File size: 1,504 Bytes
735be5a 78941e5 735be5a bbb4430 78941e5 e993336 90fc7e6 e993336 78941e5 e993336 78941e5 5e922ce 90fc7e6 5e922ce 78941e5 cce9d27 78941e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: apache-2.0
datasets:
- briefai/LongShort-Dataset
language:
- en
pipeline_tag: text-generation
tags:
- pytorch
- llama-2
- Gen-AI
- Finance
- KPI Extraction
---
<p align="center">
<img src="https://github.com/brief-ai-uchicago/Branding/blob/main/SVG/brief_logo_white_circle.svg" height="200px" width="200px"/>
</p>
# LongShort-Llama-2-7B
- Model creator: [Brief AI](https://huggingface.co/briefai)
- Original model: [Llama 2 7B Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
### Model Description
This model leverages Llama-2-7B architecture to extract financial KPIs from the earnings call documents. The model is fine-tuned on 5K data samples.
### Dataset Description
Data Source: Factiva
Data Description: 28K+ Earnings Call Documents
Data Scope: 1K+ public companies,
Fine Tuning Data: Collection of 60K+ samples.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65370806ca70ffcd7214ee26/ho_C9XOE6iF27X8hpy_EM.png)
## Prompt template: LongShort-Llama-2-7B
```
[INST]Given the context, answer the question.
### Question:
Extract all the finance-based performance indicators and evaluation metrics.
### Context:
{context}
### Answer:
[/INST]
```
## Uses
Financial KPI and Metric Extraction
## Evaluation
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65370806ca70ffcd7214ee26/FHrvR-sgdW0A1goJVVrp0.png)
LongShort-Llama-2-7B is giving 44.4% accuracy on a validation set of 10% of the original training dataset.
## Thanks
|