bogdancazan commited on
Commit
e70b614
1 Parent(s): 291b0f3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - billsum
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: prophetnet_summarization_pretrained
10
+ results:
11
+ - task:
12
+ name: Sequence-to-sequence Language Modeling
13
+ type: text2text-generation
14
+ dataset:
15
+ name: billsum
16
+ type: billsum
17
+ config: default
18
+ split: ca_test
19
+ args: default
20
+ metrics:
21
+ - name: Rouge1
22
+ type: rouge
23
+ value: 0.4982
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # prophetnet_summarization_pretrained
30
+
31
+ This model is a fine-tuned version of [microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) on the billsum dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 2.3683
34
+ - Rouge1: 0.4982
35
+ - Rouge2: 0.2267
36
+ - Rougel: 0.2983
37
+ - Rougelsum: 0.2985
38
+ - Gen Len: 139.3831
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 8
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 4
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
68
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
69
+ | No log | 1.0 | 124 | 2.5178 | 0.4894 | 0.2223 | 0.2903 | 0.2903 | 139.8105 |
70
+ | No log | 2.0 | 248 | 2.4170 | 0.4973 | 0.2279 | 0.2975 | 0.297 | 140.6492 |
71
+ | No log | 3.0 | 372 | 2.3895 | 0.4964 | 0.2282 | 0.2984 | 0.2981 | 138.5323 |
72
+ | No log | 4.0 | 496 | 2.3683 | 0.4982 | 0.2267 | 0.2983 | 0.2985 | 139.3831 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.29.2
78
+ - Pytorch 2.0.1+cu118
79
+ - Datasets 2.12.0
80
+ - Tokenizers 0.13.3