File size: 1,692 Bytes
9af94c3 75fdf29 9af94c3 75fdf29 9af94c3 75fdf29 9af94c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: mit
base_model: papluca/xlm-roberta-base-language-detection
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-base-language-detection
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-language-detection
This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0203
- Accuracy: 0.9961
- F1: 0.9961
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.193 | 1.0 | 1094 | 0.0216 | 0.9959 | 0.9959 |
| 0.0094 | 2.0 | 2188 | 0.0207 | 0.9961 | 0.9961 |
| 0.0036 | 3.0 | 3282 | 0.0203 | 0.9961 | 0.9961 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|