--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - drug_bill_layoutv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-vinv2 results: - task: name: Token Classification type: token-classification dataset: name: drug_bill_layoutv3 type: drug_bill_layoutv3 config: Vin_Drug_Bill split: train args: Vin_Drug_Bill metrics: - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 - name: Accuracy type: accuracy value: 1.0 --- # layoutlmv3-finetuned-vinv2 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the drug_bill_layoutv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.33 | 250 | 0.0025 | 0.9994 | 0.9994 | 0.9994 | 0.9998 | | 0.0662 | 2.66 | 500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0662 | 3.99 | 750 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0111 | 5.32 | 1000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0111 | 6.65 | 1250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0126 | 7.98 | 1500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0126 | 9.31 | 1750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0032 | 10.64 | 2000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0032 | 11.97 | 2250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0011 | 13.3 | 2500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0011 | 14.63 | 2750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0002 | 15.96 | 3000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2