commit files to HF hub
Browse files- config.json +3 -3
- configuration_phi3.py → configuration.py +8 -8
- modeling_phi3.py → modeling.py +69 -69
config.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"Phi3ForCausalLM"
|
5 |
],
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
-
"AutoConfig": "
|
9 |
-
"AutoModelForCausalLM": "
|
10 |
},
|
11 |
"bos_token_id": 1,
|
12 |
"embd_pdrop": 0.0,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "PersianStories-4k",
|
3 |
"architectures": [
|
4 |
"Phi3ForCausalLM"
|
5 |
],
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
+
"AutoConfig": "configuration.Phi3Config",
|
9 |
+
"AutoModelForCausalLM": "modeling.Phi3ForCausalLM"
|
10 |
},
|
11 |
"bos_token_id": 1,
|
12 |
"embd_pdrop": 0.0,
|
configuration_phi3.py → configuration.py
RENAMED
@@ -22,15 +22,15 @@ from transformers.utils import logging
|
|
22 |
|
23 |
logger = logging.get_logger(__name__)
|
24 |
|
25 |
-
|
26 |
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
}
|
29 |
|
30 |
|
31 |
-
class
|
32 |
r"""
|
33 |
-
This is the configuration class to store the configuration of a [`
|
34 |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
defaults will yield a similar configuration to that of the
|
36 |
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
@@ -41,7 +41,7 @@ class Phi3Config(PretrainedConfig):
|
|
41 |
Args:
|
42 |
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
-
`inputs_ids` passed when calling [`
|
45 |
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
Dimension of the hidden representations.
|
47 |
intermediate_size (`int`, *optional*, defaults to 8192):
|
@@ -99,19 +99,19 @@ class Phi3Config(PretrainedConfig):
|
|
99 |
Example:
|
100 |
|
101 |
```python
|
102 |
-
>>> from transformers import
|
103 |
|
104 |
>>> # Initializing a Phi-3 style configuration
|
105 |
-
>>> configuration =
|
106 |
|
107 |
>>> # Initializing a model from the configuration
|
108 |
-
>>> model =
|
109 |
|
110 |
>>> # Accessing the model configuration
|
111 |
>>> configuration = model.config
|
112 |
```"""
|
113 |
|
114 |
-
model_type = "
|
115 |
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
|
117 |
def __init__(
|
|
|
22 |
|
23 |
logger = logging.get_logger(__name__)
|
24 |
|
25 |
+
PersianStories_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
}
|
29 |
|
30 |
|
31 |
+
class PersianStoriesConfig(PretrainedConfig):
|
32 |
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`PersianStoriesModel`]. It is used to instantiate a Phi-3
|
34 |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
defaults will yield a similar configuration to that of the
|
36 |
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
|
|
41 |
Args:
|
42 |
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`PersianStoriesModel`].
|
45 |
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
Dimension of the hidden representations.
|
47 |
intermediate_size (`int`, *optional*, defaults to 8192):
|
|
|
99 |
Example:
|
100 |
|
101 |
```python
|
102 |
+
>>> from transformers import PersianStoriesModel, PersianStoriesConfig
|
103 |
|
104 |
>>> # Initializing a Phi-3 style configuration
|
105 |
+
>>> configuration = PersianStoriesConfig.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
|
107 |
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = PersianStoriesModel(configuration)
|
109 |
|
110 |
>>> # Accessing the model configuration
|
111 |
>>> configuration = model.config
|
112 |
```"""
|
113 |
|
114 |
+
model_type = "PersianStories"
|
115 |
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
|
117 |
def __init__(
|
modeling_phi3.py → modeling.py
RENAMED
@@ -45,7 +45,7 @@ from transformers.utils import (
|
|
45 |
logging,
|
46 |
replace_return_docstrings,
|
47 |
)
|
48 |
-
from .
|
49 |
|
50 |
|
51 |
logger = logging.get_logger(__name__)
|
@@ -68,20 +68,20 @@ except ImportError as error:
|
|
68 |
)
|
69 |
|
70 |
_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
|
71 |
-
_CONFIG_FOR_DOC = "
|
72 |
|
73 |
-
|
74 |
"microsoft/Phi-3-mini-4k-instruct",
|
75 |
"microsoft/Phi-3-mini-128k-instruct",
|
76 |
# See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
|
77 |
]
|
78 |
|
79 |
|
80 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->
|
81 |
-
class
|
82 |
def __init__(self, hidden_size, eps=1e-6):
|
83 |
"""
|
84 |
-
|
85 |
"""
|
86 |
super().__init__()
|
87 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
@@ -108,8 +108,8 @@ def _get_unpad_data(attention_mask):
|
|
108 |
)
|
109 |
|
110 |
|
111 |
-
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->
|
112 |
-
class
|
113 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
114 |
super().__init__()
|
115 |
|
@@ -139,7 +139,7 @@ class Phi3RotaryEmbedding(nn.Module):
|
|
139 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
140 |
|
141 |
|
142 |
-
class
|
143 |
def __init__(self, dim, config, device=None):
|
144 |
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
145 |
|
@@ -216,7 +216,7 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
216 |
return q_embed, k_embed
|
217 |
|
218 |
|
219 |
-
class
|
220 |
def __init__(self, config):
|
221 |
super().__init__()
|
222 |
|
@@ -248,10 +248,10 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
248 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
249 |
|
250 |
|
251 |
-
class
|
252 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
253 |
|
254 |
-
def __init__(self, config:
|
255 |
super().__init__()
|
256 |
self.config = config
|
257 |
self.layer_idx = layer_idx
|
@@ -287,7 +287,7 @@ class Phi3Attention(nn.Module):
|
|
287 |
|
288 |
def _init_rope(self):
|
289 |
if self.rope_scaling is None:
|
290 |
-
self.rotary_emb =
|
291 |
self.head_dim,
|
292 |
max_position_embeddings=self.max_position_embeddings,
|
293 |
base=self.rope_theta,
|
@@ -295,7 +295,7 @@ class Phi3Attention(nn.Module):
|
|
295 |
else:
|
296 |
scaling_type = self.config.rope_scaling["type"]
|
297 |
if scaling_type == "longrope":
|
298 |
-
self.rotary_emb =
|
299 |
else:
|
300 |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
301 |
|
@@ -381,9 +381,9 @@ class Phi3Attention(nn.Module):
|
|
381 |
return attn_output, attn_weights, past_key_value
|
382 |
|
383 |
|
384 |
-
class
|
385 |
"""
|
386 |
-
Phi-3 flash attention module. This module inherits from `
|
387 |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
388 |
flash attention and deal with padding tokens in case the input contains any of them.
|
389 |
"""
|
@@ -407,7 +407,7 @@ class Phi3FlashAttention2(Phi3Attention):
|
|
407 |
use_cache: bool = False,
|
408 |
**kwargs,
|
409 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
410 |
-
#
|
411 |
|
412 |
if not _flash_supports_window_size:
|
413 |
logger.warning_once(
|
@@ -690,16 +690,16 @@ class Phi3FlashAttention2(Phi3Attention):
|
|
690 |
)
|
691 |
|
692 |
|
693 |
-
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->
|
694 |
# TODO @Arthur no longer copied from LLama after static cache
|
695 |
-
class
|
696 |
"""
|
697 |
-
|
698 |
-
`
|
699 |
SDPA API.
|
700 |
"""
|
701 |
|
702 |
-
# Adapted from
|
703 |
def forward(
|
704 |
self,
|
705 |
hidden_states: torch.Tensor,
|
@@ -712,7 +712,7 @@ class Phi3SdpaAttention(Phi3Attention):
|
|
712 |
if output_attentions:
|
713 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
714 |
logger.warning_once(
|
715 |
-
"
|
716 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
717 |
)
|
718 |
return super().forward(
|
@@ -781,26 +781,26 @@ class Phi3SdpaAttention(Phi3Attention):
|
|
781 |
return attn_output, None, past_key_value
|
782 |
|
783 |
|
784 |
-
|
785 |
-
"eager":
|
786 |
-
"flash_attention_2":
|
787 |
-
"sdpa":
|
788 |
}
|
789 |
|
790 |
|
791 |
-
class
|
792 |
-
def __init__(self, config:
|
793 |
super().__init__()
|
794 |
|
795 |
self.config = config
|
796 |
-
self.self_attn =
|
797 |
|
798 |
-
self.mlp =
|
799 |
-
self.input_layernorm =
|
800 |
|
801 |
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
802 |
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
803 |
-
self.post_attention_layernorm =
|
804 |
|
805 |
def forward(
|
806 |
self,
|
@@ -866,7 +866,7 @@ class Phi3DecoderLayer(nn.Module):
|
|
866 |
return outputs
|
867 |
|
868 |
|
869 |
-
|
870 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
871 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
872 |
etc.)
|
@@ -876,7 +876,7 @@ PHI3_START_DOCSTRING = r"""
|
|
876 |
and behavior.
|
877 |
|
878 |
Parameters:
|
879 |
-
config ([`
|
880 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
881 |
load the weights associated with the model, only the configuration. Check out the
|
882 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
@@ -885,13 +885,13 @@ PHI3_START_DOCSTRING = r"""
|
|
885 |
|
886 |
@add_start_docstrings(
|
887 |
"The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
|
888 |
-
|
889 |
)
|
890 |
-
class
|
891 |
-
config_class =
|
892 |
base_model_prefix = "model"
|
893 |
supports_gradient_checkpointing = True
|
894 |
-
_no_split_modules = ["
|
895 |
_skip_keys_device_placement = "past_key_values"
|
896 |
_supports_flash_attn_2 = True
|
897 |
_supports_sdpa = False
|
@@ -911,7 +911,7 @@ class Phi3PreTrainedModel(PreTrainedModel):
|
|
911 |
module.weight.data[module.padding_idx].zero_()
|
912 |
|
913 |
|
914 |
-
|
915 |
Args:
|
916 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
917 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
@@ -983,17 +983,17 @@ PHI3_INPUTS_DOCSTRING = r"""
|
|
983 |
|
984 |
@add_start_docstrings(
|
985 |
"The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
|
986 |
-
|
987 |
)
|
988 |
-
class
|
989 |
"""
|
990 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`
|
991 |
|
992 |
Args:
|
993 |
-
config:
|
994 |
"""
|
995 |
|
996 |
-
def __init__(self, config:
|
997 |
super().__init__(config)
|
998 |
self.padding_idx = config.pad_token_id
|
999 |
self.vocab_size = config.vocab_size
|
@@ -1001,10 +1001,10 @@ class Phi3Model(Phi3PreTrainedModel):
|
|
1001 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1002 |
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
1003 |
self.layers = nn.ModuleList(
|
1004 |
-
[
|
1005 |
)
|
1006 |
self._attn_implementation = config._attn_implementation
|
1007 |
-
self.norm =
|
1008 |
|
1009 |
self.gradient_checkpointing = False
|
1010 |
# Initialize weights and apply final processing
|
@@ -1016,7 +1016,7 @@ class Phi3Model(Phi3PreTrainedModel):
|
|
1016 |
def set_input_embeddings(self, value):
|
1017 |
self.embed_tokens = value
|
1018 |
|
1019 |
-
@add_start_docstrings_to_model_forward(
|
1020 |
def forward(
|
1021 |
self,
|
1022 |
input_ids: torch.LongTensor = None,
|
@@ -1079,7 +1079,7 @@ class Phi3Model(Phi3PreTrainedModel):
|
|
1079 |
if is_padding_right:
|
1080 |
raise ValueError(
|
1081 |
"You are attempting to perform batched generation with padding_side='right'"
|
1082 |
-
" this may lead to unexpected behaviour for Flash Attention version of
|
1083 |
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1084 |
)
|
1085 |
|
@@ -1154,13 +1154,13 @@ class Phi3Model(Phi3PreTrainedModel):
|
|
1154 |
)
|
1155 |
|
1156 |
|
1157 |
-
class
|
1158 |
_tied_weights_keys = ["lm_head.weight"]
|
1159 |
|
1160 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->
|
1161 |
def __init__(self, config):
|
1162 |
super().__init__(config)
|
1163 |
-
self.model =
|
1164 |
self.vocab_size = config.vocab_size
|
1165 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1166 |
|
@@ -1192,7 +1192,7 @@ class Phi3ForCausalLM(Phi3PreTrainedModel):
|
|
1192 |
return self.model
|
1193 |
|
1194 |
# Ignore copy
|
1195 |
-
@add_start_docstrings_to_model_forward(
|
1196 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1197 |
def forward(
|
1198 |
self,
|
@@ -1219,9 +1219,9 @@ class Phi3ForCausalLM(Phi3PreTrainedModel):
|
|
1219 |
Example:
|
1220 |
|
1221 |
```python
|
1222 |
-
>>> from transformers import AutoTokenizer,
|
1223 |
|
1224 |
-
>>> model =
|
1225 |
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1226 |
|
1227 |
>>> prompt = "This is an example script ."
|
@@ -1351,9 +1351,9 @@ class Phi3ForCausalLM(Phi3PreTrainedModel):
|
|
1351 |
|
1352 |
@add_start_docstrings(
|
1353 |
"""
|
1354 |
-
The [`
|
1355 |
|
1356 |
-
[`
|
1357 |
(e.g. GPT-2) do.
|
1358 |
|
1359 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
@@ -1362,14 +1362,14 @@ class Phi3ForCausalLM(Phi3PreTrainedModel):
|
|
1362 |
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1363 |
each row of the batch).
|
1364 |
""",
|
1365 |
-
|
1366 |
)
|
1367 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->
|
1368 |
-
class
|
1369 |
def __init__(self, config):
|
1370 |
super().__init__(config)
|
1371 |
self.num_labels = config.num_labels
|
1372 |
-
self.model =
|
1373 |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1374 |
|
1375 |
# Initialize weights and apply final processing
|
@@ -1381,7 +1381,7 @@ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
|
|
1381 |
def set_input_embeddings(self, value):
|
1382 |
self.model.embed_tokens = value
|
1383 |
|
1384 |
-
@add_start_docstrings_to_model_forward(
|
1385 |
def forward(
|
1386 |
self,
|
1387 |
input_ids: torch.LongTensor = None,
|
@@ -1475,18 +1475,18 @@ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
|
|
1475 |
|
1476 |
@add_start_docstrings(
|
1477 |
"""
|
1478 |
-
[`
|
1479 |
Named-Entity-Recognition (NER) tasks.
|
1480 |
""",
|
1481 |
-
|
1482 |
)
|
1483 |
-
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->
|
1484 |
-
class
|
1485 |
-
def __init__(self, config:
|
1486 |
super().__init__(config)
|
1487 |
self.num_labels = config.num_labels
|
1488 |
|
1489 |
-
self.model =
|
1490 |
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1491 |
classifier_dropout = config.classifier_dropout
|
1492 |
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
@@ -1499,7 +1499,7 @@ class Phi3ForTokenClassification(Phi3PreTrainedModel):
|
|
1499 |
# Initialize weights and apply final processing
|
1500 |
self.post_init()
|
1501 |
|
1502 |
-
@add_start_docstrings_to_model_forward(
|
1503 |
@add_code_sample_docstrings(
|
1504 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
1505 |
output_type=TokenClassifierOutput,
|
|
|
45 |
logging,
|
46 |
replace_return_docstrings,
|
47 |
)
|
48 |
+
from .configuration import PersianStoriesConfig
|
49 |
|
50 |
|
51 |
logger = logging.get_logger(__name__)
|
|
|
68 |
)
|
69 |
|
70 |
_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
|
71 |
+
_CONFIG_FOR_DOC = "PersianStoriesConfig"
|
72 |
|
73 |
+
PersianStories_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
74 |
"microsoft/Phi-3-mini-4k-instruct",
|
75 |
"microsoft/Phi-3-mini-128k-instruct",
|
76 |
# See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
|
77 |
]
|
78 |
|
79 |
|
80 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->PersianStories
|
81 |
+
class PersianStoriesRMSNorm(nn.Module):
|
82 |
def __init__(self, hidden_size, eps=1e-6):
|
83 |
"""
|
84 |
+
PersianStoriesRMSNorm is equivalent to T5LayerNorm
|
85 |
"""
|
86 |
super().__init__()
|
87 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
|
108 |
)
|
109 |
|
110 |
|
111 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->PersianStories, Gemma->PersianStories
|
112 |
+
class PersianStoriesRotaryEmbedding(nn.Module):
|
113 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
114 |
super().__init__()
|
115 |
|
|
|
139 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
140 |
|
141 |
|
142 |
+
class PersianStoriesLongRoPEScaledRotaryEmbedding(PersianStoriesRotaryEmbedding):
|
143 |
def __init__(self, dim, config, device=None):
|
144 |
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
145 |
|
|
|
216 |
return q_embed, k_embed
|
217 |
|
218 |
|
219 |
+
class PersianStoriesMLP(nn.Module):
|
220 |
def __init__(self, config):
|
221 |
super().__init__()
|
222 |
|
|
|
248 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
249 |
|
250 |
|
251 |
+
class PersianStoriesAttention(nn.Module):
|
252 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
253 |
|
254 |
+
def __init__(self, config: PersianStoriesConfig, layer_idx: Optional[int] = None):
|
255 |
super().__init__()
|
256 |
self.config = config
|
257 |
self.layer_idx = layer_idx
|
|
|
287 |
|
288 |
def _init_rope(self):
|
289 |
if self.rope_scaling is None:
|
290 |
+
self.rotary_emb = PersianStoriesRotaryEmbedding(
|
291 |
self.head_dim,
|
292 |
max_position_embeddings=self.max_position_embeddings,
|
293 |
base=self.rope_theta,
|
|
|
295 |
else:
|
296 |
scaling_type = self.config.rope_scaling["type"]
|
297 |
if scaling_type == "longrope":
|
298 |
+
self.rotary_emb = PersianStoriesLongRoPEScaledRotaryEmbedding(self.head_dim, self.config)
|
299 |
else:
|
300 |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
301 |
|
|
|
381 |
return attn_output, attn_weights, past_key_value
|
382 |
|
383 |
|
384 |
+
class PersianStoriesFlashAttention2(PersianStoriesAttention):
|
385 |
"""
|
386 |
+
Phi-3 flash attention module. This module inherits from `PersianStoriesAttention` as the weights of the module stays
|
387 |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
388 |
flash attention and deal with padding tokens in case the input contains any of them.
|
389 |
"""
|
|
|
407 |
use_cache: bool = False,
|
408 |
**kwargs,
|
409 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
410 |
+
# PersianStoriesFlashAttention2 attention does not support output_attentions
|
411 |
|
412 |
if not _flash_supports_window_size:
|
413 |
logger.warning_once(
|
|
|
690 |
)
|
691 |
|
692 |
|
693 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->PersianStories
|
694 |
# TODO @Arthur no longer copied from LLama after static cache
|
695 |
+
class PersianStoriesSdpaAttention(PersianStoriesAttention):
|
696 |
"""
|
697 |
+
PersianStories attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
698 |
+
`PersianStoriesAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
699 |
SDPA API.
|
700 |
"""
|
701 |
|
702 |
+
# Adapted from PersianStoriesAttention.forward
|
703 |
def forward(
|
704 |
self,
|
705 |
hidden_states: torch.Tensor,
|
|
|
712 |
if output_attentions:
|
713 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
714 |
logger.warning_once(
|
715 |
+
"PersianStoriesModel is using PersianStoriesSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
716 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
717 |
)
|
718 |
return super().forward(
|
|
|
781 |
return attn_output, None, past_key_value
|
782 |
|
783 |
|
784 |
+
PersianStories_ATTENTION_CLASSES = {
|
785 |
+
"eager": PersianStoriesAttention,
|
786 |
+
"flash_attention_2": PersianStoriesFlashAttention2,
|
787 |
+
"sdpa": PersianStoriesSdpaAttention,
|
788 |
}
|
789 |
|
790 |
|
791 |
+
class PersianStoriesDecoderLayer(nn.Module):
|
792 |
+
def __init__(self, config: PersianStoriesConfig, layer_idx: int):
|
793 |
super().__init__()
|
794 |
|
795 |
self.config = config
|
796 |
+
self.self_attn = PersianStories_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
797 |
|
798 |
+
self.mlp = PersianStoriesMLP(config)
|
799 |
+
self.input_layernorm = PersianStoriesRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
800 |
|
801 |
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
802 |
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
803 |
+
self.post_attention_layernorm = PersianStoriesRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
804 |
|
805 |
def forward(
|
806 |
self,
|
|
|
866 |
return outputs
|
867 |
|
868 |
|
869 |
+
PersianStories_START_DOCSTRING = r"""
|
870 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
871 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
872 |
etc.)
|
|
|
876 |
and behavior.
|
877 |
|
878 |
Parameters:
|
879 |
+
config ([`PersianStoriesConfig`]):
|
880 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
881 |
load the weights associated with the model, only the configuration. Check out the
|
882 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
|
885 |
|
886 |
@add_start_docstrings(
|
887 |
"The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
|
888 |
+
PersianStories_START_DOCSTRING,
|
889 |
)
|
890 |
+
class PersianStoriesPreTrainedModel(PreTrainedModel):
|
891 |
+
config_class = PersianStoriesConfig
|
892 |
base_model_prefix = "model"
|
893 |
supports_gradient_checkpointing = True
|
894 |
+
_no_split_modules = ["PersianStoriesDecoderLayer"]
|
895 |
_skip_keys_device_placement = "past_key_values"
|
896 |
_supports_flash_attn_2 = True
|
897 |
_supports_sdpa = False
|
|
|
911 |
module.weight.data[module.padding_idx].zero_()
|
912 |
|
913 |
|
914 |
+
PersianStories_INPUTS_DOCSTRING = r"""
|
915 |
Args:
|
916 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
917 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
|
983 |
|
984 |
@add_start_docstrings(
|
985 |
"The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
|
986 |
+
PersianStories_START_DOCSTRING,
|
987 |
)
|
988 |
+
class PersianStoriesModel(PersianStoriesPreTrainedModel):
|
989 |
"""
|
990 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PersianStoriesDecoderLayer`]
|
991 |
|
992 |
Args:
|
993 |
+
config: PersianStoriesConfig
|
994 |
"""
|
995 |
|
996 |
+
def __init__(self, config: PersianStoriesConfig):
|
997 |
super().__init__(config)
|
998 |
self.padding_idx = config.pad_token_id
|
999 |
self.vocab_size = config.vocab_size
|
|
|
1001 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1002 |
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
1003 |
self.layers = nn.ModuleList(
|
1004 |
+
[PersianStoriesDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1005 |
)
|
1006 |
self._attn_implementation = config._attn_implementation
|
1007 |
+
self.norm = PersianStoriesRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1008 |
|
1009 |
self.gradient_checkpointing = False
|
1010 |
# Initialize weights and apply final processing
|
|
|
1016 |
def set_input_embeddings(self, value):
|
1017 |
self.embed_tokens = value
|
1018 |
|
1019 |
+
@add_start_docstrings_to_model_forward(PersianStories_INPUTS_DOCSTRING)
|
1020 |
def forward(
|
1021 |
self,
|
1022 |
input_ids: torch.LongTensor = None,
|
|
|
1079 |
if is_padding_right:
|
1080 |
raise ValueError(
|
1081 |
"You are attempting to perform batched generation with padding_side='right'"
|
1082 |
+
" this may lead to unexpected behaviour for Flash Attention version of PersianStories. Make sure to "
|
1083 |
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1084 |
)
|
1085 |
|
|
|
1154 |
)
|
1155 |
|
1156 |
|
1157 |
+
class PersianStoriesForCausalLM(PersianStoriesPreTrainedModel):
|
1158 |
_tied_weights_keys = ["lm_head.weight"]
|
1159 |
|
1160 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->PersianStories
|
1161 |
def __init__(self, config):
|
1162 |
super().__init__(config)
|
1163 |
+
self.model = PersianStoriesModel(config)
|
1164 |
self.vocab_size = config.vocab_size
|
1165 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1166 |
|
|
|
1192 |
return self.model
|
1193 |
|
1194 |
# Ignore copy
|
1195 |
+
@add_start_docstrings_to_model_forward(PersianStories_INPUTS_DOCSTRING)
|
1196 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1197 |
def forward(
|
1198 |
self,
|
|
|
1219 |
Example:
|
1220 |
|
1221 |
```python
|
1222 |
+
>>> from transformers import AutoTokenizer, PersianStoriesForCausalLM
|
1223 |
|
1224 |
+
>>> model = PersianStoriesForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1225 |
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1226 |
|
1227 |
>>> prompt = "This is an example script ."
|
|
|
1351 |
|
1352 |
@add_start_docstrings(
|
1353 |
"""
|
1354 |
+
The [`PersianStoriesModel`] with a sequence classification head on top (linear layer).
|
1355 |
|
1356 |
+
[`PersianStoriesForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1357 |
(e.g. GPT-2) do.
|
1358 |
|
1359 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
|
1362 |
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1363 |
each row of the batch).
|
1364 |
""",
|
1365 |
+
PersianStories_START_DOCSTRING,
|
1366 |
)
|
1367 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->PersianStories, LLAMA->PersianStories, self.transformer->self.model, transformer_outputs->model_outputs
|
1368 |
+
class PersianStoriesForSequenceClassification(PersianStoriesPreTrainedModel):
|
1369 |
def __init__(self, config):
|
1370 |
super().__init__(config)
|
1371 |
self.num_labels = config.num_labels
|
1372 |
+
self.model = PersianStoriesModel(config)
|
1373 |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1374 |
|
1375 |
# Initialize weights and apply final processing
|
|
|
1381 |
def set_input_embeddings(self, value):
|
1382 |
self.model.embed_tokens = value
|
1383 |
|
1384 |
+
@add_start_docstrings_to_model_forward(PersianStories_INPUTS_DOCSTRING)
|
1385 |
def forward(
|
1386 |
self,
|
1387 |
input_ids: torch.LongTensor = None,
|
|
|
1475 |
|
1476 |
@add_start_docstrings(
|
1477 |
"""
|
1478 |
+
[`PersianStoriesModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1479 |
Named-Entity-Recognition (NER) tasks.
|
1480 |
""",
|
1481 |
+
PersianStories_START_DOCSTRING,
|
1482 |
)
|
1483 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->PersianStories,MPT->PersianStories,self.transformer->self.model,transformer_outputs->model_outputs
|
1484 |
+
class PersianStoriesForTokenClassification(PersianStoriesPreTrainedModel):
|
1485 |
+
def __init__(self, config: PersianStoriesConfig):
|
1486 |
super().__init__(config)
|
1487 |
self.num_labels = config.num_labels
|
1488 |
|
1489 |
+
self.model = PersianStoriesModel(config)
|
1490 |
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1491 |
classifier_dropout = config.classifier_dropout
|
1492 |
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
|
|
1499 |
# Initialize weights and apply final processing
|
1500 |
self.post_init()
|
1501 |
|
1502 |
+
@add_start_docstrings_to_model_forward(PersianStories_INPUTS_DOCSTRING)
|
1503 |
@add_code_sample_docstrings(
|
1504 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
1505 |
output_type=TokenClassifierOutput,
|