fix_labels (#1)
Browse files- update config with proper label to id mappings (6afccd7a0256187bd5e77c8e52d1c7b6a19fca52)
- update model inference with pipeline (1c995847e5b7780738b5aa187397d0ffc7db67d7)
Co-authored-by: Kamal Raj Kanakarajan <[email protected]>
- README.md +4 -5
- config.json +6 -6
README.md
CHANGED
@@ -26,7 +26,7 @@ The model is based on the [ClinicalBERT - Bio + Discharge Summary BERT Model](ht
|
|
26 |
|
27 |
You can load the model via the transformers library:
|
28 |
```
|
29 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
30 |
tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert")
|
31 |
model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert")
|
32 |
|
@@ -38,11 +38,10 @@ Example input and inference:
|
|
38 |
```
|
39 |
input = "The patient recovered during the night and now denies any [entity] shortness of breath [entity]."
|
40 |
|
41 |
-
|
42 |
-
output = model(**tokenized_input)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
```
|
47 |
|
48 |
### Cite
|
|
|
26 |
|
27 |
You can load the model via the transformers library:
|
28 |
```
|
29 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
30 |
tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert")
|
31 |
model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert")
|
32 |
|
|
|
38 |
```
|
39 |
input = "The patient recovered during the night and now denies any [entity] shortness of breath [entity]."
|
40 |
|
41 |
+
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
|
|
42 |
|
43 |
+
classification = classifier(input)
|
44 |
+
# [{'label': 'ABSENT', 'score': 0.9842607378959656}]
|
45 |
```
|
46 |
|
47 |
### Cite
|
config.json
CHANGED
@@ -9,16 +9,16 @@
|
|
9 |
"hidden_dropout_prob": 0.1,
|
10 |
"hidden_size": 768,
|
11 |
"id2label": {
|
12 |
-
"0": "
|
13 |
-
"1": "
|
14 |
-
"2": "
|
15 |
},
|
16 |
"initializer_range": 0.02,
|
17 |
"intermediate_size": 3072,
|
18 |
"label2id": {
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
},
|
23 |
"language": "english",
|
24 |
"layer_norm_eps": 1e-12,
|
|
|
9 |
"hidden_dropout_prob": 0.1,
|
10 |
"hidden_size": 768,
|
11 |
"id2label": {
|
12 |
+
"0": "PRESENT",
|
13 |
+
"1": "ABSENT",
|
14 |
+
"2": "POSSIBLE"
|
15 |
},
|
16 |
"initializer_range": 0.02,
|
17 |
"intermediate_size": 3072,
|
18 |
"label2id": {
|
19 |
+
"PRESENT": 0,
|
20 |
+
"ABSENT": 1,
|
21 |
+
"POSSIBLE": 2
|
22 |
},
|
23 |
"language": "english",
|
24 |
"layer_norm_eps": 1e-12,
|