File size: 2,341 Bytes
3e5bb50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- generated_from_trainer
model-index:
- name: finetune_race_20_cot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune_race_20_cot
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2382
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.218 | 1.0 | 150 | 1.3450 |
| 0.8105 | 2.0 | 300 | 1.3977 |
| 0.5315 | 3.0 | 450 | 1.4943 |
| 0.6257 | 4.0 | 600 | 1.6812 |
| 0.1961 | 5.0 | 750 | 1.9107 |
| 0.141 | 6.0 | 900 | 2.1245 |
| 0.1549 | 7.0 | 1050 | 2.1764 |
| 0.0783 | 8.0 | 1200 | 2.4002 |
| 0.0846 | 9.0 | 1350 | 2.4001 |
| 0.0518 | 10.0 | 1500 | 2.5191 |
| 0.0568 | 11.0 | 1650 | 2.5257 |
| 0.0498 | 12.0 | 1800 | 2.5847 |
| 0.0494 | 13.0 | 1950 | 2.7678 |
| 0.0326 | 14.0 | 2100 | 2.8382 |
| 0.035 | 15.0 | 2250 | 2.9128 |
| 0.0389 | 16.0 | 2400 | 3.0079 |
| 0.0427 | 17.0 | 2550 | 3.0754 |
| 0.0353 | 18.0 | 2700 | 3.1909 |
| 0.0368 | 19.0 | 2850 | 3.2083 |
| 0.0316 | 20.0 | 3000 | 3.2382 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.14.1
|