File size: 2,329 Bytes
733395f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- generated_from_trainer
model-index:
- name: finetune_mc_20
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune_mc_20
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1545
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9427 | 1.0 | 70 | 1.9064 |
| 0.2001 | 2.0 | 140 | 2.6308 |
| 0.1129 | 3.0 | 210 | 2.9004 |
| 0.0803 | 4.0 | 280 | 3.0336 |
| 0.0665 | 5.0 | 350 | 3.0398 |
| 0.0396 | 6.0 | 420 | 3.0769 |
| 0.0429 | 7.0 | 490 | 3.1504 |
| 0.0318 | 8.0 | 560 | 3.2690 |
| 0.03 | 9.0 | 630 | 3.4818 |
| 0.0258 | 10.0 | 700 | 3.6011 |
| 0.0247 | 11.0 | 770 | 3.7578 |
| 0.0287 | 12.0 | 840 | 3.8834 |
| 0.0257 | 13.0 | 910 | 3.9492 |
| 0.0267 | 14.0 | 980 | 3.9646 |
| 0.0205 | 15.0 | 1050 | 4.0157 |
| 0.0202 | 16.0 | 1120 | 4.0518 |
| 0.0222 | 17.0 | 1190 | 4.0854 |
| 0.0203 | 18.0 | 1260 | 4.1229 |
| 0.0231 | 19.0 | 1330 | 4.1433 |
| 0.0199 | 20.0 | 1400 | 4.1545 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.14.1
|