brand25 commited on
Commit
942c12e
·
1 Parent(s): e84d27f

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -3.28 +/- 0.74
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -5.21 +/- 1.19
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c77b92a44b96aa60dd723342a9d80a61f3a2fae34ece11e76654be5ee578e0a
3
- size 107992
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e96fc9bff01fff67b9644ed1ae24cf7d782b3c31e2fed3a5c8af1a86be950221
3
+ size 108101
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa6b8dffc10>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fa6b8e01880>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 1000000,
45
- "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1680020726840027972,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAT53qPma0/jx8ff0+T53qPma0/jx8ff0+T53qPma0/jx8ff0+T53qPma0/jx8ff0+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfhSqP0+3iL/O7/i+UhIDv+sRO7+K7ru/YR6yv1UFwD/DnbA/iUSRvZzemj8ZdPK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABPneo+ZrT+PHx9/T7Yl2M8wevwOimYqDtPneo+ZrT+PHx9/T7Yl2M8wevwOimYqDtPneo+ZrT+PHx9/T7Yl2M8wevwOimYqDtPneo+ZrT+PHx9/T7Yl2M8wevwOimYqDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.45823142 0.03109188 0.495098 ]\n [0.45823142 0.03109188 0.495098 ]\n [0.45823142 0.03109188 0.495098 ]\n [0.45823142 0.03109188 0.495098 ]]",
60
- "desired_goal": "[[ 1.3287504 -1.0680941 -0.48620456]\n [-0.5119983 -0.73074216 -1.4682171 ]\n [-1.3915521 1.5001627 1.3798145 ]\n [-0.0709315 1.2099185 -0.473542 ]]",
61
- "observation": "[[0.45823142 0.03109188 0.495098 0.01389118 0.00183808 0.00514509]\n [0.45823142 0.03109188 0.495098 0.01389118 0.00183808 0.00514509]\n [0.45823142 0.03109188 0.495098 0.01389118 0.00183808 0.00514509]\n [0.45823142 0.03109188 0.495098 0.01389118 0.00183808 0.00514509]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMoeSvbSlaz0Seic8bpgIvgP1Dz6TMCg9qLcMPoz66L3B2o49Lmf5vfw7Dj4sPXg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.07154693 0.05753107 0.01022197]\n [-0.13339397 0.14058308 0.04106195]\n [ 0.13741934 -0.11375913 0.06975318]\n [-0.12177883 0.1389007 0.24242085]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQX3LnC7LDMCUhpRSlIwBbJRLMowBdJRHQKaKb7pmmLt1fZQoaAZoCWgPQwhdwwyNJ+IOwJSGlFKUaBVLMmgWR0CmijPnSv1UdX2UKGgGaAloD0MI1SXjGMleCsCUhpRSlGgVSzJoFkdAponjO9nK4nV9lChoBmgJaA9DCJAQ5QtaSBDAlIaUUpRoFUsyaBZHQKaJkKCxu891fZQoaAZoCWgPQwiH4SNiSoQIwJSGlFKUaBVLMmgWR0Cmi4iA2AG0dX2UKGgGaAloD0MIyecVTz1SBsCUhpRSlGgVSzJoFkdApotMqJ/G2nV9lChoBmgJaA9DCFq5F5gVqgjAlIaUUpRoFUsyaBZHQKaK/DgqEvl1fZQoaAZoCWgPQwhcrROX41UGwJSGlFKUaBVLMmgWR0Cmiqmvnr6ddX2UKGgGaAloD0MINzP60XDqCcCUhpRSlGgVSzJoFkdApoyXOv+wT3V9lChoBmgJaA9DCN3rpL4sjQrAlIaUUpRoFUsyaBZHQKaMW5imVJN1fZQoaAZoCWgPQwjQ04BB0ocJwJSGlFKUaBVLMmgWR0CmjArV4HHFdX2UKGgGaAloD0MIGedvQiHCBMCUhpRSlGgVSzJoFkdApou4YWLxZ3V9lChoBmgJaA9DCI2z6QjgZgrAlIaUUpRoFUsyaBZHQKaNp6sQumJ1fZQoaAZoCWgPQwgPfXcrS7QIwJSGlFKUaBVLMmgWR0CmjWvhAGB4dX2UKGgGaAloD0MInE8dq5ReB8CUhpRSlGgVSzJoFkdApo0bALy+YnV9lChoBmgJaA9DCE890uC2lg3AlIaUUpRoFUsyaBZHQKaMyEJ0GNd1fZQoaAZoCWgPQwi1NSIYB8cTwJSGlFKUaBVLMmgWR0Cmjr7BwdbQdX2UKGgGaAloD0MI5EwTtp8cEcCUhpRSlGgVSzJoFkdApo6C5LAYYXV9lChoBmgJaA9DCN3pzhPPGQjAlIaUUpRoFUsyaBZHQKaOMqVhTfl1fZQoaAZoCWgPQwg1fXbAdUUKwJSGlFKUaBVLMmgWR0CmjeADA8B/dX2UKGgGaAloD0MIYvNxbai4DMCUhpRSlGgVSzJoFkdApo/PIhhYvHV9lChoBmgJaA9DCFSthVlo5wnAlIaUUpRoFUsyaBZHQKaPk1ejVQR1fZQoaAZoCWgPQwjXhopx/qYLwJSGlFKUaBVLMmgWR0Cmj0JpN9H+dX2UKGgGaAloD0MILJ0PzxJEDcCUhpRSlGgVSzJoFkdApo7vxhDw6XV9lChoBmgJaA9DCKs/wjBgKQnAlIaUUpRoFUsyaBZHQKaQ2RK6Fuh1fZQoaAZoCWgPQwglOzYC8RoIwJSGlFKUaBVLMmgWR0CmkJ12q1gIdX2UKGgGaAloD0MIpFAWvr42CMCUhpRSlGgVSzJoFkdAppBMp9ZzP3V9lChoBmgJaA9DCO9Z12g5kAbAlIaUUpRoFUsyaBZHQKaP+hA4XGh1fZQoaAZoCWgPQwhJgQUwZUAMwJSGlFKUaBVLMmgWR0CmklNnXd0rdX2UKGgGaAloD0MIS633G+0YD8CUhpRSlGgVSzJoFkdAppIYQnQY13V9lChoBmgJaA9DCNffEoB/6gfAlIaUUpRoFUsyaBZHQKaRx+c6Nl11fZQoaAZoCWgPQwhTXFX2XdEIwJSGlFKUaBVLMmgWR0CmkXZRKpT/dX2UKGgGaAloD0MIeLeyRGe5BsCUhpRSlGgVSzJoFkdAppQA6GQCCHV9lChoBmgJaA9DCEQwDi4d8wnAlIaUUpRoFUsyaBZHQKaTxyR0U491fZQoaAZoCWgPQwgQ641aYZoQwJSGlFKUaBVLMmgWR0Cmk3bHp8nedX2UKGgGaAloD0MI7s7abRf6BMCUhpRSlGgVSzJoFkdAppMkzoEB83V9lChoBmgJaA9DCP2jb9I0qAzAlIaUUpRoFUsyaBZHQKaVtCtzS1F1fZQoaAZoCWgPQwhYkjzX94EOwJSGlFKUaBVLMmgWR0CmlXki+tbLdX2UKGgGaAloD0MI4ugq3V0nDMCUhpRSlGgVSzJoFkdAppUorSVnmXV9lChoBmgJaA9DCAKCOXr83gnAlIaUUpRoFUsyaBZHQKaU1vOyE+R1fZQoaAZoCWgPQwj12mysxLwKwJSGlFKUaBVLMmgWR0Cml2tSQ5mzdX2UKGgGaAloD0MIhnKiXYUUDsCUhpRSlGgVSzJoFkdAppcv5WRzR3V9lChoBmgJaA9DCIdvYd141wzAlIaUUpRoFUsyaBZHQKaW3+SbH6x1fZQoaAZoCWgPQwhOf/YjRUQMwJSGlFKUaBVLMmgWR0Cmlo43WFvidX2UKGgGaAloD0MIN1FLcyukCMCUhpRSlGgVSzJoFkdAppkrDXOGCnV9lChoBmgJaA9DCMmvH2KD5QjAlIaUUpRoFUsyaBZHQKaY8BhhH9Z1fZQoaAZoCWgPQwilSSno9jIKwJSGlFKUaBVLMmgWR0CmmKAYP5HmdX2UKGgGaAloD0MIJXmu78OBD8CUhpRSlGgVSzJoFkdApphOMAFPi3V9lChoBmgJaA9DCOc0C7Q75A/AlIaUUpRoFUsyaBZHQKaaTeAuqWF1fZQoaAZoCWgPQwj5TWGlggoPwJSGlFKUaBVLMmgWR0CmmhIOhCdCdX2UKGgGaAloD0MIaAQb17+rCMCUhpRSlGgVSzJoFkdAppnBd0JWvXV9lChoBmgJaA9DCE9Y4gFlMwvAlIaUUpRoFUsyaBZHQKaZbr6ciGF1fZQoaAZoCWgPQwhgqwSLw3kKwJSGlFKUaBVLMmgWR0Cmm0433pOfdX2UKGgGaAloD0MIIcoXtJAwEcCUhpRSlGgVSzJoFkdAppsSXrt3OnV9lChoBmgJaA9DCI2z6QjgxgnAlIaUUpRoFUsyaBZHQKaawYLsrup1fZQoaAZoCWgPQwhMOPQWDy8OwJSGlFKUaBVLMmgWR0Cmmm8GcFyJdX2UKGgGaAloD0MIWeAruvUaDsCUhpRSlGgVSzJoFkdAppxPnr6ciHV9lChoBmgJaA9DCBSwHYzYJwrAlIaUUpRoFUsyaBZHQKacFDwYtQN1fZQoaAZoCWgPQwjizRq8r6oFwJSGlFKUaBVLMmgWR0Cmm8N3OfNBdX2UKGgGaAloD0MI7j1cctxJC8CUhpRSlGgVSzJoFkdApptw4MnZ03V9lChoBmgJaA9DCNS7eD9uXwrAlIaUUpRoFUsyaBZHQKadTH2h7E51fZQoaAZoCWgPQwiBJsKGp9cDwJSGlFKUaBVLMmgWR0CmnRCCz1K5dX2UKGgGaAloD0MIWFnbFI8rEcCUhpRSlGgVSzJoFkdAppy/u7YkFHV9lChoBmgJaA9DCJ2BkZc1cRDAlIaUUpRoFUsyaBZHQKacbOnl4kh1fZQoaAZoCWgPQwgSaRt/opIKwJSGlFKUaBVLMmgWR0CmnkrfLs8gdX2UKGgGaAloD0MI9KPhlLm5EsCUhpRSlGgVSzJoFkdApp4PCTEBKnV9lChoBmgJaA9DCNR+aydKIgzAlIaUUpRoFUsyaBZHQKadvh5PdmB1fZQoaAZoCWgPQwhlUG1wIhoKwJSGlFKUaBVLMmgWR0CmnWuGCZnddX2UKGgGaAloD0MIF7fRAN6CDMCUhpRSlGgVSzJoFkdApp8zqv/za3V9lChoBmgJaA9DCAHChxItSRHAlIaUUpRoFUsyaBZHQKae98LKFIx1fZQoaAZoCWgPQwiRRZp4B3gKwJSGlFKUaBVLMmgWR0CmnqbEHdGidX2UKGgGaAloD0MIYDqt26DWDMCUhpRSlGgVSzJoFkdApp5T5IpYtHV9lChoBmgJaA9DCII65dGNUArAlIaUUpRoFUsyaBZHQKagMpazNUx1fZQoaAZoCWgPQwj4b16c+AoKwJSGlFKUaBVLMmgWR0Cmn/ad+XqrdX2UKGgGaAloD0MIj+IcdXScDsCUhpRSlGgVSzJoFkdApp+l1hb4anV9lChoBmgJaA9DCNFbPLzncBPAlIaUUpRoFUsyaBZHQKafUyiVSoB1fZQoaAZoCWgPQwjWyRmKO/4OwJSGlFKUaBVLMmgWR0CmoRzkhib2dX2UKGgGaAloD0MI9Ik8SbrmDcCUhpRSlGgVSzJoFkdApqDg/iYLLXV9lChoBmgJaA9DCJxvRPes6wTAlIaUUpRoFUsyaBZHQKagkD4gzP91fZQoaAZoCWgPQwjC+j+H+VINwJSGlFKUaBVLMmgWR0CmoD2DHwPRdX2UKGgGaAloD0MIcsCuJk85B8CUhpRSlGgVSzJoFkdApqIXHggow3V9lChoBmgJaA9DCC6sG++OrATAlIaUUpRoFUsyaBZHQKah2zYVZcN1fZQoaAZoCWgPQwiXN4drtecFwJSGlFKUaBVLMmgWR0CmoYpOFg2IdX2UKGgGaAloD0MIG4ANiBBXDsCUhpRSlGgVSzJoFkdApqE3lEJBxHV9lChoBmgJaA9DCPXYlgFnCQjAlIaUUpRoFUsyaBZHQKajESMcZLt1fZQoaAZoCWgPQwj0NjY7Ul0GwJSGlFKUaBVLMmgWR0CmotVG9YfXdX2UKGgGaAloD0MIR8uBHmo7DMCUhpRSlGgVSzJoFkdApqKEkD6nBXV9lChoBmgJaA9DCFq5F5gVKgfAlIaUUpRoFUsyaBZHQKaiMfvnbIt1fZQoaAZoCWgPQwgaidAINo4QwJSGlFKUaBVLMmgWR0CmpAW4NI9UdX2UKGgGaAloD0MIlUiil1FsEcCUhpRSlGgVSzJoFkdApqPJ9gF5fXV9lChoBmgJaA9DCAYP0765HwzAlIaUUpRoFUsyaBZHQKajePbwjMV1fZQoaAZoCWgPQwjeHK7VHtYOwJSGlFKUaBVLMmgWR0CmoyaRQrMDdX2UKGgGaAloD0MI7IoZ4e3BCsCUhpRSlGgVSzJoFkdApqT1RtP56HV9lChoBmgJaA9DCGb4TzdQQBHAlIaUUpRoFUsyaBZHQKakuT3Zf2N1fZQoaAZoCWgPQwisArUYPOwBwJSGlFKUaBVLMmgWR0CmpGiFTNt7dX2UKGgGaAloD0MIBOYhUz6ECcCUhpRSlGgVSzJoFkdApqQVpqREGHV9lChoBmgJaA9DCDWyKy0jdQbAlIaUUpRoFUsyaBZHQKal49W6shh1fZQoaAZoCWgPQwgiwr8IGjMRwJSGlFKUaBVLMmgWR0Cmpafag261dX2UKGgGaAloD0MIV2DI6laPCsCUhpRSlGgVSzJoFkdApqVW1WsBAHV9lChoBmgJaA9DCDVFgNO7eBHAlIaUUpRoFUsyaBZHQKalBDpkf9x1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb6ea997700>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fb6ea995c00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 2000000,
45
+ "_total_timesteps": 2000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1680074774317314458,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtzvZPhHBbTupixU/tzvZPhHBbTupixU/tzvZPhHBbTupixU/tzvZPhHBbTupixU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkRicv5rjz7/zKLA/viUxv8HTBD53dxg/UN82PwlebT9C3bM/Cl4dPsM0+D14/NA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3O9k+EcFtO6mLFT+Q8lW6/B2JuVcD8ru3O9k+EcFtO6mLFT+Q8lW6/B2JuVcD8ru3O9k+EcFtO6mLFT+Q8lW6/B2JuVcD8ru3O9k+EcFtO6mLFT+Q8lW6/B2JuVcD8ruUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4242837 0.00362784 0.5841623 ]\n [0.4242837 0.00362784 0.5841623 ]\n [0.4242837 0.00362784 0.5841623 ]\n [0.4242837 0.00362784 0.5841623 ]]",
60
+ "desired_goal": "[[-1.2194997 -1.6241333 1.3762497 ]\n [-0.69198215 0.12971403 0.5955729 ]\n [ 0.714345 0.9272161 1.4051898 ]\n [ 0.15367904 0.12119438 1.6327047 ]]",
61
+ "observation": "[[ 4.2428371e-01 3.6278407e-03 5.8416229e-01 -8.1614498e-04\n -2.6153016e-04 -7.3856520e-03]\n [ 4.2428371e-01 3.6278407e-03 5.8416229e-01 -8.1614498e-04\n -2.6153016e-04 -7.3856520e-03]\n [ 4.2428371e-01 3.6278407e-03 5.8416229e-01 -8.1614498e-04\n -2.6153016e-04 -7.3856520e-03]\n [ 4.2428371e-01 3.6278407e-03 5.8416229e-01 -8.1614498e-04\n -2.6153016e-04 -7.3856520e-03]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAt/SyPI7/oz0Zj4A9SW25vemPeL2biXo92Sn+vWFxm71zyHM9iMOrPZKQAryewps9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.0218452 0.08007728 0.06277294]\n [-0.09054048 -0.06068412 0.06116639]\n [-0.12410326 -0.07589985 0.05951734]\n [ 0.08386904 -0.00796904 0.0760548 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWn7gKk8gB8CUhpRSlIwBbJRLMowBdJRHQLpno3iaRZF1fZQoaAZoCWgPQwhVih2NQ30LwJSGlFKUaBVLMmgWR0C6Z4TdcjZ+dX2UKGgGaAloD0MIZW6+Ed1zC8CUhpRSlGgVSzJoFkdAumdgDwH7g3V9lChoBmgJaA9DCH9pUZ/kvhfAlIaUUpRoFUsyaBZHQLpnMfKp1ih1fZQoaAZoCWgPQwgDtRg8THsLwJSGlFKUaBVLMmgWR0C6aCoAwPAgdX2UKGgGaAloD0MILliqC3jZBMCUhpRSlGgVSzJoFkdAumgLZVXFLnV9lChoBmgJaA9DCN+LL9rjtRvAlIaUUpRoFUsyaBZHQLpn5nanJkp1fZQoaAZoCWgPQwjW5ZSAmAQCwJSGlFKUaBVLMmgWR0C6Z7hK+SKWdX2UKGgGaAloD0MIMBAEyNDRFcCUhpRSlGgVSzJoFkdAumj73PAwf3V9lChoBmgJaA9DCGItPgXAWA7AlIaUUpRoFUsyaBZHQLpo3Z00WM11fZQoaAZoCWgPQwj4NCcvMnESwJSGlFKUaBVLMmgWR0C6aLj9jwx4dX2UKGgGaAloD0MIYK5FC9B2DcCUhpRSlGgVSzJoFkdAumiLFHavinV9lChoBmgJaA9DCDwx68VQjhPAlIaUUpRoFUsyaBZHQLpp1Ljghr51fZQoaAZoCWgPQwhLOsrBbAITwJSGlFKUaBVLMmgWR0C6abbmMfihdX2UKGgGaAloD0MIxsN7DiznBcCUhpRSlGgVSzJoFkdAummSwosqa3V9lChoBmgJaA9DCGRXWkbqrRTAlIaUUpRoFUsyaBZHQLppZPjXFtN1fZQoaAZoCWgPQwjlgF1NnnIVwJSGlFKUaBVLMmgWR0C6arORHPNWdX2UKGgGaAloD0MIiSZQxCKWFsCUhpRSlGgVSzJoFkdAumqVaFEiMnV9lChoBmgJaA9DCM1bdR2qCRLAlIaUUpRoFUsyaBZHQLpqcOKwY+B1fZQoaAZoCWgPQwjIXBlUG/wQwJSGlFKUaBVLMmgWR0C6akOM6zVudX2UKGgGaAloD0MImIi3zr/tEcCUhpRSlGgVSzJoFkdAumuYpPRAr3V9lChoBmgJaA9DCMP0vYbg2AbAlIaUUpRoFUsyaBZHQLprepEQXhx1fZQoaAZoCWgPQwgfuwuUFJgHwJSGlFKUaBVLMmgWR0C6a1YWUKRddX2UKGgGaAloD0MIlUVhF0U/FsCUhpRSlGgVSzJoFkdAumsoWUKRdXV9lChoBmgJaA9DCCRh304iohDAlIaUUpRoFUsyaBZHQLpsfVUuL751fZQoaAZoCWgPQwgg8MAAwgcOwJSGlFKUaBVLMmgWR0C6bF8a86FNdX2UKGgGaAloD0MIAyUFFsAUDsCUhpRSlGgVSzJoFkdAumw6nQ6ZIHV9lChoBmgJaA9DCEZDxqNUgg7AlIaUUpRoFUsyaBZHQLpsDNiH6/J1fZQoaAZoCWgPQwh8CoDxDNoNwJSGlFKUaBVLMmgWR0C6bYSTY/VzdX2UKGgGaAloD0MIvth78UXLF8CUhpRSlGgVSzJoFkdAum1mTr3TNXV9lChoBmgJaA9DCAhW1cvvdA/AlIaUUpRoFUsyaBZHQLptQxBVuJl1fZQoaAZoCWgPQwjyzqEMVQkgwJSGlFKUaBVLMmgWR0C6bRU6Lfk4dX2UKGgGaAloD0MI9FDbhlHwFMCUhpRSlGgVSzJoFkdAum5xWZJCjXV9lChoBmgJaA9DCFFoWfeP5RbAlIaUUpRoFUsyaBZHQLpuU1WKdhB1fZQoaAZoCWgPQwjT9UTXhR8QwJSGlFKUaBVLMmgWR0C6bi7P2PDHdX2UKGgGaAloD0MINpVFYRd1GMCUhpRSlGgVSzJoFkdAum4BM36yjnV9lChoBmgJaA9DCJvIzAUujxTAlIaUUpRoFUsyaBZHQLpvTzUZvUB1fZQoaAZoCWgPQwhKRs7CnrYQwJSGlFKUaBVLMmgWR0C6bzDewcHXdX2UKGgGaAloD0MIuMoTCDulAcCUhpRSlGgVSzJoFkdAum8OVbA1vXV9lChoBmgJaA9DCMYxkj1CbQjAlIaUUpRoFUsyaBZHQLpu4MW43FV1fZQoaAZoCWgPQwhfl+E/3WAPwJSGlFKUaBVLMmgWR0C6cDVYhdMTdX2UKGgGaAloD0MI6ITQQZeQF8CUhpRSlGgVSzJoFkdAunAXYChexHV9lChoBmgJaA9DCLn6sUl+RAPAlIaUUpRoFUsyaBZHQLpv8vUjLSx1fZQoaAZoCWgPQwi9qrNaYO8NwJSGlFKUaBVLMmgWR0C6b8U56t1ZdX2UKGgGaAloD0MI9bpFYKyvEMCUhpRSlGgVSzJoFkdAunEs0WM0g3V9lChoBmgJaA9DCHzUX6+wwBDAlIaUUpRoFUsyaBZHQLpxD4qwyIp1fZQoaAZoCWgPQwiUwrzHmeYQwJSGlFKUaBVLMmgWR0C6cOsCPp6hdX2UKGgGaAloD0MIJlXbTfC9EsCUhpRSlGgVSzJoFkdAunC9+mWMTHV9lChoBmgJaA9DCB8tzhjmJBvAlIaUUpRoFUsyaBZHQLpx/+XqqwR1fZQoaAZoCWgPQwhZ3eo56Z0MwJSGlFKUaBVLMmgWR0C6ceGw7kn1dX2UKGgGaAloD0MI+I2vPbMEBsCUhpRSlGgVSzJoFkdAunG9KkEcKnV9lChoBmgJaA9DCDQPYJFfjxDAlIaUUpRoFUsyaBZHQLpxj2c8Tzx1fZQoaAZoCWgPQwjpnJ/iONAWwJSGlFKUaBVLMmgWR0C6cplFtsN2dX2UKGgGaAloD0MIrwW9N4ZgC8CUhpRSlGgVSzJoFkdAunJ6r7waznV9lChoBmgJaA9DCNIZGHlZQxXAlIaUUpRoFUsyaBZHQLpyVcoH9m91fZQoaAZoCWgPQwjBxvXv+mwHwJSGlFKUaBVLMmgWR0C6ciehoM8YdX2UKGgGaAloD0MIrroO1ZRkEcCUhpRSlGgVSzJoFkdAunMY1m8M/nV9lChoBmgJaA9DCL76eOi7mxHAlIaUUpRoFUsyaBZHQLpy+jVQQ+V1fZQoaAZoCWgPQwhlic4yi3AYwJSGlFKUaBVLMmgWR0C6ctVJ+UhWdX2UKGgGaAloD0MIeCXJc33fD8CUhpRSlGgVSzJoFkdAunKnNqxkd3V9lChoBmgJaA9DCFYt6SgHkwfAlIaUUpRoFUsyaBZHQLpzk1dxAB11fZQoaAZoCWgPQwjGUiRfCeQNwJSGlFKUaBVLMmgWR0C6c3Td+G47dX2UKGgGaAloD0MIHt5zYDmSE8CUhpRSlGgVSzJoFkdAunNP/ffoBHV9lChoBmgJaA9DCAGkNnFyXwvAlIaUUpRoFUsyaBZHQLpzIdCE6DJ1fZQoaAZoCWgPQwhzEkpfCBkVwJSGlFKUaBVLMmgWR0C6dBjDbah6dX2UKGgGaAloD0MIstgmFY1VCcCUhpRSlGgVSzJoFkdAunP6QjlgdHV9lChoBmgJaA9DCAMjL2tiYRLAlIaUUpRoFUsyaBZHQLpz1VtXPqt1fZQoaAZoCWgPQwjIQnQIHKkTwJSGlFKUaBVLMmgWR0C6c6ddiUgTdX2UKGgGaAloD0MI5CzsaYdfFsCUhpRSlGgVSzJoFkdAunSVZSvTw3V9lChoBmgJaA9DCMSXiSKkfhTAlIaUUpRoFUsyaBZHQLp0dsq8UVV1fZQoaAZoCWgPQwh9PzVeutkUwJSGlFKUaBVLMmgWR0C6dFHggow3dX2UKGgGaAloD0MI/rW8cr3NDsCUhpRSlGgVSzJoFkdAunQjtkWhy3V9lChoBmgJaA9DCMnnFU89UhDAlIaUUpRoFUsyaBZHQLp1EesPrfN1fZQoaAZoCWgPQwhbXrneNkMUwJSGlFKUaBVLMmgWR0C6dPNgF5fMdX2UKGgGaAloD0MIYfw07s3/EsCUhpRSlGgVSzJoFkdAunTObBoEjnV9lChoBmgJaA9DCF03pbxWQgzAlIaUUpRoFUsyaBZHQLp0oEBbOeJ1fZQoaAZoCWgPQwjpDIy8rLkUwJSGlFKUaBVLMmgWR0C6dY6U3XI2dX2UKGgGaAloD0MIdk8eFmoNFcCUhpRSlGgVSzJoFkdAunVv9ehPCXV9lChoBmgJaA9DCJYhjnVxmw3AlIaUUpRoFUsyaBZHQLp1SwevIOp1fZQoaAZoCWgPQwjzO01mvO0UwJSGlFKUaBVLMmgWR0C6dRzrAxi5dX2UKGgGaAloD0MI+rX10382FsCUhpRSlGgVSzJoFkdAunYHBTGYKXV9lChoBmgJaA9DCHTPukbLoRPAlIaUUpRoFUsyaBZHQLp16HLA57x1fZQoaAZoCWgPQwjGT+Pe/LYQwJSGlFKUaBVLMmgWR0C6dcOIuXeFdX2UKGgGaAloD0MI+wYmN4pMCcCUhpRSlGgVSzJoFkdAunWVUR3/xXV9lChoBmgJaA9DCK3D0VW6WxbAlIaUUpRoFUsyaBZHQLp2hwYcebN1fZQoaAZoCWgPQwjuBPuvc8MXwJSGlFKUaBVLMmgWR0C6dmhrvb48dX2UKGgGaAloD0MIsOYAwRwNFMCUhpRSlGgVSzJoFkdAunZDfNzKcXV9lChoBmgJaA9DCKCp1y0C4w/AlIaUUpRoFUsyaBZHQLp2FUtqYZ51fZQoaAZoCWgPQwiCdRw/VMoTwJSGlFKUaBVLMmgWR0C6dwgRPGhmdX2UKGgGaAloD0MIq6+uCtTCF8CUhpRSlGgVSzJoFkdAunbpf6XSjXV9lChoBmgJaA9DCKPqVzofvgvAlIaUUpRoFUsyaBZHQLp2xMmnfl91fZQoaAZoCWgPQwi9qUiFsVUYwJSGlFKUaBVLMmgWR0C6dpaagElmdX2UKGgGaAloD0MIPMCTFi7rGMCUhpRSlGgVSzJoFkdAuneIekpI+XV9lChoBmgJaA9DCFXBqKROYBHAlIaUUpRoFUsyaBZHQLp3afKISDh1fZQoaAZoCWgPQwjbp+MxAxUXwJSGlFKUaBVLMmgWR0C6d0UUsWfsdX2UKGgGaAloD0MI/Ul87gTbFcCUhpRSlGgVSzJoFkdAuncW9cry2HV9lChoBmgJaA9DCMZrXtVZHRjAlIaUUpRoFUsyaBZHQLp4C6qKgqV1fZQoaAZoCWgPQwi70FynkZYUwJSGlFKUaBVLMmgWR0C6d+4ht+CsdX2UKGgGaAloD0MItOTxtPzQFsCUhpRSlGgVSzJoFkdAunfKREF4cHV9lChoBmgJaA9DCHDpmPOMLRHAlIaUUpRoFUsyaBZHQLp3nIEKVpt1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 100000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f40e0af7c2276d06b3d087c408fff45e62c6c349e74827f1df30940afcdeaf3e
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71474f8970f114b98e4a803a355d74930a084e8db28b749dc514863cde59aa53
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c8eef9a8ce221dea3e6e792e840b266c65377ffc22cec0cc3495db1510c5cff
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93e0f43a06ea52be938fde72938b46749bd1ff82ba5a7275e2450d052cc5635a
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa6b8dffc10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa6b8e01880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680020726840027972, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAT53qPma0/jx8ff0+T53qPma0/jx8ff0+T53qPma0/jx8ff0+T53qPma0/jx8ff0+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfhSqP0+3iL/O7/i+UhIDv+sRO7+K7ru/YR6yv1UFwD/DnbA/iUSRvZzemj8ZdPK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABPneo+ZrT+PHx9/T7Yl2M8wevwOimYqDtPneo+ZrT+PHx9/T7Yl2M8wevwOimYqDtPneo+ZrT+PHx9/T7Yl2M8wevwOimYqDtPneo+ZrT+PHx9/T7Yl2M8wevwOimYqDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45823142 0.03109188 0.495098 ]\n [0.45823142 0.03109188 0.495098 ]\n [0.45823142 0.03109188 0.495098 ]\n [0.45823142 0.03109188 0.495098 ]]", "desired_goal": "[[ 1.3287504 -1.0680941 -0.48620456]\n [-0.5119983 -0.73074216 -1.4682171 ]\n [-1.3915521 1.5001627 1.3798145 ]\n [-0.0709315 1.2099185 -0.473542 ]]", "observation": "[[0.45823142 0.03109188 0.495098 0.01389118 0.00183808 0.00514509]\n [0.45823142 0.03109188 0.495098 0.01389118 0.00183808 0.00514509]\n [0.45823142 0.03109188 0.495098 0.01389118 0.00183808 0.00514509]\n [0.45823142 0.03109188 0.495098 0.01389118 0.00183808 0.00514509]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMoeSvbSlaz0Seic8bpgIvgP1Dz6TMCg9qLcMPoz66L3B2o49Lmf5vfw7Dj4sPXg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07154693 0.05753107 0.01022197]\n [-0.13339397 0.14058308 0.04106195]\n [ 0.13741934 -0.11375913 0.06975318]\n [-0.12177883 0.1389007 0.24242085]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQX3LnC7LDMCUhpRSlIwBbJRLMowBdJRHQKaKb7pmmLt1fZQoaAZoCWgPQwhdwwyNJ+IOwJSGlFKUaBVLMmgWR0CmijPnSv1UdX2UKGgGaAloD0MI1SXjGMleCsCUhpRSlGgVSzJoFkdAponjO9nK4nV9lChoBmgJaA9DCJAQ5QtaSBDAlIaUUpRoFUsyaBZHQKaJkKCxu891fZQoaAZoCWgPQwiH4SNiSoQIwJSGlFKUaBVLMmgWR0Cmi4iA2AG0dX2UKGgGaAloD0MIyecVTz1SBsCUhpRSlGgVSzJoFkdApotMqJ/G2nV9lChoBmgJaA9DCFq5F5gVqgjAlIaUUpRoFUsyaBZHQKaK/DgqEvl1fZQoaAZoCWgPQwhcrROX41UGwJSGlFKUaBVLMmgWR0Cmiqmvnr6ddX2UKGgGaAloD0MINzP60XDqCcCUhpRSlGgVSzJoFkdApoyXOv+wT3V9lChoBmgJaA9DCN3rpL4sjQrAlIaUUpRoFUsyaBZHQKaMW5imVJN1fZQoaAZoCWgPQwjQ04BB0ocJwJSGlFKUaBVLMmgWR0CmjArV4HHFdX2UKGgGaAloD0MIGedvQiHCBMCUhpRSlGgVSzJoFkdApou4YWLxZ3V9lChoBmgJaA9DCI2z6QjgZgrAlIaUUpRoFUsyaBZHQKaNp6sQumJ1fZQoaAZoCWgPQwgPfXcrS7QIwJSGlFKUaBVLMmgWR0CmjWvhAGB4dX2UKGgGaAloD0MInE8dq5ReB8CUhpRSlGgVSzJoFkdApo0bALy+YnV9lChoBmgJaA9DCE890uC2lg3AlIaUUpRoFUsyaBZHQKaMyEJ0GNd1fZQoaAZoCWgPQwi1NSIYB8cTwJSGlFKUaBVLMmgWR0Cmjr7BwdbQdX2UKGgGaAloD0MI5EwTtp8cEcCUhpRSlGgVSzJoFkdApo6C5LAYYXV9lChoBmgJaA9DCN3pzhPPGQjAlIaUUpRoFUsyaBZHQKaOMqVhTfl1fZQoaAZoCWgPQwg1fXbAdUUKwJSGlFKUaBVLMmgWR0CmjeADA8B/dX2UKGgGaAloD0MIYvNxbai4DMCUhpRSlGgVSzJoFkdApo/PIhhYvHV9lChoBmgJaA9DCFSthVlo5wnAlIaUUpRoFUsyaBZHQKaPk1ejVQR1fZQoaAZoCWgPQwjXhopx/qYLwJSGlFKUaBVLMmgWR0Cmj0JpN9H+dX2UKGgGaAloD0MILJ0PzxJEDcCUhpRSlGgVSzJoFkdApo7vxhDw6XV9lChoBmgJaA9DCKs/wjBgKQnAlIaUUpRoFUsyaBZHQKaQ2RK6Fuh1fZQoaAZoCWgPQwglOzYC8RoIwJSGlFKUaBVLMmgWR0CmkJ12q1gIdX2UKGgGaAloD0MIpFAWvr42CMCUhpRSlGgVSzJoFkdAppBMp9ZzP3V9lChoBmgJaA9DCO9Z12g5kAbAlIaUUpRoFUsyaBZHQKaP+hA4XGh1fZQoaAZoCWgPQwhJgQUwZUAMwJSGlFKUaBVLMmgWR0CmklNnXd0rdX2UKGgGaAloD0MIS633G+0YD8CUhpRSlGgVSzJoFkdAppIYQnQY13V9lChoBmgJaA9DCNffEoB/6gfAlIaUUpRoFUsyaBZHQKaRx+c6Nl11fZQoaAZoCWgPQwhTXFX2XdEIwJSGlFKUaBVLMmgWR0CmkXZRKpT/dX2UKGgGaAloD0MIeLeyRGe5BsCUhpRSlGgVSzJoFkdAppQA6GQCCHV9lChoBmgJaA9DCEQwDi4d8wnAlIaUUpRoFUsyaBZHQKaTxyR0U491fZQoaAZoCWgPQwgQ641aYZoQwJSGlFKUaBVLMmgWR0Cmk3bHp8nedX2UKGgGaAloD0MI7s7abRf6BMCUhpRSlGgVSzJoFkdAppMkzoEB83V9lChoBmgJaA9DCP2jb9I0qAzAlIaUUpRoFUsyaBZHQKaVtCtzS1F1fZQoaAZoCWgPQwhYkjzX94EOwJSGlFKUaBVLMmgWR0CmlXki+tbLdX2UKGgGaAloD0MI4ugq3V0nDMCUhpRSlGgVSzJoFkdAppUorSVnmXV9lChoBmgJaA9DCAKCOXr83gnAlIaUUpRoFUsyaBZHQKaU1vOyE+R1fZQoaAZoCWgPQwj12mysxLwKwJSGlFKUaBVLMmgWR0Cml2tSQ5mzdX2UKGgGaAloD0MIhnKiXYUUDsCUhpRSlGgVSzJoFkdAppcv5WRzR3V9lChoBmgJaA9DCIdvYd141wzAlIaUUpRoFUsyaBZHQKaW3+SbH6x1fZQoaAZoCWgPQwhOf/YjRUQMwJSGlFKUaBVLMmgWR0Cmlo43WFvidX2UKGgGaAloD0MIN1FLcyukCMCUhpRSlGgVSzJoFkdAppkrDXOGCnV9lChoBmgJaA9DCMmvH2KD5QjAlIaUUpRoFUsyaBZHQKaY8BhhH9Z1fZQoaAZoCWgPQwilSSno9jIKwJSGlFKUaBVLMmgWR0CmmKAYP5HmdX2UKGgGaAloD0MIJXmu78OBD8CUhpRSlGgVSzJoFkdApphOMAFPi3V9lChoBmgJaA9DCOc0C7Q75A/AlIaUUpRoFUsyaBZHQKaaTeAuqWF1fZQoaAZoCWgPQwj5TWGlggoPwJSGlFKUaBVLMmgWR0CmmhIOhCdCdX2UKGgGaAloD0MIaAQb17+rCMCUhpRSlGgVSzJoFkdAppnBd0JWvXV9lChoBmgJaA9DCE9Y4gFlMwvAlIaUUpRoFUsyaBZHQKaZbr6ciGF1fZQoaAZoCWgPQwhgqwSLw3kKwJSGlFKUaBVLMmgWR0Cmm0433pOfdX2UKGgGaAloD0MIIcoXtJAwEcCUhpRSlGgVSzJoFkdAppsSXrt3OnV9lChoBmgJaA9DCI2z6QjgxgnAlIaUUpRoFUsyaBZHQKaawYLsrup1fZQoaAZoCWgPQwhMOPQWDy8OwJSGlFKUaBVLMmgWR0Cmmm8GcFyJdX2UKGgGaAloD0MIWeAruvUaDsCUhpRSlGgVSzJoFkdAppxPnr6ciHV9lChoBmgJaA9DCBSwHYzYJwrAlIaUUpRoFUsyaBZHQKacFDwYtQN1fZQoaAZoCWgPQwjizRq8r6oFwJSGlFKUaBVLMmgWR0Cmm8N3OfNBdX2UKGgGaAloD0MI7j1cctxJC8CUhpRSlGgVSzJoFkdApptw4MnZ03V9lChoBmgJaA9DCNS7eD9uXwrAlIaUUpRoFUsyaBZHQKadTH2h7E51fZQoaAZoCWgPQwiBJsKGp9cDwJSGlFKUaBVLMmgWR0CmnRCCz1K5dX2UKGgGaAloD0MIWFnbFI8rEcCUhpRSlGgVSzJoFkdAppy/u7YkFHV9lChoBmgJaA9DCJ2BkZc1cRDAlIaUUpRoFUsyaBZHQKacbOnl4kh1fZQoaAZoCWgPQwgSaRt/opIKwJSGlFKUaBVLMmgWR0CmnkrfLs8gdX2UKGgGaAloD0MI9KPhlLm5EsCUhpRSlGgVSzJoFkdApp4PCTEBKnV9lChoBmgJaA9DCNR+aydKIgzAlIaUUpRoFUsyaBZHQKadvh5PdmB1fZQoaAZoCWgPQwhlUG1wIhoKwJSGlFKUaBVLMmgWR0CmnWuGCZnddX2UKGgGaAloD0MIF7fRAN6CDMCUhpRSlGgVSzJoFkdApp8zqv/za3V9lChoBmgJaA9DCAHChxItSRHAlIaUUpRoFUsyaBZHQKae98LKFIx1fZQoaAZoCWgPQwiRRZp4B3gKwJSGlFKUaBVLMmgWR0CmnqbEHdGidX2UKGgGaAloD0MIYDqt26DWDMCUhpRSlGgVSzJoFkdApp5T5IpYtHV9lChoBmgJaA9DCII65dGNUArAlIaUUpRoFUsyaBZHQKagMpazNUx1fZQoaAZoCWgPQwj4b16c+AoKwJSGlFKUaBVLMmgWR0Cmn/ad+XqrdX2UKGgGaAloD0MIj+IcdXScDsCUhpRSlGgVSzJoFkdApp+l1hb4anV9lChoBmgJaA9DCNFbPLzncBPAlIaUUpRoFUsyaBZHQKafUyiVSoB1fZQoaAZoCWgPQwjWyRmKO/4OwJSGlFKUaBVLMmgWR0CmoRzkhib2dX2UKGgGaAloD0MI9Ik8SbrmDcCUhpRSlGgVSzJoFkdApqDg/iYLLXV9lChoBmgJaA9DCJxvRPes6wTAlIaUUpRoFUsyaBZHQKagkD4gzP91fZQoaAZoCWgPQwjC+j+H+VINwJSGlFKUaBVLMmgWR0CmoD2DHwPRdX2UKGgGaAloD0MIcsCuJk85B8CUhpRSlGgVSzJoFkdApqIXHggow3V9lChoBmgJaA9DCC6sG++OrATAlIaUUpRoFUsyaBZHQKah2zYVZcN1fZQoaAZoCWgPQwiXN4drtecFwJSGlFKUaBVLMmgWR0CmoYpOFg2IdX2UKGgGaAloD0MIG4ANiBBXDsCUhpRSlGgVSzJoFkdApqE3lEJBxHV9lChoBmgJaA9DCPXYlgFnCQjAlIaUUpRoFUsyaBZHQKajESMcZLt1fZQoaAZoCWgPQwj0NjY7Ul0GwJSGlFKUaBVLMmgWR0CmotVG9YfXdX2UKGgGaAloD0MIR8uBHmo7DMCUhpRSlGgVSzJoFkdApqKEkD6nBXV9lChoBmgJaA9DCFq5F5gVKgfAlIaUUpRoFUsyaBZHQKaiMfvnbIt1fZQoaAZoCWgPQwgaidAINo4QwJSGlFKUaBVLMmgWR0CmpAW4NI9UdX2UKGgGaAloD0MIlUiil1FsEcCUhpRSlGgVSzJoFkdApqPJ9gF5fXV9lChoBmgJaA9DCAYP0765HwzAlIaUUpRoFUsyaBZHQKajePbwjMV1fZQoaAZoCWgPQwjeHK7VHtYOwJSGlFKUaBVLMmgWR0CmoyaRQrMDdX2UKGgGaAloD0MI7IoZ4e3BCsCUhpRSlGgVSzJoFkdApqT1RtP56HV9lChoBmgJaA9DCGb4TzdQQBHAlIaUUpRoFUsyaBZHQKakuT3Zf2N1fZQoaAZoCWgPQwisArUYPOwBwJSGlFKUaBVLMmgWR0CmpGiFTNt7dX2UKGgGaAloD0MIBOYhUz6ECcCUhpRSlGgVSzJoFkdApqQVpqREGHV9lChoBmgJaA9DCDWyKy0jdQbAlIaUUpRoFUsyaBZHQKal49W6shh1fZQoaAZoCWgPQwgiwr8IGjMRwJSGlFKUaBVLMmgWR0Cmpafag261dX2UKGgGaAloD0MIV2DI6laPCsCUhpRSlGgVSzJoFkdApqVW1WsBAHV9lChoBmgJaA9DCDVFgNO7eBHAlIaUUpRoFUsyaBZHQKalBDpkf9x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb6ea997700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb6ea995c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680074774317314458, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtzvZPhHBbTupixU/tzvZPhHBbTupixU/tzvZPhHBbTupixU/tzvZPhHBbTupixU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkRicv5rjz7/zKLA/viUxv8HTBD53dxg/UN82PwlebT9C3bM/Cl4dPsM0+D14/NA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3O9k+EcFtO6mLFT+Q8lW6/B2JuVcD8ru3O9k+EcFtO6mLFT+Q8lW6/B2JuVcD8ru3O9k+EcFtO6mLFT+Q8lW6/B2JuVcD8ru3O9k+EcFtO6mLFT+Q8lW6/B2JuVcD8ruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4242837 0.00362784 0.5841623 ]\n [0.4242837 0.00362784 0.5841623 ]\n [0.4242837 0.00362784 0.5841623 ]\n [0.4242837 0.00362784 0.5841623 ]]", "desired_goal": "[[-1.2194997 -1.6241333 1.3762497 ]\n [-0.69198215 0.12971403 0.5955729 ]\n [ 0.714345 0.9272161 1.4051898 ]\n [ 0.15367904 0.12119438 1.6327047 ]]", "observation": "[[ 4.2428371e-01 3.6278407e-03 5.8416229e-01 -8.1614498e-04\n -2.6153016e-04 -7.3856520e-03]\n [ 4.2428371e-01 3.6278407e-03 5.8416229e-01 -8.1614498e-04\n -2.6153016e-04 -7.3856520e-03]\n [ 4.2428371e-01 3.6278407e-03 5.8416229e-01 -8.1614498e-04\n -2.6153016e-04 -7.3856520e-03]\n [ 4.2428371e-01 3.6278407e-03 5.8416229e-01 -8.1614498e-04\n -2.6153016e-04 -7.3856520e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAt/SyPI7/oz0Zj4A9SW25vemPeL2biXo92Sn+vWFxm71zyHM9iMOrPZKQAryewps9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0218452 0.08007728 0.06277294]\n [-0.09054048 -0.06068412 0.06116639]\n [-0.12410326 -0.07589985 0.05951734]\n [ 0.08386904 -0.00796904 0.0760548 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWn7gKk8gB8CUhpRSlIwBbJRLMowBdJRHQLpno3iaRZF1fZQoaAZoCWgPQwhVih2NQ30LwJSGlFKUaBVLMmgWR0C6Z4TdcjZ+dX2UKGgGaAloD0MIZW6+Ed1zC8CUhpRSlGgVSzJoFkdAumdgDwH7g3V9lChoBmgJaA9DCH9pUZ/kvhfAlIaUUpRoFUsyaBZHQLpnMfKp1ih1fZQoaAZoCWgPQwgDtRg8THsLwJSGlFKUaBVLMmgWR0C6aCoAwPAgdX2UKGgGaAloD0MILliqC3jZBMCUhpRSlGgVSzJoFkdAumgLZVXFLnV9lChoBmgJaA9DCN+LL9rjtRvAlIaUUpRoFUsyaBZHQLpn5nanJkp1fZQoaAZoCWgPQwjW5ZSAmAQCwJSGlFKUaBVLMmgWR0C6Z7hK+SKWdX2UKGgGaAloD0MIMBAEyNDRFcCUhpRSlGgVSzJoFkdAumj73PAwf3V9lChoBmgJaA9DCGItPgXAWA7AlIaUUpRoFUsyaBZHQLpo3Z00WM11fZQoaAZoCWgPQwj4NCcvMnESwJSGlFKUaBVLMmgWR0C6aLj9jwx4dX2UKGgGaAloD0MIYK5FC9B2DcCUhpRSlGgVSzJoFkdAumiLFHavinV9lChoBmgJaA9DCDwx68VQjhPAlIaUUpRoFUsyaBZHQLpp1Ljghr51fZQoaAZoCWgPQwhLOsrBbAITwJSGlFKUaBVLMmgWR0C6abbmMfihdX2UKGgGaAloD0MIxsN7DiznBcCUhpRSlGgVSzJoFkdAummSwosqa3V9lChoBmgJaA9DCGRXWkbqrRTAlIaUUpRoFUsyaBZHQLppZPjXFtN1fZQoaAZoCWgPQwjlgF1NnnIVwJSGlFKUaBVLMmgWR0C6arORHPNWdX2UKGgGaAloD0MIiSZQxCKWFsCUhpRSlGgVSzJoFkdAumqVaFEiMnV9lChoBmgJaA9DCM1bdR2qCRLAlIaUUpRoFUsyaBZHQLpqcOKwY+B1fZQoaAZoCWgPQwjIXBlUG/wQwJSGlFKUaBVLMmgWR0C6akOM6zVudX2UKGgGaAloD0MImIi3zr/tEcCUhpRSlGgVSzJoFkdAumuYpPRAr3V9lChoBmgJaA9DCMP0vYbg2AbAlIaUUpRoFUsyaBZHQLprepEQXhx1fZQoaAZoCWgPQwgfuwuUFJgHwJSGlFKUaBVLMmgWR0C6a1YWUKRddX2UKGgGaAloD0MIlUVhF0U/FsCUhpRSlGgVSzJoFkdAumsoWUKRdXV9lChoBmgJaA9DCCRh304iohDAlIaUUpRoFUsyaBZHQLpsfVUuL751fZQoaAZoCWgPQwgg8MAAwgcOwJSGlFKUaBVLMmgWR0C6bF8a86FNdX2UKGgGaAloD0MIAyUFFsAUDsCUhpRSlGgVSzJoFkdAumw6nQ6ZIHV9lChoBmgJaA9DCEZDxqNUgg7AlIaUUpRoFUsyaBZHQLpsDNiH6/J1fZQoaAZoCWgPQwh8CoDxDNoNwJSGlFKUaBVLMmgWR0C6bYSTY/VzdX2UKGgGaAloD0MIvth78UXLF8CUhpRSlGgVSzJoFkdAum1mTr3TNXV9lChoBmgJaA9DCAhW1cvvdA/AlIaUUpRoFUsyaBZHQLptQxBVuJl1fZQoaAZoCWgPQwjyzqEMVQkgwJSGlFKUaBVLMmgWR0C6bRU6Lfk4dX2UKGgGaAloD0MI9FDbhlHwFMCUhpRSlGgVSzJoFkdAum5xWZJCjXV9lChoBmgJaA9DCFFoWfeP5RbAlIaUUpRoFUsyaBZHQLpuU1WKdhB1fZQoaAZoCWgPQwjT9UTXhR8QwJSGlFKUaBVLMmgWR0C6bi7P2PDHdX2UKGgGaAloD0MINpVFYRd1GMCUhpRSlGgVSzJoFkdAum4BM36yjnV9lChoBmgJaA9DCJvIzAUujxTAlIaUUpRoFUsyaBZHQLpvTzUZvUB1fZQoaAZoCWgPQwhKRs7CnrYQwJSGlFKUaBVLMmgWR0C6bzDewcHXdX2UKGgGaAloD0MIuMoTCDulAcCUhpRSlGgVSzJoFkdAum8OVbA1vXV9lChoBmgJaA9DCMYxkj1CbQjAlIaUUpRoFUsyaBZHQLpu4MW43FV1fZQoaAZoCWgPQwhfl+E/3WAPwJSGlFKUaBVLMmgWR0C6cDVYhdMTdX2UKGgGaAloD0MI6ITQQZeQF8CUhpRSlGgVSzJoFkdAunAXYChexHV9lChoBmgJaA9DCLn6sUl+RAPAlIaUUpRoFUsyaBZHQLpv8vUjLSx1fZQoaAZoCWgPQwi9qrNaYO8NwJSGlFKUaBVLMmgWR0C6b8U56t1ZdX2UKGgGaAloD0MI9bpFYKyvEMCUhpRSlGgVSzJoFkdAunEs0WM0g3V9lChoBmgJaA9DCHzUX6+wwBDAlIaUUpRoFUsyaBZHQLpxD4qwyIp1fZQoaAZoCWgPQwiUwrzHmeYQwJSGlFKUaBVLMmgWR0C6cOsCPp6hdX2UKGgGaAloD0MIJlXbTfC9EsCUhpRSlGgVSzJoFkdAunC9+mWMTHV9lChoBmgJaA9DCB8tzhjmJBvAlIaUUpRoFUsyaBZHQLpx/+XqqwR1fZQoaAZoCWgPQwhZ3eo56Z0MwJSGlFKUaBVLMmgWR0C6ceGw7kn1dX2UKGgGaAloD0MI+I2vPbMEBsCUhpRSlGgVSzJoFkdAunG9KkEcKnV9lChoBmgJaA9DCDQPYJFfjxDAlIaUUpRoFUsyaBZHQLpxj2c8Tzx1fZQoaAZoCWgPQwjpnJ/iONAWwJSGlFKUaBVLMmgWR0C6cplFtsN2dX2UKGgGaAloD0MIrwW9N4ZgC8CUhpRSlGgVSzJoFkdAunJ6r7waznV9lChoBmgJaA9DCNIZGHlZQxXAlIaUUpRoFUsyaBZHQLpyVcoH9m91fZQoaAZoCWgPQwjBxvXv+mwHwJSGlFKUaBVLMmgWR0C6ciehoM8YdX2UKGgGaAloD0MIrroO1ZRkEcCUhpRSlGgVSzJoFkdAunMY1m8M/nV9lChoBmgJaA9DCL76eOi7mxHAlIaUUpRoFUsyaBZHQLpy+jVQQ+V1fZQoaAZoCWgPQwhlic4yi3AYwJSGlFKUaBVLMmgWR0C6ctVJ+UhWdX2UKGgGaAloD0MIeCXJc33fD8CUhpRSlGgVSzJoFkdAunKnNqxkd3V9lChoBmgJaA9DCFYt6SgHkwfAlIaUUpRoFUsyaBZHQLpzk1dxAB11fZQoaAZoCWgPQwjGUiRfCeQNwJSGlFKUaBVLMmgWR0C6c3Td+G47dX2UKGgGaAloD0MIHt5zYDmSE8CUhpRSlGgVSzJoFkdAunNP/ffoBHV9lChoBmgJaA9DCAGkNnFyXwvAlIaUUpRoFUsyaBZHQLpzIdCE6DJ1fZQoaAZoCWgPQwhzEkpfCBkVwJSGlFKUaBVLMmgWR0C6dBjDbah6dX2UKGgGaAloD0MIstgmFY1VCcCUhpRSlGgVSzJoFkdAunP6QjlgdHV9lChoBmgJaA9DCAMjL2tiYRLAlIaUUpRoFUsyaBZHQLpz1VtXPqt1fZQoaAZoCWgPQwjIQnQIHKkTwJSGlFKUaBVLMmgWR0C6c6ddiUgTdX2UKGgGaAloD0MI5CzsaYdfFsCUhpRSlGgVSzJoFkdAunSVZSvTw3V9lChoBmgJaA9DCMSXiSKkfhTAlIaUUpRoFUsyaBZHQLp0dsq8UVV1fZQoaAZoCWgPQwh9PzVeutkUwJSGlFKUaBVLMmgWR0C6dFHggow3dX2UKGgGaAloD0MI/rW8cr3NDsCUhpRSlGgVSzJoFkdAunQjtkWhy3V9lChoBmgJaA9DCMnnFU89UhDAlIaUUpRoFUsyaBZHQLp1EesPrfN1fZQoaAZoCWgPQwhbXrneNkMUwJSGlFKUaBVLMmgWR0C6dPNgF5fMdX2UKGgGaAloD0MIYfw07s3/EsCUhpRSlGgVSzJoFkdAunTObBoEjnV9lChoBmgJaA9DCF03pbxWQgzAlIaUUpRoFUsyaBZHQLp0oEBbOeJ1fZQoaAZoCWgPQwjpDIy8rLkUwJSGlFKUaBVLMmgWR0C6dY6U3XI2dX2UKGgGaAloD0MIdk8eFmoNFcCUhpRSlGgVSzJoFkdAunVv9ehPCXV9lChoBmgJaA9DCJYhjnVxmw3AlIaUUpRoFUsyaBZHQLp1SwevIOp1fZQoaAZoCWgPQwjzO01mvO0UwJSGlFKUaBVLMmgWR0C6dRzrAxi5dX2UKGgGaAloD0MI+rX10382FsCUhpRSlGgVSzJoFkdAunYHBTGYKXV9lChoBmgJaA9DCHTPukbLoRPAlIaUUpRoFUsyaBZHQLp16HLA57x1fZQoaAZoCWgPQwjGT+Pe/LYQwJSGlFKUaBVLMmgWR0C6dcOIuXeFdX2UKGgGaAloD0MI+wYmN4pMCcCUhpRSlGgVSzJoFkdAunWVUR3/xXV9lChoBmgJaA9DCK3D0VW6WxbAlIaUUpRoFUsyaBZHQLp2hwYcebN1fZQoaAZoCWgPQwjuBPuvc8MXwJSGlFKUaBVLMmgWR0C6dmhrvb48dX2UKGgGaAloD0MIsOYAwRwNFMCUhpRSlGgVSzJoFkdAunZDfNzKcXV9lChoBmgJaA9DCKCp1y0C4w/AlIaUUpRoFUsyaBZHQLp2FUtqYZ51fZQoaAZoCWgPQwiCdRw/VMoTwJSGlFKUaBVLMmgWR0C6dwgRPGhmdX2UKGgGaAloD0MIq6+uCtTCF8CUhpRSlGgVSzJoFkdAunbpf6XSjXV9lChoBmgJaA9DCKPqVzofvgvAlIaUUpRoFUsyaBZHQLp2xMmnfl91fZQoaAZoCWgPQwi9qUiFsVUYwJSGlFKUaBVLMmgWR0C6dpaagElmdX2UKGgGaAloD0MIPMCTFi7rGMCUhpRSlGgVSzJoFkdAuneIekpI+XV9lChoBmgJaA9DCFXBqKROYBHAlIaUUpRoFUsyaBZHQLp3afKISDh1fZQoaAZoCWgPQwjbp+MxAxUXwJSGlFKUaBVLMmgWR0C6d0UUsWfsdX2UKGgGaAloD0MI/Ul87gTbFcCUhpRSlGgVSzJoFkdAuncW9cry2HV9lChoBmgJaA9DCMZrXtVZHRjAlIaUUpRoFUsyaBZHQLp4C6qKgqV1fZQoaAZoCWgPQwi70FynkZYUwJSGlFKUaBVLMmgWR0C6d+4ht+CsdX2UKGgGaAloD0MItOTxtPzQFsCUhpRSlGgVSzJoFkdAunfKREF4cHV9lChoBmgJaA9DCHDpmPOMLRHAlIaUUpRoFUsyaBZHQLp3nIEKVpt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.281320589222014, "std_reward": 0.7441259833644684, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-28T17:21:09.848747"}
 
1
+ {"mean_reward": -5.205744978878647, "std_reward": 1.1929872924356395, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T09:25:12.491815"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd73e84b08a02b5d768329529864187bcc71f3e15b25628cb250a8a7e1215a26
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba4fa364559e86d5d4665f45e22d6c620346a92f1fbc5e9bb460bcfe9035bbdd
3
  size 3056