File size: 12,635 Bytes
191d1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5286319
191d1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from abc import ABC
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
from torch.nn.modules.loss import _Loss
from transformers import XLMRobertaXLPreTrainedModel, XLMRobertaXLModel, XLMRobertaXLConfig
from transformers import AutoModelForSequenceClassification, AutoConfig
from transformers.modeling_outputs import ModelOutput
from pytorch_metric_learning.losses import NTXentLoss


@dataclass
class HierarchicalSequenceEmbedderOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    embeddings: torch.FloatTensor = None
    layer_embeddings: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class HierarchicalSequenceClassifierOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    embeddings: torch.FloatTensor = None
    layer_embeddings: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


class HierarchicalXLMRobertaXLConfig(XLMRobertaXLConfig):
    model_type = "hierarchical-xlm-roberta-xl"

    def __init__(self, label_smoothing: Optional[float] = None, **kwargs):
        super().__init__(**kwargs)
        self.label_smoothing = label_smoothing


class XLMRobertaXLHierarchicalClassificationHead(torch.nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = torch.nn.Dropout(classifier_dropout)
        self.out_proj = torch.nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = self.dropout(features)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


def distance_to_probability(distance: torch.Tensor, margin: float) -> torch.Tensor:
    margin = torch.full(size=distance.size(), fill_value=margin,
                        dtype=distance.dtype, device=distance.device, requires_grad=False)
    p = (1.0 + torch.exp(-margin)) / (1.0 + torch.exp(distance - margin))
    del margin
    return p


class DistanceBasedLogisticLoss(_Loss):
    __constants__ = ['margin', 'reduction']
    margin: float

    def __init__(self, margin: float = 1.0, size_average=None, reduce=None, reduction: str = 'mean'):
        super(DistanceBasedLogisticLoss, self).__init__(size_average, reduce, reduction)
        self.margin = margin

    def forward(self, inputs, targets):
        inputs = inputs.view(-1)
        targets = targets.to(inputs.dtype).view(-1)
        p = distance_to_probability(inputs, self.margin)
        return torch.nn.functional.binary_cross_entropy(input=p, target=targets, reduction=self.reduction)


class LayerGatingNetwork(torch.nn.Module):
    __constants__ = ['in_features']
    in_features: int
    weight: torch.Tensor

    def __init__(self, in_features: int, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.in_features = in_features
        self.weight = torch.nn.Parameter(torch.empty((1, in_features), **factory_kwargs))
        self.reset_parameters()

    def reset_parameters(self) -> None:
        initial_layer_weights = np.array(
            [1.0 / (self.in_features - layer_idx) for layer_idx in range(self.in_features)],
            dtype=np.float32
        )
        initial_layer_weights /= np.sum(initial_layer_weights)
        initial_layer_weights_pt = torch.tensor(
            initial_layer_weights.reshape((1, self.in_features)),
            dtype=self.weight.dtype,
            device=self.weight.device
        )
        del initial_layer_weights
        self.weight = torch.nn.Parameter(initial_layer_weights_pt)
        del initial_layer_weights_pt

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return torch.nn.functional.linear(input, torch.softmax(self.weight, dim=-1))

    def extra_repr(self) -> str:
        return 'in_features={}'.format(self.in_features)


class XLMRobertaXLForHierarchicalEmbedding(XLMRobertaXLPreTrainedModel, ABC):
    config_class = HierarchicalXLMRobertaXLConfig

    def __init__(self, config: HierarchicalXLMRobertaXLConfig):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.temperature = config.temperature
        self.config = config

        self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
        self.layer_weights = LayerGatingNetwork(in_features=config.num_hidden_layers)

        self.init_weights()

    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            right_input_ids: Optional[torch.LongTensor] = None,
            right_attention_mask: Optional[torch.LongTensor] = None,
            token_type_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            output_attentions: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, HierarchicalSequenceEmbedderOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=False
        )
        cls_hidden_states = torch.stack(
            tensors=outputs[2][-self.config.num_hidden_layers:],
            dim=1
        )[:, :, 0, :]
        cls_emb = self.layer_weights(cls_hidden_states.permute(0, 2, 1))[:, :, 0]

        loss = None
        if labels is not None:
            cls_emb_ = cls_emb.view(-1, self.config.hidden_size)
            emb_norm = torch.linalg.norm(cls_emb_, dim=-1, keepdim=True) + 1e-9
            if (right_input_ids is not None) or (right_attention_mask is not None):
                if right_input_ids is None:
                    raise ValueError(f'right_input_ids is not specified!')
                if right_attention_mask is None:
                    raise ValueError(f'right_attention_mask is not specified!')
                right_outputs = self.roberta(
                    right_input_ids,
                    attention_mask=right_attention_mask,
                    output_hidden_states=True,
                    return_dict=False
                )
                right_cls_hidden_states = torch.stack(
                    tensors=right_outputs[2][-self.config.num_hidden_layers:],
                    dim=1
                )[:, :, 0, :]
                right_cls_emb = self.layer_weights(right_cls_hidden_states.permute(0, 2, 1))[:, :, 0]
                right_cls_emb_ = right_cls_emb.view(-1, self.config.hidden_size)
                right_emb_norm = torch.linalg.norm(right_cls_emb_, dim=-1, keepdim=True) + 1e-9
                distances = torch.norm(cls_emb_ / emb_norm - right_cls_emb_ / right_emb_norm, 2, dim=-1)
                loss_fct = DistanceBasedLogisticLoss(margin=1.0)
                loss = loss_fct(distances, labels.view(-1))
            else:
                loss_fct = NTXentLoss(temperature=self.temperature)
                loss = loss_fct(cls_emb_ / emb_norm, labels.view(-1))

        if not return_dict:
            output = (cls_emb, cls_hidden_states) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return HierarchicalSequenceEmbedderOutput(
            loss=loss,
            embeddings=cls_emb,
            layer_embeddings=cls_hidden_states,
            hidden_states=outputs[2],
            attentions=outputs[3] if output_attentions else None,
        )

    @property
    def layer_importances(self) -> List[Tuple[int, float]]:
        with torch.no_grad():
            importances = torch.softmax(self.layer_weights.weight, dim=-1).detach().cpu().numpy().flatten()
        indices_and_importances = []
        for layer_idx in range(importances.shape[0]):
            indices_and_importances.append((layer_idx + 1, float(importances[layer_idx])))
        indices_and_importances.sort(key=lambda it: (-it[1], it[0]))
        return indices_and_importances


class XLMRobertaXLForHierarchicalSequenceClassification(XLMRobertaXLForHierarchicalEmbedding, ABC):
    def __init__(self, config: HierarchicalXLMRobertaXLConfig):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.label_smoothing = config.label_smoothing
        self.config = config

        self.classifier = XLMRobertaXLHierarchicalClassificationHead(config)

        self.init_weights()

    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            right_input_ids: Optional[torch.LongTensor] = None,
            right_attention_mask: Optional[torch.LongTensor] = None,
            token_type_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            output_attentions: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, HierarchicalSequenceClassifierOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = super().forward(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = torch.nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                if self.label_smoothing is None:
                    loss_fct = torch.nn.CrossEntropyLoss()
                else:
                    loss_fct = torch.nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = torch.nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs
            return ((loss,) + output) if loss is not None else output

        return HierarchicalSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            embeddings=outputs.embeddings,
            layer_embeddings=outputs.layer_embeddings,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions
        )


AutoConfig.register("hierarchical-xlm-roberta-xl", HierarchicalXLMRobertaXLConfig)
AutoModelForSequenceClassification.register(
    HierarchicalXLMRobertaXLConfig,
    XLMRobertaXLForHierarchicalSequenceClassification
)