File size: 1,773 Bytes
350270b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: DeepPavlov/rubert-base-cased
tags:
- generated_from_trainer
model-index:
- name: bert-finetuned-tags-rus
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-tags-rus

This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0065

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 92   | 0.0600          |
| No log        | 2.0   | 184  | 0.0318          |
| No log        | 3.0   | 276  | 0.0195          |
| No log        | 4.0   | 368  | 0.0154          |
| No log        | 5.0   | 460  | 0.0123          |
| 0.0598        | 6.0   | 552  | 0.0093          |
| 0.0598        | 7.0   | 644  | 0.0079          |
| 0.0598        | 8.0   | 736  | 0.0078          |
| 0.0598        | 9.0   | 828  | 0.0070          |
| 0.0598        | 10.0  | 920  | 0.0065          |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2