Update README.md
Browse files
README.md
CHANGED
@@ -6,8 +6,9 @@ tags:
|
|
6 |
- sentence-similarity
|
7 |
---
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
11 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
|
13 |
<!--- Describe your model here -->
|
@@ -26,7 +27,7 @@ Then you can use the model like this:
|
|
26 |
from sentence_transformers import SentenceTransformer
|
27 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
|
29 |
-
model = SentenceTransformer('klue-sbert-128d-v1')
|
30 |
embeddings = model.encode(sentences)
|
31 |
print(embeddings)
|
32 |
```
|
|
|
6 |
- sentence-similarity
|
7 |
---
|
8 |
|
9 |
+
# klue-sbert-128d-v1
|
10 |
+
- 기존 klue 모델을, 128 차원으로 축소하는 dense 추가하여 nli(3)-sts(10) 훈련 시킨 모델.
|
11 |
+
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
<!--- Describe your model here -->
|
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
+
model = SentenceTransformer('bongsoo/klue-sbert-128d-v1')
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|