogne-2-7b-instruct model-index: - name: qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: bofenghuang/vigogne-2-7b-instruct base_model_config: bofenghuang/vigogne-2-7b-instruct model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: bobyres/LabelV01 type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: "finetune_labelisation_v011" wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: "checkpoint" gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 0.05 eval_table_size: save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# qlora-out This model is a fine-tuned version of [bofenghuang/vigogne-2-7b-instruct](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0134 | 0.03 | 1 | 1.0981 | | 0.972 | 0.15 | 6 | 1.0736 | | 0.7982 | 0.31 | 12 | 0.8548 | | 0.6944 | 0.46 | 18 | 0.7151 | | 0.6808 | 0.62 | 24 | 0.6943 | | 0.6763 | 0.77 | 30 | 0.6821 | | 0.67 | 0.92 | 36 | 0.6764 | | 0.6424 | 1.08 | 42 | 0.6730 | | 0.6552 | 1.23 | 48 | 0.6780 | | 0.6527 | 1.38 | 54 | 0.6690 | | 0.6624 | 1.54 | 60 | 0.6632 | | 0.6228 | 1.69 | 66 | 0.6625 | | 0.6447 | 1.85 | 72 | 0.6617 | | 0.6409 | 2.0 | 78 | 0.6599 | | 0.6356 | 2.15 | 84 | 0.6589 | | 0.648 | 2.31 | 90 | 0.6584 | | 0.6254 | 2.46 | 96 | 0.6593 | | 0.6167 | 2.62 | 102 | 0.6596 | | 0.6451 | 2.77 | 108 | 0.6590 | | 0.6144 | 2.92 | 114 | 0.6592 | ### Framework versions - PEFT 0.11.0 - Transformers 4.39.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.17.1 - Tokenizers 0.15.0