brandonRivas
commited on
End of training
Browse files
README.md
CHANGED
@@ -23,11 +23,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
-
- Loss: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
-
- F1: 0.
|
30 |
-
- Accuracy: 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -47,8 +47,8 @@ More information needed
|
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
- learning_rate: 0.0004
|
50 |
-
- train_batch_size:
|
51 |
-
- eval_batch_size:
|
52 |
- seed: 42
|
53 |
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
- lr_scheduler_type: linear
|
@@ -59,97 +59,97 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
|
154 |
|
155 |
### Framework versions
|
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0742
|
27 |
+
- Precision: 0.9394
|
28 |
+
- Recall: 0.9563
|
29 |
+
- F1: 0.9478
|
30 |
+
- Accuracy: 0.9810
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
- learning_rate: 0.0004
|
50 |
+
- train_batch_size: 16
|
51 |
+
- eval_batch_size: 16
|
52 |
- seed: 42
|
53 |
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
- lr_scheduler_type: linear
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
+
| 0.0513 | 0.0327 | 20 | 0.0990 | 0.9421 | 0.9307 | 0.9364 | 0.9776 |
|
63 |
+
| 0.0862 | 0.0654 | 40 | 0.1131 | 0.9052 | 0.9417 | 0.9231 | 0.9730 |
|
64 |
+
| 0.0883 | 0.0980 | 60 | 0.1008 | 0.9070 | 0.9417 | 0.9240 | 0.9736 |
|
65 |
+
| 0.0779 | 0.1307 | 80 | 0.1018 | 0.9014 | 0.9447 | 0.9226 | 0.9733 |
|
66 |
+
| 0.1107 | 0.1634 | 100 | 0.1126 | 0.9109 | 0.9451 | 0.9277 | 0.9705 |
|
67 |
+
| 0.1039 | 0.1961 | 120 | 0.0843 | 0.9291 | 0.9451 | 0.9370 | 0.9770 |
|
68 |
+
| 0.0875 | 0.2288 | 140 | 0.0921 | 0.9127 | 0.9422 | 0.9272 | 0.9739 |
|
69 |
+
| 0.0838 | 0.2614 | 160 | 0.0949 | 0.9208 | 0.9555 | 0.9378 | 0.9765 |
|
70 |
+
| 0.0785 | 0.2941 | 180 | 0.0847 | 0.9176 | 0.9549 | 0.9359 | 0.9768 |
|
71 |
+
| 0.0752 | 0.3268 | 200 | 0.0989 | 0.9068 | 0.9497 | 0.9277 | 0.9721 |
|
72 |
+
| 0.0891 | 0.3595 | 220 | 0.0990 | 0.9014 | 0.9555 | 0.9277 | 0.9738 |
|
73 |
+
| 0.1096 | 0.3922 | 240 | 0.0907 | 0.9073 | 0.9583 | 0.9321 | 0.9746 |
|
74 |
+
| 0.1101 | 0.4248 | 260 | 0.0848 | 0.9137 | 0.9500 | 0.9315 | 0.9754 |
|
75 |
+
| 0.0745 | 0.4575 | 280 | 0.0824 | 0.9126 | 0.9384 | 0.9253 | 0.9751 |
|
76 |
+
| 0.0778 | 0.4902 | 300 | 0.0802 | 0.9271 | 0.9561 | 0.9414 | 0.9785 |
|
77 |
+
| 0.0823 | 0.5229 | 320 | 0.0955 | 0.9030 | 0.9402 | 0.9212 | 0.9732 |
|
78 |
+
| 0.0866 | 0.5556 | 340 | 0.1133 | 0.8918 | 0.9252 | 0.9082 | 0.9667 |
|
79 |
+
| 0.0855 | 0.5882 | 360 | 0.0853 | 0.9205 | 0.9564 | 0.9381 | 0.9777 |
|
80 |
+
| 0.0819 | 0.6209 | 380 | 0.0891 | 0.9162 | 0.9543 | 0.9349 | 0.9760 |
|
81 |
+
| 0.0646 | 0.6536 | 400 | 0.0872 | 0.9127 | 0.9473 | 0.9297 | 0.9757 |
|
82 |
+
| 0.0661 | 0.6863 | 420 | 0.0943 | 0.9177 | 0.9561 | 0.9365 | 0.9768 |
|
83 |
+
| 0.0802 | 0.7190 | 440 | 0.0892 | 0.9392 | 0.9363 | 0.9378 | 0.9771 |
|
84 |
+
| 0.0736 | 0.7516 | 460 | 0.0833 | 0.9204 | 0.9421 | 0.9311 | 0.9759 |
|
85 |
+
| 0.0838 | 0.7843 | 480 | 0.0835 | 0.9255 | 0.9622 | 0.9435 | 0.9780 |
|
86 |
+
| 0.0756 | 0.8170 | 500 | 0.0805 | 0.9302 | 0.9491 | 0.9396 | 0.9781 |
|
87 |
+
| 0.0431 | 0.8497 | 520 | 0.0924 | 0.9184 | 0.9560 | 0.9368 | 0.9771 |
|
88 |
+
| 0.0708 | 0.8824 | 540 | 0.0833 | 0.9225 | 0.9540 | 0.9380 | 0.9774 |
|
89 |
+
| 0.0796 | 0.9150 | 560 | 0.0883 | 0.9104 | 0.9476 | 0.9286 | 0.9754 |
|
90 |
+
| 0.0826 | 0.9477 | 580 | 0.0792 | 0.9200 | 0.9616 | 0.9403 | 0.9786 |
|
91 |
+
| 0.091 | 0.9804 | 600 | 0.0832 | 0.9324 | 0.9531 | 0.9426 | 0.9780 |
|
92 |
+
| 0.0818 | 1.0131 | 620 | 0.0790 | 0.9273 | 0.9546 | 0.9408 | 0.9780 |
|
93 |
+
| 0.0412 | 1.0458 | 640 | 0.0770 | 0.9312 | 0.9515 | 0.9413 | 0.9796 |
|
94 |
+
| 0.0535 | 1.0784 | 660 | 0.0868 | 0.9383 | 0.9519 | 0.9450 | 0.9788 |
|
95 |
+
| 0.0633 | 1.1111 | 680 | 0.0825 | 0.9239 | 0.9592 | 0.9412 | 0.9788 |
|
96 |
+
| 0.0495 | 1.1438 | 700 | 0.0869 | 0.9263 | 0.9615 | 0.9436 | 0.9790 |
|
97 |
+
| 0.0612 | 1.1765 | 720 | 0.0729 | 0.9409 | 0.9586 | 0.9497 | 0.9816 |
|
98 |
+
| 0.0483 | 1.2092 | 740 | 0.0890 | 0.9218 | 0.9472 | 0.9344 | 0.9777 |
|
99 |
+
| 0.0749 | 1.2418 | 760 | 0.0765 | 0.9375 | 0.9538 | 0.9456 | 0.9802 |
|
100 |
+
| 0.0732 | 1.2745 | 780 | 0.0824 | 0.9169 | 0.9434 | 0.9300 | 0.9768 |
|
101 |
+
| 0.0614 | 1.3072 | 800 | 0.0773 | 0.9381 | 0.9562 | 0.9471 | 0.9799 |
|
102 |
+
| 0.0598 | 1.3399 | 820 | 0.0796 | 0.9307 | 0.9599 | 0.9451 | 0.9800 |
|
103 |
+
| 0.0608 | 1.3725 | 840 | 0.0810 | 0.9315 | 0.9466 | 0.9390 | 0.9778 |
|
104 |
+
| 0.0594 | 1.4052 | 860 | 0.0738 | 0.9367 | 0.9577 | 0.9471 | 0.9801 |
|
105 |
+
| 0.0575 | 1.4379 | 880 | 0.0784 | 0.9441 | 0.9504 | 0.9473 | 0.9802 |
|
106 |
+
| 0.0616 | 1.4706 | 900 | 0.0853 | 0.9243 | 0.9563 | 0.9401 | 0.9771 |
|
107 |
+
| 0.042 | 1.5033 | 920 | 0.0824 | 0.9266 | 0.9442 | 0.9353 | 0.9767 |
|
108 |
+
| 0.044 | 1.5359 | 940 | 0.0813 | 0.9263 | 0.9570 | 0.9414 | 0.9789 |
|
109 |
+
| 0.0629 | 1.5686 | 960 | 0.0828 | 0.9307 | 0.9601 | 0.9452 | 0.9784 |
|
110 |
+
| 0.0502 | 1.6013 | 980 | 0.0743 | 0.9393 | 0.9521 | 0.9457 | 0.9804 |
|
111 |
+
| 0.0488 | 1.6340 | 1000 | 0.0849 | 0.9257 | 0.9568 | 0.9410 | 0.9783 |
|
112 |
+
| 0.0391 | 1.6667 | 1020 | 0.0779 | 0.9386 | 0.9570 | 0.9477 | 0.9799 |
|
113 |
+
| 0.0488 | 1.6993 | 1040 | 0.0787 | 0.9318 | 0.9611 | 0.9462 | 0.9799 |
|
114 |
+
| 0.0461 | 1.7320 | 1060 | 0.0807 | 0.9304 | 0.9600 | 0.9450 | 0.9792 |
|
115 |
+
| 0.0546 | 1.7647 | 1080 | 0.0761 | 0.9303 | 0.9502 | 0.9401 | 0.9796 |
|
116 |
+
| 0.0507 | 1.7974 | 1100 | 0.0747 | 0.9365 | 0.9549 | 0.9456 | 0.9802 |
|
117 |
+
| 0.0583 | 1.8301 | 1120 | 0.0706 | 0.9394 | 0.9566 | 0.9479 | 0.9806 |
|
118 |
+
| 0.0546 | 1.8627 | 1140 | 0.0736 | 0.9373 | 0.9539 | 0.9455 | 0.9810 |
|
119 |
+
| 0.0581 | 1.8954 | 1160 | 0.0829 | 0.9176 | 0.9531 | 0.9350 | 0.9775 |
|
120 |
+
| 0.0541 | 1.9281 | 1180 | 0.0792 | 0.9410 | 0.9577 | 0.9493 | 0.9814 |
|
121 |
+
| 0.0552 | 1.9608 | 1200 | 0.0807 | 0.9368 | 0.9562 | 0.9464 | 0.9808 |
|
122 |
+
| 0.0536 | 1.9935 | 1220 | 0.0759 | 0.9324 | 0.9580 | 0.9450 | 0.9805 |
|
123 |
+
| 0.036 | 2.0261 | 1240 | 0.0768 | 0.9338 | 0.9587 | 0.9461 | 0.9806 |
|
124 |
+
| 0.0337 | 2.0588 | 1260 | 0.0749 | 0.9367 | 0.9530 | 0.9448 | 0.9807 |
|
125 |
+
| 0.0302 | 2.0915 | 1280 | 0.0759 | 0.9380 | 0.9556 | 0.9467 | 0.9805 |
|
126 |
+
| 0.0241 | 2.1242 | 1300 | 0.0746 | 0.9376 | 0.9609 | 0.9491 | 0.9819 |
|
127 |
+
| 0.0326 | 2.1569 | 1320 | 0.0780 | 0.9317 | 0.9550 | 0.9432 | 0.9803 |
|
128 |
+
| 0.0586 | 2.1895 | 1340 | 0.0808 | 0.9251 | 0.9489 | 0.9368 | 0.9785 |
|
129 |
+
| 0.0357 | 2.2222 | 1360 | 0.0775 | 0.9333 | 0.9561 | 0.9445 | 0.9801 |
|
130 |
+
| 0.0302 | 2.2549 | 1380 | 0.0797 | 0.9345 | 0.9543 | 0.9443 | 0.9801 |
|
131 |
+
| 0.0361 | 2.2876 | 1400 | 0.0819 | 0.9344 | 0.9550 | 0.9446 | 0.9796 |
|
132 |
+
| 0.0324 | 2.3203 | 1420 | 0.0804 | 0.9363 | 0.9557 | 0.9459 | 0.9802 |
|
133 |
+
| 0.0302 | 2.3529 | 1440 | 0.0775 | 0.9400 | 0.9548 | 0.9473 | 0.9812 |
|
134 |
+
| 0.0359 | 2.3856 | 1460 | 0.0792 | 0.9363 | 0.9567 | 0.9464 | 0.9805 |
|
135 |
+
| 0.0371 | 2.4183 | 1480 | 0.0750 | 0.9399 | 0.9525 | 0.9461 | 0.9810 |
|
136 |
+
| 0.0449 | 2.4510 | 1500 | 0.0771 | 0.9300 | 0.9513 | 0.9405 | 0.9796 |
|
137 |
+
| 0.0444 | 2.4837 | 1520 | 0.0758 | 0.9306 | 0.9544 | 0.9423 | 0.9795 |
|
138 |
+
| 0.037 | 2.5163 | 1540 | 0.0773 | 0.9355 | 0.9576 | 0.9464 | 0.9808 |
|
139 |
+
| 0.0372 | 2.5490 | 1560 | 0.0758 | 0.9348 | 0.9591 | 0.9468 | 0.9811 |
|
140 |
+
| 0.0403 | 2.5817 | 1580 | 0.0777 | 0.9309 | 0.9585 | 0.9445 | 0.9803 |
|
141 |
+
| 0.0401 | 2.6144 | 1600 | 0.0749 | 0.9381 | 0.9593 | 0.9486 | 0.9812 |
|
142 |
+
| 0.032 | 2.6471 | 1620 | 0.0751 | 0.9397 | 0.9581 | 0.9488 | 0.9810 |
|
143 |
+
| 0.0319 | 2.6797 | 1640 | 0.0768 | 0.9369 | 0.9582 | 0.9475 | 0.9804 |
|
144 |
+
| 0.0329 | 2.7124 | 1660 | 0.0752 | 0.9377 | 0.9586 | 0.9480 | 0.9806 |
|
145 |
+
| 0.0376 | 2.7451 | 1680 | 0.0748 | 0.9350 | 0.9551 | 0.9449 | 0.9803 |
|
146 |
+
| 0.0277 | 2.7778 | 1700 | 0.0761 | 0.9328 | 0.9563 | 0.9444 | 0.9800 |
|
147 |
+
| 0.0388 | 2.8105 | 1720 | 0.0771 | 0.9318 | 0.9573 | 0.9444 | 0.9799 |
|
148 |
+
| 0.0364 | 2.8431 | 1740 | 0.0759 | 0.9347 | 0.9583 | 0.9464 | 0.9805 |
|
149 |
+
| 0.0218 | 2.8758 | 1760 | 0.0755 | 0.9361 | 0.9574 | 0.9466 | 0.9806 |
|
150 |
+
| 0.0321 | 2.9085 | 1780 | 0.0750 | 0.9379 | 0.9567 | 0.9472 | 0.9808 |
|
151 |
+
| 0.0414 | 2.9412 | 1800 | 0.0742 | 0.9393 | 0.9561 | 0.9476 | 0.9810 |
|
152 |
+
| 0.031 | 2.9739 | 1820 | 0.0742 | 0.9394 | 0.9563 | 0.9478 | 0.9810 |
|
153 |
|
154 |
|
155 |
### Framework versions
|