File size: 1,378 Bytes
22ed57b 9306ad2 22ed57b c1ba41f 9306ad2 c1ba41f 66e3fca c1ba41f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: mit
language:
- en
library_name: transformers
---
# PoliticalBiasBERT
<!-- Provide a quick summary of what the model is/does. -->
BERT finetuned on many examples of politically biased texts
Paper and repository coming soon.
## Usage
```py
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
text = "your text here"
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
model = AutoModelForSequenceClassification.from_pretrained("bucketresearch/politicalBiasBERT")
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs, labels=labels)
loss, logits = outputs[:2]
# [0] -> left
# [1] -> center
# [2] -> right
print(logits)
```
## References
```
@inproceedings{baly2020we,
author = {Baly, Ramy and Da San Martino, Giovanni and Glass, James and Nakov, Preslav},
title = {We Can Detect Your Bias: Predicting the Political Ideology of News Articles},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
series = {EMNLP~'20},
NOmonth = {November},
year = {2020}
pages = {4982--4991},
NOpublisher = {Association for Computational Linguistics}
}
@article{bucket_bias2023,
organization={Bucket Research}
title={Political Bias Classification using finetuned BERT model}
year={2023}
}
``` |