File size: 4,855 Bytes
959dda5
 
30a4470
959dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a4470
 
 
 
 
 
 
 
 
5d9c173
30a4470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a22a2
15efb78
644691a
30a4470
94cba2d
46213db
e9e6afb
30a4470
e9e6afb
 
 
 
 
 
 
 
959dda5
62f92ff
 
 
 
 
 
 
 
959dda5
5d9c173
959dda5
 
 
62f92ff
959dda5
 
 
 
 
1ea5224
959dda5
50bce24
959dda5
50bce24
 
959dda5
30a4470
 
 
 
 
 
 
 
 
 
 
 
 
50bce24
30a4470
 
 
 
 
 
959dda5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: other
license_name: bria-rmbg-2.0
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
pipeline_tag: image-segmentation
tags:
- remove background
- background
- background-removal
- Pytorch
- vision
- legal liability
- transformers
---

# BRIA Background Removal v2.0 Model Card

RMBG v2.0 is our new state-of-the-art background removal model, designed to effectively separate foreground from background in a range of
categories and image types. This model has been trained on a carefully selected dataset, which includes:
general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale. 
The accuracy, efficiency, and versatility currently rival leading source-available models. 
It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount. 

Developed by BRIA AI, RMBG v2.0 is available as a source-available model for non-commercial use. 

[CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-RMBG-2.0)
![examples](t4.png)

## Model Details
#####
### Model Description

- **Developed by:** [BRIA AI](https://bria.ai/)
- **Model type:** Background Removal 
- **License:** [bria-rmbg-2.0](https://bria.ai/bria-huggingface-model-license-agreement/)
  - The model is released under a Creative Commons license for non-commercial use.
  - Commercial use is subject to a commercial agreement with BRIA. [Contact Us](https://bria.ai/contact-us) for more information. 

- **Model Description:** BRIA RMBG-2.0 is a dichotomous image segmentation model trained exclusively on a professional-grade dataset.
- **BRIA:** Resources for more information: [BRIA AI](https://bria.ai/)



## Training data
Bria-RMBG model was trained with over 15,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images.
Our benchmark included balanced gender, balanced ethnicity, and people with different types of disabilities.
For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.

### Distribution of images:

| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Objects only | 45.11% |
| People with objects/animals | 25.24% |
| People only | 17.35% |
| people/objects/animals with text | 8.52% |
| Text only | 2.52% |
| Animals only | 1.89% |

| Category | Distribution |
| -----------------------------------| -----------------------------------------:|
| Photorealistic | 87.70% |
| Non-Photorealistic | 12.30% |


| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Non Solid Background | 52.05% |
| Solid Background | 47.95% 


| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Single main foreground object | 51.42% |
| Multiple objects in the foreground | 48.58% |


## Qualitative Evaluation
Open source models comparison
![diagram](diagram1.png)
![examples](collage5.png)

### Architecture
RMBG-2.0 is developed on the [BiRefNet](https://github.com/ZhengPeng7/BiRefNet) architecture enhanced with our proprietary dataset and training scheme. This training data significantly improves the model’s accuracy and effectiveness for background-removal task.<br>
If you use this model in your research, please cite:

```
@article{BiRefNet,
  title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
  author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
  journal={CAAI Artificial Intelligence Research},
  year={2024}
}
```

#### Requirements
```bash
torch
torchvision
pillow
kornia
transformers
```

### Usage

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->


```python
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation

model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
torch.set_float32_matmul_precision(['high', 'highest'][0])
model.to('cuda')
model.eval()

# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
    transforms.Resize(image_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

image = Image.open(input_image_path)
input_images = transform_image(image).unsqueeze(0).to('cuda')

# Prediction
with torch.no_grad():
    preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)

image.save("no_bg_image.png")
```