bongsoo commited on
Commit
659a6be
·
1 Parent(s): 33eef91

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -6,7 +6,8 @@ tags:
6
  - sentence-similarity
7
  ---
8
 
9
- # {MODEL_NAME}
 
10
 
11
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
 
@@ -26,7 +27,7 @@ Then you can use the model like this:
26
  from sentence_transformers import SentenceTransformer
27
  sentences = ["This is an example sentence", "Each sentence is converted"]
28
 
29
- model = SentenceTransformer('{MODEL_NAME}')
30
  embeddings = model.encode(sentences)
31
  print(embeddings)
32
  ```
@@ -77,7 +78,7 @@ Parameters of the fit()-Method:
77
  ## Full Model Architecture
78
  ```
79
  SentenceTransformer(
80
- (0): Transformer({'max_seq_length': 72, 'do_lower_case': True}) with Transformer model: BertModel
81
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
82
  (2): Dense({'in_features': 768, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
83
  )
@@ -85,4 +86,4 @@ SentenceTransformer(
85
 
86
  ## Citing & Authors
87
 
88
- <!--- Describe where people can find more information -->
 
6
  - sentence-similarity
7
  ---
8
 
9
+ # kpf-sbert-128d-v1
10
+ - kpf bert 모델 출력을 128 차원으로 줄이고, nli(3)+sts(10)+nli(3)+sts(10) 훈련시킴
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
 
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
+ model = SentenceTransformer('bongsoo/kpf-sbert-128d-v1')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
 
78
  ## Full Model Architecture
79
  ```
80
  SentenceTransformer(
81
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
82
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
83
  (2): Dense({'in_features': 768, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
84
  )
 
86
 
87
  ## Citing & Authors
88
 
89
+ bongsoo