brunoboat commited on
Commit
a53c32b
·
1 Parent(s): b0084c3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.70 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:003e03637d276b58a046c3eafdd9703749497624f0900200434be03fea03f29a
3
+ size 108168
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x793ed523a4d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x793ed5236f40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 250000,
23
+ "_total_timesteps": 250000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691190814557507490,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVR2tPtVNCjy/ggk/VR2tPtVNCjy/ggk/VR2tPtVNCjy/ggk/VR2tPtVNCjy/ggk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANo/FP/TCHj9PqOg9TO65P8PYrD+nzIe/xCVmv/tKqr/NiQC/mtaCv9UG0r9HuqY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABVHa0+1U0KPL+CCT88XFS8eFFiuVrx27lVHa0+1U0KPL+CCT88XFS8eFFiuVrx27lVHa0+1U0KPL+CCT88XFS8eFFiuVrx27lVHa0+1U0KPL+CCT88XFS8eFFiuVrx27mUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.3381144 0.00844141 0.5371513 ]\n [0.3381144 0.00844141 0.5371513 ]\n [0.3381144 0.00844141 0.5371513 ]\n [0.3381144 0.00844141 0.5371513 ]]",
38
+ "desired_goal": "[[ 1.543433 0.62016225 0.11360227]\n [ 1.4525847 1.350365 -1.060933 ]\n [-0.89901376 -1.3304132 -0.5021027 ]\n [-1.0221741 -1.6408335 0.32563993]]",
39
+ "observation": "[[ 3.38114411e-01 8.44140816e-03 5.37151277e-01 -1.29614435e-02\n -2.15833890e-04 -4.19507560e-04]\n [ 3.38114411e-01 8.44140816e-03 5.37151277e-01 -1.29614435e-02\n -2.15833890e-04 -4.19507560e-04]\n [ 3.38114411e-01 8.44140816e-03 5.37151277e-01 -1.29614435e-02\n -2.15833890e-04 -4.19507560e-04]\n [ 3.38114411e-01 8.44140816e-03 5.37151277e-01 -1.29614435e-02\n -2.15833890e-04 -4.19507560e-04]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARi77vSrUizz8/Ig+/wguvThHzL2thLo95O+3PRgRwjw0cok+6ysOPscQ6D0evo0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.12264685 0.01706894 0.26755512]\n [-0.04248905 -0.09974521 0.09107337]\n [ 0.08981302 0.02368979 0.26844943]\n [ 0.13883941 0.11331325 0.2768411 ]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvW2mQjyS7r+UhpRSlIwBbJRLMowBdJRHQITbnLA57w91fZQoaAZoCWgPQwgG2Eenrvzuv5SGlFKUaBVLMmgWR0CE2oji4rjHdX2UKGgGaAloD0MITl5kAn6N8r+UhpRSlGgVSzJoFkdAhNmXLNfPX3V9lChoBmgJaA9DCLEwRE5fT+2/lIaUUpRoFUsyaBZHQITYo7FKkEd1fZQoaAZoCWgPQwgT1PAtrBvwv5SGlFKUaBVLMmgWR0CE4ZEy+HrRdX2UKGgGaAloD0MIl5APejbr8L+UhpRSlGgVSzJoFkdAhOB8+RoysXV9lChoBmgJaA9DCDEkJxO3ium/lIaUUpRoFUsyaBZHQITfi0Y0l7d1fZQoaAZoCWgPQwiSdw5lqIrrv5SGlFKUaBVLMmgWR0CE3pYnOSntdX2UKGgGaAloD0MIFLAdjNgn8b+UhpRSlGgVSzJoFkdAhOfzvqkdm3V9lChoBmgJaA9DCJEMObae4fC/lIaUUpRoFUsyaBZHQITm34dp7C11fZQoaAZoCWgPQwgB+KdUiXLyv5SGlFKUaBVLMmgWR0CE5fCrLhaUdX2UKGgGaAloD0MI3IR7Zd4q77+UhpRSlGgVSzJoFkdAhOT8xKxs23V9lChoBmgJaA9DCPXb14FzRu6/lIaUUpRoFUsyaBZHQITuWGATZg51fZQoaAZoCWgPQwibWUsBaf/xv5SGlFKUaBVLMmgWR0CE7UOmR/3GdX2UKGgGaAloD0MI18OXiSKk7L+UhpRSlGgVSzJoFkdAhOxSTpxFRnV9lChoBmgJaA9DCEAxsmSOZe6/lIaUUpRoFUsyaBZHQITrXVwxWT51fZQoaAZoCWgPQwhvS+SCM/jov5SGlFKUaBVLMmgWR0CE8w29cry2dX2UKGgGaAloD0MIAkcCDTb177+UhpRSlGgVSzJoFkdAhPH2fChvi3V9lChoBmgJaA9DCNC3BUt1wfG/lIaUUpRoFUsyaBZHQITxAhEBsAN1fZQoaAZoCWgPQwhbejTVk7nzv5SGlFKUaBVLMmgWR0CE8AwV0tAcdX2UKGgGaAloD0MIIH9pUZ/k6r+UhpRSlGgVSzJoFkdAhPbviLl3hXV9lChoBmgJaA9DCLVtGAXB4+u/lIaUUpRoFUsyaBZHQIT12UhV2id1fZQoaAZoCWgPQwg486s5QLDvv5SGlFKUaBVLMmgWR0CE9OXY150KdX2UKGgGaAloD0MId6IkJNK267+UhpRSlGgVSzJoFkdAhPPu6NEPUnV9lChoBmgJaA9DCDGVfsLZre2/lIaUUpRoFUsyaBZHQIT7S02LpA51fZQoaAZoCWgPQwgniSXl7vPqv5SGlFKUaBVLMmgWR0CE+jRuTA32dX2UKGgGaAloD0MIgLirV5FR77+UhpRSlGgVSzJoFkdAhPlAVoHs1XV9lChoBmgJaA9DCH6OjxZnjO2/lIaUUpRoFUsyaBZHQIT4SRQrMC91fZQoaAZoCWgPQwg0g/jAjj/wv5SGlFKUaBVLMmgWR0CE/zGgBcRldX2UKGgGaAloD0MIrYVZaOe07L+UhpRSlGgVSzJoFkdAhP4bT2FnI3V9lChoBmgJaA9DCNKrAUpDjee/lIaUUpRoFUsyaBZHQIT9J0dRzil1fZQoaAZoCWgPQwjQRUPGo9Tvv5SGlFKUaBVLMmgWR0CE/DE2pAD8dX2UKGgGaAloD0MIjGg7pu5K7L+UhpRSlGgVSzJoFkdAhQMbROUMX3V9lChoBmgJaA9DCC+kw0MY//C/lIaUUpRoFUsyaBZHQIUCBEa2nbZ1fZQoaAZoCWgPQwiJXHAGf7/wv5SGlFKUaBVLMmgWR0CFAREzfrKOdX2UKGgGaAloD0MIV+pZEMo78b+UhpRSlGgVSzJoFkdAhQAa2nbZe3V9lChoBmgJaA9DCC9tOCwN/PC/lIaUUpRoFUsyaBZHQIUHCVfNRm91fZQoaAZoCWgPQwgzUu+pnPb1v5SGlFKUaBVLMmgWR0CFBfIGyHEddX2UKGgGaAloD0MInpYfuMpT9L+UhpRSlGgVSzJoFkdAhQT+I2wV03V9lChoBmgJaA9DCDc4Ef3a+uy/lIaUUpRoFUsyaBZHQIUEBuTA31l1fZQoaAZoCWgPQwhfXoB9dOrqv5SGlFKUaBVLMmgWR0CFCt6pHZsbdX2UKGgGaAloD0MIhjqscMvH8L+UhpRSlGgVSzJoFkdAhQnHaFmFrXV9lChoBmgJaA9DCN3NUx1yM+e/lIaUUpRoFUsyaBZHQIUI0t5D7ZZ1fZQoaAZoCWgPQwgQO1PovMbuv5SGlFKUaBVLMmgWR0CFB9zshPj5dX2UKGgGaAloD0MIzm4tk+G48b+UhpRSlGgVSzJoFkdAhQ7SLhrFfnV9lChoBmgJaA9DCI0KnGwDd/O/lIaUUpRoFUsyaBZHQIUNvwqiGnJ1fZQoaAZoCWgPQwjbMuAsJcvpv5SGlFKUaBVLMmgWR0CFDM1a4c3mdX2UKGgGaAloD0MIhJ7Nqs9V77+UhpRSlGgVSzJoFkdAhQvWuxKQJXV9lChoBmgJaA9DCEoNbQA2IOu/lIaUUpRoFUsyaBZHQIUS30wrUb11fZQoaAZoCWgPQwiCx7d3Dfrtv5SGlFKUaBVLMmgWR0CFEch37k4ndX2UKGgGaAloD0MI1jVaDvRQ67+UhpRSlGgVSzJoFkdAhRDUpmVZ93V9lChoBmgJaA9DCL2rHjAPmeu/lIaUUpRoFUsyaBZHQIUP3uNPxhF1fZQoaAZoCWgPQwiN0M/U6xbrv5SGlFKUaBVLMmgWR0CFFqtnPE88dX2UKGgGaAloD0MIvEG0VrQ57r+UhpRSlGgVSzJoFkdAhRWUYj0L+nV9lChoBmgJaA9DCI0mF2NgXfS/lIaUUpRoFUsyaBZHQIUUoLkS26V1fZQoaAZoCWgPQwiLNVzknq7qv5SGlFKUaBVLMmgWR0CFE6mois4ldX2UKGgGaAloD0MIFto5zQJt7b+UhpRSlGgVSzJoFkdAhRqYOlO45XV9lChoBmgJaA9DCEnW4egq3em/lIaUUpRoFUsyaBZHQIUZhDZ13dN1fZQoaAZoCWgPQwgXZwxzgjbsv5SGlFKUaBVLMmgWR0CFGJOpsGgSdX2UKGgGaAloD0MI6bmFrkSg8b+UhpRSlGgVSzJoFkdAhRegM+eOGXV9lChoBmgJaA9DCH42ct2Ucu6/lIaUUpRoFUsyaBZHQIUehkmQbMp1fZQoaAZoCWgPQwgo1qnyPWPwv5SGlFKUaBVLMmgWR0CFHW8scyWSdX2UKGgGaAloD0MIWmPQCaED7r+UhpRSlGgVSzJoFkdAhRx7FjurqHV9lChoBmgJaA9DCHYZ/tMNlOi/lIaUUpRoFUsyaBZHQIUbhB/qgRN1fZQoaAZoCWgPQwi/fogNFk7ov5SGlFKUaBVLMmgWR0CFIlayrxRVdX2UKGgGaAloD0MIwy6KHviY77+UhpRSlGgVSzJoFkdAhSFAjQiRn3V9lChoBmgJaA9DCPRsVn2uNui/lIaUUpRoFUsyaBZHQIUgTPMSsbN1fZQoaAZoCWgPQwhq96sA323pv5SGlFKUaBVLMmgWR0CFH1XZGrjpdX2UKGgGaAloD0MIxhSscTYd67+UhpRSlGgVSzJoFkdAhSZIEjgQ6XV9lChoBmgJaA9DCCqLwi6KXvO/lIaUUpRoFUsyaBZHQIUlMUKzAvd1fZQoaAZoCWgPQwium1JeKyHpv5SGlFKUaBVLMmgWR0CFJD1uivgWdX2UKGgGaAloD0MIuXAgJAsY6r+UhpRSlGgVSzJoFkdAhSNG5MDfWXV9lChoBmgJaA9DCLuZ0Y+G0+2/lIaUUpRoFUsyaBZHQIUqDF6zE751fZQoaAZoCWgPQwjvdVJflnbvv5SGlFKUaBVLMmgWR0CFKPTvRZ2ZdX2UKGgGaAloD0MIwytJnuu78b+UhpRSlGgVSzJoFkdAhSgApKBd2XV9lChoBmgJaA9DCGahndMsUPC/lIaUUpRoFUsyaBZHQIUnCksSTQp1fZQoaAZoCWgPQwgbTMPwETHrv5SGlFKUaBVLMmgWR0CFLgn5SFXadX2UKGgGaAloD0MIvayJBb4i6r+UhpRSlGgVSzJoFkdAhSzyydFvynV9lChoBmgJaA9DCHDRyVLrfey/lIaUUpRoFUsyaBZHQIUr/1DjR2N1fZQoaAZoCWgPQwhgV5OnrCbvv5SGlFKUaBVLMmgWR0CFKwiKR+z/dX2UKGgGaAloD0MI19tmKsSj8b+UhpRSlGgVSzJoFkdAhTHxuKoAGXV9lChoBmgJaA9DCGrBi76CtOa/lIaUUpRoFUsyaBZHQIUw22PT5O91fZQoaAZoCWgPQwgxsmSO5d3xv5SGlFKUaBVLMmgWR0CFL+fmLcbjdX2UKGgGaAloD0MIHHi13JnJ87+UhpRSlGgVSzJoFkdAhS7wsXizcHV9lChoBmgJaA9DCJ0Te2gf6/G/lIaUUpRoFUsyaBZHQIU1yIcinpB1fZQoaAZoCWgPQwjOUNzxJj/xv5SGlFKUaBVLMmgWR0CFNLImPYFrdX2UKGgGaAloD0MIRlwAGqXL5b+UhpRSlGgVSzJoFkdAhTO9o371qXV9lChoBmgJaA9DCN4CCYofI/C/lIaUUpRoFUsyaBZHQIUyydSVGCt1fZQoaAZoCWgPQwj/7EeKyDDtv5SGlFKUaBVLMmgWR0CFObDziCJ5dX2UKGgGaAloD0MIe0563/ha6b+UhpRSlGgVSzJoFkdAhTiZYPoV23V9lChoBmgJaA9DCJnYfFwbqu+/lIaUUpRoFUsyaBZHQIU3pcE/0NB1fZQoaAZoCWgPQwi1b+6vHvfvv5SGlFKUaBVLMmgWR0CFNq9AX2ugdX2UKGgGaAloD0MIWAG+27zx57+UhpRSlGgVSzJoFkdAhT2fnOjZc3V9lChoBmgJaA9DCA0zNJ4I4u2/lIaUUpRoFUsyaBZHQIU8iGQCCBh1fZQoaAZoCWgPQwiGdHgI46fnv5SGlFKUaBVLMmgWR0CFO5O32EkCdX2UKGgGaAloD0MIX3r7c9EQ5r+UhpRSlGgVSzJoFkdAhTqcmShaknV9lChoBmgJaA9DCH7hlSTP9e6/lIaUUpRoFUsyaBZHQIVCA6r/82t1fZQoaAZoCWgPQwjqew3BcRnmv5SGlFKUaBVLMmgWR0CFQPJHRTjvdX2UKGgGaAloD0MI9BlQb0bN6b+UhpRSlGgVSzJoFkdAhUABxxT853V9lChoBmgJaA9DCIDXZ876lOe/lIaUUpRoFUsyaBZHQIU/D0J4SpR1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 12500,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd5c393111ed31bd4cc7f1dfa93ef16f39f623f2a093358a8a8e8520361d706b
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a83cb538a8c6a194b9bfc3e611f4d77fef7cd5e665ad7a22b7b059702214eda7
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x793ed523a4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x793ed5236f40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 250000, "_total_timesteps": 250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691190814557507490, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVR2tPtVNCjy/ggk/VR2tPtVNCjy/ggk/VR2tPtVNCjy/ggk/VR2tPtVNCjy/ggk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANo/FP/TCHj9PqOg9TO65P8PYrD+nzIe/xCVmv/tKqr/NiQC/mtaCv9UG0r9HuqY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABVHa0+1U0KPL+CCT88XFS8eFFiuVrx27lVHa0+1U0KPL+CCT88XFS8eFFiuVrx27lVHa0+1U0KPL+CCT88XFS8eFFiuVrx27lVHa0+1U0KPL+CCT88XFS8eFFiuVrx27mUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3381144 0.00844141 0.5371513 ]\n [0.3381144 0.00844141 0.5371513 ]\n [0.3381144 0.00844141 0.5371513 ]\n [0.3381144 0.00844141 0.5371513 ]]", "desired_goal": "[[ 1.543433 0.62016225 0.11360227]\n [ 1.4525847 1.350365 -1.060933 ]\n [-0.89901376 -1.3304132 -0.5021027 ]\n [-1.0221741 -1.6408335 0.32563993]]", "observation": "[[ 3.38114411e-01 8.44140816e-03 5.37151277e-01 -1.29614435e-02\n -2.15833890e-04 -4.19507560e-04]\n [ 3.38114411e-01 8.44140816e-03 5.37151277e-01 -1.29614435e-02\n -2.15833890e-04 -4.19507560e-04]\n [ 3.38114411e-01 8.44140816e-03 5.37151277e-01 -1.29614435e-02\n -2.15833890e-04 -4.19507560e-04]\n [ 3.38114411e-01 8.44140816e-03 5.37151277e-01 -1.29614435e-02\n -2.15833890e-04 -4.19507560e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARi77vSrUizz8/Ig+/wguvThHzL2thLo95O+3PRgRwjw0cok+6ysOPscQ6D0evo0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12264685 0.01706894 0.26755512]\n [-0.04248905 -0.09974521 0.09107337]\n [ 0.08981302 0.02368979 0.26844943]\n [ 0.13883941 0.11331325 0.2768411 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvW2mQjyS7r+UhpRSlIwBbJRLMowBdJRHQITbnLA57w91fZQoaAZoCWgPQwgG2Eenrvzuv5SGlFKUaBVLMmgWR0CE2oji4rjHdX2UKGgGaAloD0MITl5kAn6N8r+UhpRSlGgVSzJoFkdAhNmXLNfPX3V9lChoBmgJaA9DCLEwRE5fT+2/lIaUUpRoFUsyaBZHQITYo7FKkEd1fZQoaAZoCWgPQwgT1PAtrBvwv5SGlFKUaBVLMmgWR0CE4ZEy+HrRdX2UKGgGaAloD0MIl5APejbr8L+UhpRSlGgVSzJoFkdAhOB8+RoysXV9lChoBmgJaA9DCDEkJxO3ium/lIaUUpRoFUsyaBZHQITfi0Y0l7d1fZQoaAZoCWgPQwiSdw5lqIrrv5SGlFKUaBVLMmgWR0CE3pYnOSntdX2UKGgGaAloD0MIFLAdjNgn8b+UhpRSlGgVSzJoFkdAhOfzvqkdm3V9lChoBmgJaA9DCJEMObae4fC/lIaUUpRoFUsyaBZHQITm34dp7C11fZQoaAZoCWgPQwgB+KdUiXLyv5SGlFKUaBVLMmgWR0CE5fCrLhaUdX2UKGgGaAloD0MI3IR7Zd4q77+UhpRSlGgVSzJoFkdAhOT8xKxs23V9lChoBmgJaA9DCPXb14FzRu6/lIaUUpRoFUsyaBZHQITuWGATZg51fZQoaAZoCWgPQwibWUsBaf/xv5SGlFKUaBVLMmgWR0CE7UOmR/3GdX2UKGgGaAloD0MI18OXiSKk7L+UhpRSlGgVSzJoFkdAhOxSTpxFRnV9lChoBmgJaA9DCEAxsmSOZe6/lIaUUpRoFUsyaBZHQITrXVwxWT51fZQoaAZoCWgPQwhvS+SCM/jov5SGlFKUaBVLMmgWR0CE8w29cry2dX2UKGgGaAloD0MIAkcCDTb177+UhpRSlGgVSzJoFkdAhPH2fChvi3V9lChoBmgJaA9DCNC3BUt1wfG/lIaUUpRoFUsyaBZHQITxAhEBsAN1fZQoaAZoCWgPQwhbejTVk7nzv5SGlFKUaBVLMmgWR0CE8AwV0tAcdX2UKGgGaAloD0MIIH9pUZ/k6r+UhpRSlGgVSzJoFkdAhPbviLl3hXV9lChoBmgJaA9DCLVtGAXB4+u/lIaUUpRoFUsyaBZHQIT12UhV2id1fZQoaAZoCWgPQwg486s5QLDvv5SGlFKUaBVLMmgWR0CE9OXY150KdX2UKGgGaAloD0MId6IkJNK267+UhpRSlGgVSzJoFkdAhPPu6NEPUnV9lChoBmgJaA9DCDGVfsLZre2/lIaUUpRoFUsyaBZHQIT7S02LpA51fZQoaAZoCWgPQwgniSXl7vPqv5SGlFKUaBVLMmgWR0CE+jRuTA32dX2UKGgGaAloD0MIgLirV5FR77+UhpRSlGgVSzJoFkdAhPlAVoHs1XV9lChoBmgJaA9DCH6OjxZnjO2/lIaUUpRoFUsyaBZHQIT4SRQrMC91fZQoaAZoCWgPQwg0g/jAjj/wv5SGlFKUaBVLMmgWR0CE/zGgBcRldX2UKGgGaAloD0MIrYVZaOe07L+UhpRSlGgVSzJoFkdAhP4bT2FnI3V9lChoBmgJaA9DCNKrAUpDjee/lIaUUpRoFUsyaBZHQIT9J0dRzil1fZQoaAZoCWgPQwjQRUPGo9Tvv5SGlFKUaBVLMmgWR0CE/DE2pAD8dX2UKGgGaAloD0MIjGg7pu5K7L+UhpRSlGgVSzJoFkdAhQMbROUMX3V9lChoBmgJaA9DCC+kw0MY//C/lIaUUpRoFUsyaBZHQIUCBEa2nbZ1fZQoaAZoCWgPQwiJXHAGf7/wv5SGlFKUaBVLMmgWR0CFAREzfrKOdX2UKGgGaAloD0MIV+pZEMo78b+UhpRSlGgVSzJoFkdAhQAa2nbZe3V9lChoBmgJaA9DCC9tOCwN/PC/lIaUUpRoFUsyaBZHQIUHCVfNRm91fZQoaAZoCWgPQwgzUu+pnPb1v5SGlFKUaBVLMmgWR0CFBfIGyHEddX2UKGgGaAloD0MInpYfuMpT9L+UhpRSlGgVSzJoFkdAhQT+I2wV03V9lChoBmgJaA9DCDc4Ef3a+uy/lIaUUpRoFUsyaBZHQIUEBuTA31l1fZQoaAZoCWgPQwhfXoB9dOrqv5SGlFKUaBVLMmgWR0CFCt6pHZsbdX2UKGgGaAloD0MIhjqscMvH8L+UhpRSlGgVSzJoFkdAhQnHaFmFrXV9lChoBmgJaA9DCN3NUx1yM+e/lIaUUpRoFUsyaBZHQIUI0t5D7ZZ1fZQoaAZoCWgPQwgQO1PovMbuv5SGlFKUaBVLMmgWR0CFB9zshPj5dX2UKGgGaAloD0MIzm4tk+G48b+UhpRSlGgVSzJoFkdAhQ7SLhrFfnV9lChoBmgJaA9DCI0KnGwDd/O/lIaUUpRoFUsyaBZHQIUNvwqiGnJ1fZQoaAZoCWgPQwjbMuAsJcvpv5SGlFKUaBVLMmgWR0CFDM1a4c3mdX2UKGgGaAloD0MIhJ7Nqs9V77+UhpRSlGgVSzJoFkdAhQvWuxKQJXV9lChoBmgJaA9DCEoNbQA2IOu/lIaUUpRoFUsyaBZHQIUS30wrUb11fZQoaAZoCWgPQwiCx7d3Dfrtv5SGlFKUaBVLMmgWR0CFEch37k4ndX2UKGgGaAloD0MI1jVaDvRQ67+UhpRSlGgVSzJoFkdAhRDUpmVZ93V9lChoBmgJaA9DCL2rHjAPmeu/lIaUUpRoFUsyaBZHQIUP3uNPxhF1fZQoaAZoCWgPQwiN0M/U6xbrv5SGlFKUaBVLMmgWR0CFFqtnPE88dX2UKGgGaAloD0MIvEG0VrQ57r+UhpRSlGgVSzJoFkdAhRWUYj0L+nV9lChoBmgJaA9DCI0mF2NgXfS/lIaUUpRoFUsyaBZHQIUUoLkS26V1fZQoaAZoCWgPQwiLNVzknq7qv5SGlFKUaBVLMmgWR0CFE6mois4ldX2UKGgGaAloD0MIFto5zQJt7b+UhpRSlGgVSzJoFkdAhRqYOlO45XV9lChoBmgJaA9DCEnW4egq3em/lIaUUpRoFUsyaBZHQIUZhDZ13dN1fZQoaAZoCWgPQwgXZwxzgjbsv5SGlFKUaBVLMmgWR0CFGJOpsGgSdX2UKGgGaAloD0MI6bmFrkSg8b+UhpRSlGgVSzJoFkdAhRegM+eOGXV9lChoBmgJaA9DCH42ct2Ucu6/lIaUUpRoFUsyaBZHQIUehkmQbMp1fZQoaAZoCWgPQwgo1qnyPWPwv5SGlFKUaBVLMmgWR0CFHW8scyWSdX2UKGgGaAloD0MIWmPQCaED7r+UhpRSlGgVSzJoFkdAhRx7FjurqHV9lChoBmgJaA9DCHYZ/tMNlOi/lIaUUpRoFUsyaBZHQIUbhB/qgRN1fZQoaAZoCWgPQwi/fogNFk7ov5SGlFKUaBVLMmgWR0CFIlayrxRVdX2UKGgGaAloD0MIwy6KHviY77+UhpRSlGgVSzJoFkdAhSFAjQiRn3V9lChoBmgJaA9DCPRsVn2uNui/lIaUUpRoFUsyaBZHQIUgTPMSsbN1fZQoaAZoCWgPQwhq96sA323pv5SGlFKUaBVLMmgWR0CFH1XZGrjpdX2UKGgGaAloD0MIxhSscTYd67+UhpRSlGgVSzJoFkdAhSZIEjgQ6XV9lChoBmgJaA9DCCqLwi6KXvO/lIaUUpRoFUsyaBZHQIUlMUKzAvd1fZQoaAZoCWgPQwium1JeKyHpv5SGlFKUaBVLMmgWR0CFJD1uivgWdX2UKGgGaAloD0MIuXAgJAsY6r+UhpRSlGgVSzJoFkdAhSNG5MDfWXV9lChoBmgJaA9DCLuZ0Y+G0+2/lIaUUpRoFUsyaBZHQIUqDF6zE751fZQoaAZoCWgPQwjvdVJflnbvv5SGlFKUaBVLMmgWR0CFKPTvRZ2ZdX2UKGgGaAloD0MIwytJnuu78b+UhpRSlGgVSzJoFkdAhSgApKBd2XV9lChoBmgJaA9DCGahndMsUPC/lIaUUpRoFUsyaBZHQIUnCksSTQp1fZQoaAZoCWgPQwgbTMPwETHrv5SGlFKUaBVLMmgWR0CFLgn5SFXadX2UKGgGaAloD0MIvayJBb4i6r+UhpRSlGgVSzJoFkdAhSzyydFvynV9lChoBmgJaA9DCHDRyVLrfey/lIaUUpRoFUsyaBZHQIUr/1DjR2N1fZQoaAZoCWgPQwhgV5OnrCbvv5SGlFKUaBVLMmgWR0CFKwiKR+z/dX2UKGgGaAloD0MI19tmKsSj8b+UhpRSlGgVSzJoFkdAhTHxuKoAGXV9lChoBmgJaA9DCGrBi76CtOa/lIaUUpRoFUsyaBZHQIUw22PT5O91fZQoaAZoCWgPQwgxsmSO5d3xv5SGlFKUaBVLMmgWR0CFL+fmLcbjdX2UKGgGaAloD0MIHHi13JnJ87+UhpRSlGgVSzJoFkdAhS7wsXizcHV9lChoBmgJaA9DCJ0Te2gf6/G/lIaUUpRoFUsyaBZHQIU1yIcinpB1fZQoaAZoCWgPQwjOUNzxJj/xv5SGlFKUaBVLMmgWR0CFNLImPYFrdX2UKGgGaAloD0MIRlwAGqXL5b+UhpRSlGgVSzJoFkdAhTO9o371qXV9lChoBmgJaA9DCN4CCYofI/C/lIaUUpRoFUsyaBZHQIUyydSVGCt1fZQoaAZoCWgPQwj/7EeKyDDtv5SGlFKUaBVLMmgWR0CFObDziCJ5dX2UKGgGaAloD0MIe0563/ha6b+UhpRSlGgVSzJoFkdAhTiZYPoV23V9lChoBmgJaA9DCJnYfFwbqu+/lIaUUpRoFUsyaBZHQIU3pcE/0NB1fZQoaAZoCWgPQwi1b+6vHvfvv5SGlFKUaBVLMmgWR0CFNq9AX2ugdX2UKGgGaAloD0MIWAG+27zx57+UhpRSlGgVSzJoFkdAhT2fnOjZc3V9lChoBmgJaA9DCA0zNJ4I4u2/lIaUUpRoFUsyaBZHQIU8iGQCCBh1fZQoaAZoCWgPQwiGdHgI46fnv5SGlFKUaBVLMmgWR0CFO5O32EkCdX2UKGgGaAloD0MIX3r7c9EQ5r+UhpRSlGgVSzJoFkdAhTqcmShaknV9lChoBmgJaA9DCH7hlSTP9e6/lIaUUpRoFUsyaBZHQIVCA6r/82t1fZQoaAZoCWgPQwjqew3BcRnmv5SGlFKUaBVLMmgWR0CFQPJHRTjvdX2UKGgGaAloD0MI9BlQb0bN6b+UhpRSlGgVSzJoFkdAhUABxxT853V9lChoBmgJaA9DCIDXZ876lOe/lIaUUpRoFUsyaBZHQIU/D0J4SpR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (659 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.6990159292065072, "std_reward": 0.11177956993200731, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-04T23:24:59.170503"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f374b51263476f9bd876a934bedfc2a06146813e7fdd9511fc9aec887dbafb9
3
+ size 2387