File size: 1,843 Bytes
ac399eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: other
license_name: bespoke-lora-trained-license
license_link: https://multimodal.art/civitai-licenses?allowNoCredit=False&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=False
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
- migrated
- style
- split
- split style
- splitstyle
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: splitstyle
widget:
- text: ' '
output:
url: >-
23409234.jpeg
- text: ' '
output:
url: >-
23410932.jpeg
- text: ' '
output:
url: >-
23409233.jpeg
---
# 4art style
<Gallery />
## Model description
<p>First attempt at creating a LoRa that recruits for different traditional art styles. Trained on close-up portraits. Might take a bit more tinkering as it tends to just have two panels instead of four. anyway while i work out the bugs enjoy </p>
## Trigger words
You should use `splitstyle`, `evang`, `split_style` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/brushpenbob/4art-style/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('brushpenbob/4art-style', weight_name='4art_style.safetensors')
image = pipeline('`splitstyle`, `evang`, `split_style`').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|