bprice9 commited on
Commit
bd0d6af
·
verified ·
1 Parent(s): fc8aaf2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +300 -0
README.md CHANGED
@@ -1,5 +1,305 @@
1
  ---
 
 
 
 
 
2
  license: other
3
  license_name: writer-open-model-license
4
  license_link: https://writer.com/legal/open-model-license/
 
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - fp8
4
+ - vllm
5
+ - medical
6
+ - med
7
  license: other
8
  license_name: writer-open-model-license
9
  license_link: https://writer.com/legal/open-model-license/
10
+ language:
11
+ - en
12
  ---
13
+
14
+ # Palmyra-Med-70B-FP8
15
+ This is a quantized version of [Palmyra-Med-70B](https://huggingface.co/Writer/Palmyra-Med-70B), which was developed by Writer.
16
+
17
+ The original model performance on biomedical benchmarks is 85.87%.
18
+ **This quantized version acheives an average score of 85.62%.**
19
+
20
+ ## Model Overview:
21
+ - **Model:** Llama based model finetuned to form Palmyra-X-004 and then again to form Palmyra-Med-70B.
22
+ - **Input:** Text
23
+ - **Output:** Text
24
+ - **Model Optimizations:**
25
+ - **Weight quantization:** FP8
26
+ - **Activation quantization:** FP8
27
+ - **Intended Use Cases:** Palmyra-Med-70B is intended for non-commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
28
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
29
+ - **License(s):** [writer-open-model-license](https://writer.com/legal/open-model-license/)
30
+
31
+ ### Writer Resources and Technical Documentation:
32
+ + [Writer Blog](https://writer.com/blog/palmyra-med-fin-models/)
33
+ + [Writer Developer Website](https://dev.writer.com/home/models)
34
+ + [Writer AI Studio](https://writer.com/product/ai-studio/)
35
+ + [Palmyra Model API](https://dev.writer.com/api-guides/chat-completion)
36
+
37
+ ### Model Optimizations
38
+
39
+ [LLM_Compressor](https://github.com/vllm-project/llm-compressor) library.
40
+ Using this optimization, the original FP16 weights and linear activations within the transformer blocks are adjusted to FP8, which decreases the model size and VRAM requirements by 50% overall.
41
+
42
+ ## Deployment with vLLM
43
+
44
+ This model can be deployed using the [vLLM](https://docs.vllm.ai/en/latest/) library, as shown in the example below.
45
+
46
+ ```python
47
+ from vllm import LLM, SamplingParams
48
+ from transformers import AutoTokenizer
49
+
50
+ model_id = "bprice9/Palmyra-Med-70B-FP8"
51
+ number_gpus = 2
52
+
53
+ sampling_params = SamplingParams(temperature=0.5, top_p=0.9, max_tokens=512, stop_token_ids=[128001, 128009])
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
56
+
57
+ messages = [
58
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
59
+ {"role": "user", "content": "Who are you?"},
60
+ ]
61
+ prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
62
+
63
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
64
+
65
+ outputs = llm.generate(prompts, sampling_params)
66
+
67
+ generated_text = outputs[0].outputs[0].text
68
+ print(generated_text)
69
+ ```
70
+
71
+ ## Creation
72
+
73
+ This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code below.
74
+
75
+ ```python
76
+ import torch
77
+ from datasets import load_dataset
78
+ from transformers import AutoTokenizer
79
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
80
+ from llmcompressor.transformers.compression.helpers import (
81
+ calculate_offload_device_map,
82
+ custom_offload_device_map,
83
+ )
84
+ recipe = """
85
+ quant_stage:
86
+ quant_modifiers:
87
+ QuantizationModifier:
88
+ ignore: ["lm_head"]
89
+ config_groups:
90
+ group_0:
91
+ weights:
92
+ num_bits: 8
93
+ type: float
94
+ strategy: tensor
95
+ dynamic: false
96
+ symmetric: true
97
+ input_activations:
98
+ num_bits: 8
99
+ type: float
100
+ strategy: tensor
101
+ dynamic: false
102
+ symmetric: true
103
+ targets: ["Linear"]
104
+ """
105
+ model_stub = "Writer/Palmyra-Med-70B"
106
+ model_name = model_stub.split("/")[-1]
107
+ device_map = calculate_offload_device_map(
108
+ model_stub, reserve_for_hessians=False, num_gpus=2, torch_dtype=torch.float16
109
+ )
110
+ model = SparseAutoModelForCausalLM.from_pretrained(
111
+ model_stub, torch_dtype=torch.float16, device_map=device_map
112
+ )
113
+ tokenizer = AutoTokenizer.from_pretrained(model_stub)
114
+ output_dir = f"./{model_name}-FP8"
115
+ DATASET_ID = "HuggingFaceH4/ultrachat_200k"
116
+ DATASET_SPLIT = "train_sft"
117
+ NUM_CALIBRATION_SAMPLES = 128
118
+ MAX_SEQUENCE_LENGTH = 4096
119
+ ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
120
+ ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
121
+ def preprocess(example):
122
+ return {
123
+ "text": tokenizer.apply_chat_template(
124
+ example["messages"],
125
+ tokenize=False,
126
+ )
127
+ }
128
+ ds = ds.map(preprocess)
129
+ def tokenize(sample):
130
+ return tokenizer(
131
+ sample["text"],
132
+ padding=False,
133
+ max_length=MAX_SEQUENCE_LENGTH,
134
+ truncation=True,
135
+ add_special_tokens=False,
136
+ )
137
+ ds = ds.map(tokenize, remove_columns=ds.column_names)
138
+ oneshot(
139
+ model=model,
140
+ output_dir=output_dir,
141
+ dataset=ds,
142
+ recipe=recipe,
143
+ max_seq_length=MAX_SEQUENCE_LENGTH,
144
+ num_calibration_samples=NUM_CALIBRATION_SAMPLES,
145
+ save_compressed=True,
146
+ )
147
+ ```
148
+
149
+ ## Evaluation
150
+
151
+ <table>
152
+ <tr>
153
+ <td style="width: 20%;"><strong>Biomedical Benchmark</strong>
154
+ </td>
155
+ <td style="width: 20%;"><strong>Med-PaLM-2 (5-shot)</strong>
156
+ </td>
157
+ <td style="width: 20%;"><strong>GPT-4</strong>
158
+ </td>
159
+ <td style="width: 20%;"><strong>Palmyra-Med-70B (Original FP16)</strong>
160
+ </td>
161
+ <td style="width: 20%;"><strong>Palmyra-Med-70B-FP8 (This Model)</strong>
162
+ </td>
163
+ </tr>
164
+ <tr>
165
+ <td>MMLU Clincal Knowledge
166
+ </td>
167
+ <td>88.3
168
+ </td>
169
+ <td>86.0
170
+ </td>
171
+ <td>90.9
172
+ </td>
173
+ <td>90.2
174
+ </td>
175
+ </tr>
176
+ <tr>
177
+ <td>MMLU Medical Genetics
178
+ </td>
179
+ <td>90.0
180
+ </td>
181
+ <td>91.0
182
+ </td>
183
+ <td>94.0
184
+ </td>
185
+ <td>93.0
186
+ </td>
187
+ </tr>
188
+ <tr>
189
+ <td>MMLU Anatomy
190
+ </td>
191
+ <td>77.8
192
+ </td>
193
+ <td>80.0
194
+ </td>
195
+ <td>83.7
196
+ </td>
197
+ <td>83.7
198
+ </td>
199
+ </tr>
200
+ <tr>
201
+ <td>MMLU Professional Medicine
202
+ </td>
203
+ <td>95.2
204
+ </td>
205
+ <td>93.0
206
+ </td>
207
+ <td>92.7
208
+ </td>
209
+ <td>92.3
210
+ </td>
211
+ </tr>
212
+ <tr>
213
+ <td>MMLU College Biology
214
+ </td>
215
+ <td>94.4
216
+ </td>
217
+ <td>95.1
218
+ </td>
219
+ <td>94.4
220
+ </td>
221
+ <td>93.8
222
+ </td>
223
+ </tr>
224
+ <tr>
225
+ <td>MMLU College Medicine
226
+ </td>
227
+ <td>80.9
228
+ </td>
229
+ <td>76.9
230
+ </td>
231
+ <td>84.4
232
+ </td>
233
+ <td>84.4
234
+ </td>
235
+ </tr>
236
+ <tr>
237
+ <td>MedQA 4-options
238
+ </td>
239
+ <td>79.9
240
+ </td>
241
+ <td>78.9
242
+ </td>
243
+ <td>78.6
244
+ </td>
245
+ <td>79.5
246
+ </td>
247
+ </tr>
248
+ <tr>
249
+ <td>PubMed QA
250
+ </td>
251
+ <td>79.2
252
+ </td>
253
+ <td>75.2
254
+ </td>
255
+ <td>79.6
256
+ </td>
257
+ <td>78.0
258
+ </td>
259
+ </tr>
260
+ <tr>
261
+ <tr>
262
+ <td>MedMCQA
263
+ </td>
264
+ <td>71.3
265
+ </td>
266
+ <td>69.5
267
+ </td>
268
+ <td>74.4
269
+ </td>
270
+ <td>75.7
271
+ </td>
272
+ </tr>
273
+ <tr>
274
+ <td><strong>Average</strong>
275
+ </td>
276
+ <td><strong>84.1</strong>
277
+ </td>
278
+ <td><strong>82.8</strong>
279
+ </td>
280
+ <td><strong>85.9</strong>
281
+ </td>
282
+ <td><strong>85.6</strong>
283
+ </td>
284
+ </tr>
285
+ </table>
286
+
287
+ ### Citation and Related Information Provided by Writer
288
+
289
+ To cite this model:
290
+
291
+ ```
292
+ @misc{Palmyra-Med-70B,
293
+ author = {Writer Engineering team},
294
+ title = {{Palmyra-Med-70b: A powerful LLM designed for healthcare}},
295
+ howpublished = {\url{https://dev.writer.com}},
296
+ year = 2024,
297
+ month = June
298
+ }
299
+ ```
300
+
301
+
302
+
303
+
304
+
305
+