w11wo commited on
Commit
919b53f
·
1 Parent(s): e758c57

Added Model

Browse files
README.md CHANGED
@@ -1,3 +1,163 @@
1
  ---
 
2
  license: cc-by-sa-4.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: sw
3
  license: cc-by-sa-4.0
4
+ tags:
5
+ - tensorflowtts
6
+ - audio
7
+ - text-to-speech
8
+ - text-to-mel
9
+ inference: false
10
  ---
11
+
12
+ # LightSpeech MFA SW v1
13
+
14
+ LightSpeech MFA SW v1 is a text-to-mel-spectrogram model based on the [LightSpeech](https://arxiv.org/abs/2102.04040) architecture. This model was trained from scratch on a real audio dataset. The list of real speakers include:
15
+
16
+ - sw-KE-OpenBible
17
+
18
+ We trained an acoustic Swahili model on our speech corpus using [Montreal Forced Aligner v2.0.0](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) and used it as the duration extractor. That model, and consequently our model, uses the IPA phone set for Swahili. We used [gruut](https://github.com/rhasspy/gruut) for phonemization purposes. We followed these [steps](https://github.com/TensorSpeech/TensorFlowTTS/tree/master/examples/mfa_extraction) to perform duration extraction.
19
+
20
+ This model was trained using the [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS) framework. All training was done on a Scaleway RENDER-S VM with a Tesla P100 GPU. All necessary scripts used for training could be found in this [Github Fork](https://github.com/bookbot-hive/TensorFlowTTS), as well as the [Training metrics](https://huggingface.co/bookbot/lightspeech-mfa-sw-v1/tensorboard) logged via Tensorboard.
21
+
22
+ ## Model
23
+
24
+ | Model | Config | SR (Hz) | Mel range (Hz) | FFT / Hop / Win (pt) | #steps |
25
+ | ----------------------- | --------------------------------------------------------------------------------- | ------- | -------------- | -------------------- | ------ |
26
+ | `lightspeech-mfa-sw-v1` | [Link](https://huggingface.co/bookbot/lightspeech-mfa-sw-v1/blob/main/config.yml) | 44.1K | 20-11025 | 2048 / 512 / None | 200K |
27
+
28
+ ## Training Procedure
29
+
30
+ <details>
31
+ <summary>Feature Extraction Setting</summary>
32
+
33
+ hop_size: 512 # Hop size.
34
+ format: "npy"
35
+
36
+ </details>
37
+
38
+ <details>
39
+ <summary>Network Architecture Setting</summary>
40
+
41
+ model_type: lightspeech
42
+ lightspeech_params:
43
+ dataset: "swahiliipa"
44
+ n_speakers: 1
45
+ encoder_hidden_size: 256
46
+ encoder_num_hidden_layers: 3
47
+ encoder_num_attention_heads: 2
48
+ encoder_attention_head_size: 16
49
+ encoder_intermediate_size: 1024
50
+ encoder_intermediate_kernel_size:
51
+ - 5
52
+ - 25
53
+ - 13
54
+ - 9
55
+ encoder_hidden_act: "mish"
56
+ decoder_hidden_size: 256
57
+ decoder_num_hidden_layers: 3
58
+ decoder_num_attention_heads: 2
59
+ decoder_attention_head_size: 16
60
+ decoder_intermediate_size: 1024
61
+ decoder_intermediate_kernel_size:
62
+ - 17
63
+ - 21
64
+ - 9
65
+ - 13
66
+ decoder_hidden_act: "mish"
67
+ variant_prediction_num_conv_layers: 2
68
+ variant_predictor_filter: 256
69
+ variant_predictor_kernel_size: 3
70
+ variant_predictor_dropout_rate: 0.5
71
+ num_mels: 80
72
+ hidden_dropout_prob: 0.2
73
+ attention_probs_dropout_prob: 0.1
74
+ max_position_embeddings: 2048
75
+ initializer_range: 0.02
76
+ output_attentions: False
77
+ output_hidden_states: False
78
+
79
+ </details>
80
+
81
+ <details>
82
+ <summary>Data Loader Setting</summary>
83
+
84
+ batch_size: 8 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
85
+ eval_batch_size: 16
86
+ remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
87
+ allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
88
+ mel_length_threshold: 32 # remove all targets has mel_length <= 32
89
+ is_shuffle: true # shuffle dataset after each epoch.
90
+
91
+ </details>
92
+
93
+ <details>
94
+ <summary>Optimizer & Scheduler Setting</summary>
95
+
96
+ optimizer_params:
97
+ initial_learning_rate: 0.0001
98
+ end_learning_rate: 0.00005
99
+ decay_steps: 150000 # < train_max_steps is recommend.
100
+ warmup_proportion: 0.02
101
+ weight_decay: 0.001
102
+
103
+ gradient_accumulation_steps: 2
104
+ var_train_expr:
105
+ null # trainable variable expr (eg. 'embeddings|encoder|decoder' )
106
+ # must separate by |. if var_train_expr is null then we
107
+ # training all variable
108
+
109
+ </details>
110
+
111
+ <details>
112
+ <summary>Interval Setting</summary>
113
+
114
+ train_max_steps: 200000 # Number of training steps.
115
+ save_interval_steps: 5000 # Interval steps to save checkpoint.
116
+ eval_interval_steps: 5000 # Interval steps to evaluate the network.
117
+ log_interval_steps: 200 # Interval steps to record the training log.
118
+ delay_f0_energy_steps: 3 # 2 steps use LR outputs only then 1 steps LR + F0 + Energy.
119
+
120
+ </details>
121
+
122
+ <details>
123
+ <summary>Other Setting</summary>
124
+
125
+ num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
126
+
127
+ </details>
128
+
129
+ ## How to Use
130
+
131
+ ```py
132
+ import tensorflow as tf
133
+ from tensorflow_tts.inference import TFAutoModel, AutoProcessor
134
+
135
+ lightspeech = TFAutoModel.from_pretrained("bookbot/lightspeech-mfa-sw-v1")
136
+ processor = AutoProcessor.from_pretrained("bookbot/lightspeech-mfa-sw-v1")
137
+
138
+ text, speaker_name = "Hello World", "sw-KE-OpenBible"
139
+ input_ids = processor.text_to_sequence(text)
140
+
141
+ mel, duration_outputs, _ = lightspeech.inference(
142
+ input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
143
+ speaker_ids=tf.convert_to_tensor(
144
+ [processor.speakers_map[speaker_name]], dtype=tf.int32
145
+ ),
146
+ speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
147
+ f0_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
148
+ energy_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
149
+ )
150
+ ```
151
+
152
+ ## Disclaimer
153
+
154
+ Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
155
+
156
+ ## Authors
157
+
158
+ LightSpeech MFA SW v1 was trained and evaluated by [David Samuel Setiawan](https://davidsamuell.github.io/), [Wilson Wongso](https://wilsonwongso.dev/). All computation and development are done on Scaleway.
159
+
160
+ ## Framework versions
161
+
162
+ - TensorFlowTTS 1.8
163
+ - TensorFlow 2.7.0
config.yml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ allow_cache: true
2
+ batch_size: 8
3
+ config: ./TensorFlowTTS/examples/lightspeech/conf/lightspeech_swahiliipa.yaml
4
+ dataset_config: TensorFlowTTS/preprocess/swahiliipa_preprocess.yaml
5
+ dataset_mapping: dump/swahiliipa_mapper.json
6
+ dataset_stats: dump/stats.npy
7
+ delay_f0_energy_steps: 3
8
+ dev_dir: ./dump/valid/
9
+ energy_stat: ./dump/stats_energy.npy
10
+ eval_batch_size: 16
11
+ eval_interval_steps: 5000
12
+ f0_stat: ./dump/stats_f0.npy
13
+ format: npy
14
+ gradient_accumulation_steps: 2
15
+ hop_size: 512
16
+ is_shuffle: true
17
+ lightspeech_params:
18
+ attention_probs_dropout_prob: 0.1
19
+ dataset: swahiliipa
20
+ decoder_attention_head_size: 16
21
+ decoder_hidden_act: mish
22
+ decoder_hidden_size: 256
23
+ decoder_intermediate_kernel_size:
24
+ - 17
25
+ - 21
26
+ - 9
27
+ - 13
28
+ decoder_intermediate_size: 1024
29
+ decoder_num_attention_heads: 2
30
+ decoder_num_hidden_layers: 3
31
+ encoder_attention_head_size: 16
32
+ encoder_hidden_act: mish
33
+ encoder_hidden_size: 256
34
+ encoder_intermediate_kernel_size:
35
+ - 5
36
+ - 25
37
+ - 13
38
+ - 9
39
+ encoder_intermediate_size: 1024
40
+ encoder_num_attention_heads: 2
41
+ encoder_num_hidden_layers: 3
42
+ hidden_dropout_prob: 0.2
43
+ initializer_range: 0.02
44
+ max_position_embeddings: 2048
45
+ n_speakers: 1
46
+ num_mels: 80
47
+ output_attentions: false
48
+ output_hidden_states: false
49
+ variant_prediction_num_conv_layers: 2
50
+ variant_predictor_dropout_rate: 0.5
51
+ variant_predictor_filter: 256
52
+ variant_predictor_kernel_size: 3
53
+ log_interval_steps: 200
54
+ mel_length_threshold: 32
55
+ mixed_precision: true
56
+ model_type: lightspeech
57
+ num_save_intermediate_results: 1
58
+ optimizer_params:
59
+ decay_steps: 150000
60
+ end_learning_rate: 5.0e-05
61
+ initial_learning_rate: 0.001
62
+ warmup_proportion: 0.02
63
+ weight_decay: 0.001
64
+ outdir: ./lightspeech-openbible
65
+ pretrained: ''
66
+ remove_short_samples: true
67
+ resume: ''
68
+ save_interval_steps: 5000
69
+ train_dir: ./dump/train/
70
+ train_max_steps: 200000
71
+ use_norm: true
72
+ var_train_expr: null
73
+ verbose: 1
74
+ version: '0.0'
events.out.tfevents.1712388040.bookbot.343075.0.v2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a1dd5aa5acee3af9aadc9ec378fb480c882b7fae3030004ee60b46d56a8c692
3
+ size 234708
model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:063c3c6775c287e386c69b98dca7df41de2cff9846bebe1b7f3bd59b02ee24dc
3
+ size 19484280
processor.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"symbol_to_id": {"@PAD": 0, "@f": 1, "@h": 2, "@i": 3, "@j": 4, "@k": 5, "@l": 6, "@m": 7, "@n": 8, "@p": 9, "@s": 10, "@t": 11, "@t\u0361\u0283": 12, "@u": 13, "@v": 14, "@w": 15, "@x": 16, "@z": 17, "@\u00f0": 18, "@\u0251": 19, "@\u0253": 20, "@\u0254": 21, "@\u0257": 22, "@\u025b": 23, "@\u0260": 24, "@\u0263": 25, "@\u027e": 26, "@\u0283": 27, "@\u0284": 28, "@\u03b8": 29, "@\u1d50\u0253": 30, "@\u1d51g": 31, "@\u1dacv": 32, "@\u207fz": 33, "@\u207f\u0257": 34, "@\u207f\u0257\u0361\u0292": 35, "!": 36, ",": 37, ".": 38, "?": 39, ";": 40, ":": 41, "@SIL": 42, "@EOS": 43}, "id_to_symbol": {"0": "@PAD", "1": "@f", "2": "@h", "3": "@i", "4": "@j", "5": "@k", "6": "@l", "7": "@m", "8": "@n", "9": "@p", "10": "@s", "11": "@t", "12": "@t\u0361\u0283", "13": "@u", "14": "@v", "15": "@w", "16": "@x", "17": "@z", "18": "@\u00f0", "19": "@\u0251", "20": "@\u0253", "21": "@\u0254", "22": "@\u0257", "23": "@\u025b", "24": "@\u0260", "25": "@\u0263", "26": "@\u027e", "27": "@\u0283", "28": "@\u0284", "29": "@\u03b8", "30": "@\u1d50\u0253", "31": "@\u1d51g", "32": "@\u1dacv", "33": "@\u207fz", "34": "@\u207f\u0257", "35": "@\u207f\u0257\u0361\u0292", "36": "!", "37": ",", "38": ".", "39": "?", "40": ";", "41": ":", "42": "@SIL", "43": "@EOS"}, "speakers_map": {"sw-KE-OpenBible": 0}, "processor_name": "SwahiliIPAProcessor"}