File size: 1,732 Bytes
a2ca410
6c596ac
 
a2ca410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c596ac
a2ca410
6c596ac
 
 
 
 
a2ca410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c596ac
 
 
a2ca410
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: intfloat/multilingual-e5-small
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: digidawfinal2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# digidawfinal2

This model is a fine-tuned version of [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6325
- Accuracy: 0.826
- Precision: 0.4849
- Recall: 0.3920
- F1: 0.4038

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.3648        | 1.0   | 157  | 0.7544          | 0.8      | 0.1481    | 0.1495 | 0.1451 |
| 1.0523        | 2.0   | 314  | 0.7241          | 0.791    | 0.3328    | 0.3616 | 0.3064 |
| 0.8635        | 3.0   | 471  | 0.6325          | 0.826    | 0.4849    | 0.3920 | 0.4038 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1