dltjwl
commited on
Commit
•
1f5289b
1
Parent(s):
fe44f2b
ADD : How to use
Browse files
README.md
CHANGED
@@ -14,6 +14,28 @@ deplot_kr은 google의 pix2struct 구조를 기반으로 한 한국어 image-to-
|
|
14 |
|
15 |
## How to use
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
### Training data
|
|
|
14 |
|
15 |
## How to use
|
16 |
|
17 |
+
You can run a prediction by input an image.
|
18 |
+
Model predict the data table of text form in the image.
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructImageProcessor, AutoTokenizer, Pix2StructProcessor
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
image_processor = Pix2StructImageProcessor()
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("brainventures/deplot_kr")
|
26 |
+
processor = Pix2StructProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
27 |
+
|
28 |
+
model = Pix2StructForConditionalGeneration.from_pretrained("brainventures/deplot_kr")
|
29 |
+
|
30 |
+
image_path = "IMAGE_PATH"
|
31 |
+
image = Image.open(image_path)
|
32 |
+
|
33 |
+
inputs = processor(images=image, return_tensors="pt")
|
34 |
+
pred = model.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=1024)
|
35 |
+
print(processor.batch_decode(deplot_generated_ids, skip_special_token=True)[0])
|
36 |
+
|
37 |
+
```
|
38 |
+
|
39 |
|
40 |
|
41 |
### Training data
|