Update README.md
Browse files
README.md
CHANGED
@@ -6,7 +6,8 @@ tags:
|
|
6 |
- sentence-similarity
|
7 |
---
|
8 |
|
9 |
-
#
|
|
|
10 |
|
11 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
|
@@ -26,7 +27,7 @@ Then you can use the model like this:
|
|
26 |
from sentence_transformers import SentenceTransformer
|
27 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
|
29 |
-
model = SentenceTransformer('
|
30 |
embeddings = model.encode(sentences)
|
31 |
print(embeddings)
|
32 |
```
|
@@ -77,7 +78,7 @@ Parameters of the fit()-Method:
|
|
77 |
## Full Model Architecture
|
78 |
```
|
79 |
SentenceTransformer(
|
80 |
-
(0): Transformer({'max_seq_length':
|
81 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
82 |
(2): Dense({'in_features': 768, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
83 |
)
|
@@ -85,4 +86,4 @@ SentenceTransformer(
|
|
85 |
|
86 |
## Citing & Authors
|
87 |
|
88 |
-
|
|
|
6 |
- sentence-similarity
|
7 |
---
|
8 |
|
9 |
+
# kpf-sbert-128d-v1
|
10 |
+
- kpf bert 모델 출력을 128 차원으로 줄이고, nli(3)+sts(10)+nli(3)+sts(10) 훈련시킴
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
+
model = SentenceTransformer('bongsoo/kpf-sbert-128d-v1')
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
|
|
78 |
## Full Model Architecture
|
79 |
```
|
80 |
SentenceTransformer(
|
81 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
82 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
83 |
(2): Dense({'in_features': 768, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
84 |
)
|
|
|
86 |
|
87 |
## Citing & Authors
|
88 |
|
89 |
+
bongsoo
|