Upload 7 files
Browse files- .gitattributes +1 -0
- config.json +51 -0
- config_sentence_transformers.json +16 -0
- custom_st.py +229 -0
- modules.json +21 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "jinaai/jina-embeddings-v3",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "jinaai/xlm-roberta-flash-implementation--configuration_xlm_roberta.XLMRobertaFlashConfig",
|
9 |
+
"AutoModel": "jinaai/xlm-roberta-flash-implementation--modeling_lora.XLMRobertaLoRA",
|
10 |
+
"AutoModelForMaskedLM": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForMaskedLM",
|
11 |
+
"AutoModelForPreTraining": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForPreTraining"
|
12 |
+
},
|
13 |
+
"bos_token_id": 0,
|
14 |
+
"classifier_dropout": null,
|
15 |
+
"emb_pooler": null,
|
16 |
+
"eos_token_id": 2,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 1024,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 4096,
|
22 |
+
"layer_norm_eps": 1e-05,
|
23 |
+
"load_trained_adapters": true,
|
24 |
+
"lora_adaptations": ["retrieval.query", "retrieval.passage", "separation", "classification", "text-matching"],
|
25 |
+
"lora_alpha": 1,
|
26 |
+
"lora_dropout_p": 0.0,
|
27 |
+
"lora_main_params_trainable": false,
|
28 |
+
"lora_rank": 4,
|
29 |
+
"matryoshka_dimensions": [32, 64, 128, 256, 512, 768, 1024],
|
30 |
+
"max_position_embeddings": 8194,
|
31 |
+
"num_attention_heads": 16,
|
32 |
+
"num_hidden_layers": 24,
|
33 |
+
"output_past": true,
|
34 |
+
"pad_token_id": 1,
|
35 |
+
"position_embedding_type": "rotary",
|
36 |
+
"rotary_emb_base": 20000.0,
|
37 |
+
"torch_dtype": "bfloat16",
|
38 |
+
"transformers_version": "4.30.2",
|
39 |
+
"truncate_dim": null,
|
40 |
+
"type_vocab_size": 1,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_flash_attn": true,
|
43 |
+
"vocab_size": 250002,
|
44 |
+
"task_instructions": {
|
45 |
+
"retrieval.query": "Represent the query for retrieving evidence documents: ",
|
46 |
+
"retrieval.passage": "Represent the document for retrieval: ",
|
47 |
+
"separation": "",
|
48 |
+
"classification": "",
|
49 |
+
"text-matching": ""
|
50 |
+
}
|
51 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__":{
|
3 |
+
"sentence_transformers":"3.1.0",
|
4 |
+
"transformers":"4.41.2",
|
5 |
+
"pytorch":"2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts":{
|
8 |
+
"retrieval.query":"Represent the query for retrieving evidence documents: ",
|
9 |
+
"retrieval.passage":"Represent the document for retrieval: ",
|
10 |
+
"separation": "",
|
11 |
+
"classification": "",
|
12 |
+
"text-matching": ""
|
13 |
+
},
|
14 |
+
"default_prompt_name":null,
|
15 |
+
"similarity_fn_name":"cosine"
|
16 |
+
}
|
custom_st.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from io import BytesIO
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
class Transformer(nn.Module):
|
15 |
+
"""Huggingface AutoModel to generate token embeddings.
|
16 |
+
Loads the correct class, e.g. BERT / RoBERTa etc.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
model_name_or_path: Huggingface models name
|
20 |
+
(https://huggingface.co/models)
|
21 |
+
max_seq_length: Truncate any inputs longer than max_seq_length
|
22 |
+
model_args: Keyword arguments passed to the Huggingface
|
23 |
+
Transformers model
|
24 |
+
tokenizer_args: Keyword arguments passed to the Huggingface
|
25 |
+
Transformers tokenizer
|
26 |
+
config_args: Keyword arguments passed to the Huggingface
|
27 |
+
Transformers config
|
28 |
+
cache_dir: Cache dir for Huggingface Transformers to store/load
|
29 |
+
models
|
30 |
+
do_lower_case: If true, lowercases the input (independent if the
|
31 |
+
model is cased or not)
|
32 |
+
tokenizer_name_or_path: Name or path of the tokenizer. When
|
33 |
+
None, then model_name_or_path is used
|
34 |
+
"""
|
35 |
+
|
36 |
+
save_in_root: bool = True
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
model_name_or_path: str,
|
41 |
+
max_seq_length: int = None,
|
42 |
+
model_args: Dict[str, Any] = None,
|
43 |
+
tokenizer_args: Dict[str, Any] = None,
|
44 |
+
config_args: Dict[str, Any] = None,
|
45 |
+
cache_dir: str = None,
|
46 |
+
do_lower_case: bool = False,
|
47 |
+
tokenizer_name_or_path: str = None,
|
48 |
+
**kwargs,
|
49 |
+
) -> None:
|
50 |
+
super().__init__()
|
51 |
+
self.config_keys = ["max_seq_length", "do_lower_case"]
|
52 |
+
self.do_lower_case = do_lower_case
|
53 |
+
if model_args is None:
|
54 |
+
model_args = {}
|
55 |
+
if tokenizer_args is None:
|
56 |
+
tokenizer_args = {}
|
57 |
+
if config_args is None:
|
58 |
+
config_args = {}
|
59 |
+
|
60 |
+
if kwargs.get("backend", "torch") != "torch":
|
61 |
+
logger.warning(
|
62 |
+
f'"jinaai/jina-embeddings-v3" is currently not compatible with the {kwargs["backend"]} backend. '
|
63 |
+
'Continuing with the "torch" backend.'
|
64 |
+
)
|
65 |
+
|
66 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
|
67 |
+
|
68 |
+
self._lora_adaptations = self.config.lora_adaptations
|
69 |
+
if (
|
70 |
+
not isinstance(self._lora_adaptations, list)
|
71 |
+
or len(self._lora_adaptations) < 1
|
72 |
+
):
|
73 |
+
raise ValueError(
|
74 |
+
f"`lora_adaptations` must be a list and contain at least one element"
|
75 |
+
)
|
76 |
+
self._adaptation_map = {
|
77 |
+
name: idx for idx, name in enumerate(self._lora_adaptations)
|
78 |
+
}
|
79 |
+
|
80 |
+
self.default_task = model_args.pop('default_task', None)
|
81 |
+
|
82 |
+
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
|
83 |
+
|
84 |
+
if max_seq_length is not None and "model_max_length" not in tokenizer_args:
|
85 |
+
tokenizer_args["model_max_length"] = max_seq_length
|
86 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
87 |
+
tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
|
88 |
+
cache_dir=cache_dir,
|
89 |
+
**tokenizer_args,
|
90 |
+
)
|
91 |
+
|
92 |
+
# No max_seq_length set. Try to infer from model
|
93 |
+
if max_seq_length is None:
|
94 |
+
if (
|
95 |
+
hasattr(self.auto_model, "config")
|
96 |
+
and hasattr(self.auto_model.config, "max_position_embeddings")
|
97 |
+
and hasattr(self.tokenizer, "model_max_length")
|
98 |
+
):
|
99 |
+
max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)
|
100 |
+
|
101 |
+
self.max_seq_length = max_seq_length
|
102 |
+
|
103 |
+
if tokenizer_name_or_path is not None:
|
104 |
+
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
|
105 |
+
|
106 |
+
|
107 |
+
@property
|
108 |
+
def default_task(self):
|
109 |
+
return self._default_task
|
110 |
+
|
111 |
+
@default_task.setter
|
112 |
+
def default_task(self, task: Union[None, str]):
|
113 |
+
self._validate_task(task)
|
114 |
+
self._default_task = task
|
115 |
+
|
116 |
+
|
117 |
+
def _validate_task(self, task: str):
|
118 |
+
if task and task not in self._lora_adaptations:
|
119 |
+
raise ValueError(
|
120 |
+
f"Unsupported task '{task}'. "
|
121 |
+
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}. "
|
122 |
+
f"Alternatively, don't pass the `task` argument to disable LoRA."
|
123 |
+
)
|
124 |
+
|
125 |
+
def forward(
|
126 |
+
self, features: Dict[str, torch.Tensor], task: Optional[str] = None
|
127 |
+
) -> Dict[str, torch.Tensor]:
|
128 |
+
"""Returns token_embeddings, cls_token"""
|
129 |
+
self._validate_task(task)
|
130 |
+
task = task or self.default_task
|
131 |
+
adapter_mask = None
|
132 |
+
if task:
|
133 |
+
task_id = self._adaptation_map[task]
|
134 |
+
num_examples = features['input_ids'].size(0)
|
135 |
+
adapter_mask = torch.full(
|
136 |
+
(num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
|
137 |
+
)
|
138 |
+
|
139 |
+
lora_arguments = (
|
140 |
+
{"adapter_mask": adapter_mask} if adapter_mask is not None else {}
|
141 |
+
)
|
142 |
+
features.pop('prompt_length', None)
|
143 |
+
output_states = self.auto_model.forward(**features, **lora_arguments, return_dict=False)
|
144 |
+
output_tokens = output_states[0]
|
145 |
+
features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
|
146 |
+
return features
|
147 |
+
|
148 |
+
def get_word_embedding_dimension(self) -> int:
|
149 |
+
return self.auto_model.config.hidden_size
|
150 |
+
|
151 |
+
def tokenize(
|
152 |
+
self,
|
153 |
+
texts: Union[List[str], List[dict], List[Tuple[str, str]]],
|
154 |
+
padding: Union[str, bool] = True
|
155 |
+
) -> Dict[str, torch.Tensor]:
|
156 |
+
"""Tokenizes a text and maps tokens to token-ids"""
|
157 |
+
output = {}
|
158 |
+
if isinstance(texts[0], str):
|
159 |
+
to_tokenize = [texts]
|
160 |
+
elif isinstance(texts[0], dict):
|
161 |
+
to_tokenize = []
|
162 |
+
output["text_keys"] = []
|
163 |
+
for lookup in texts:
|
164 |
+
text_key, text = next(iter(lookup.items()))
|
165 |
+
to_tokenize.append(text)
|
166 |
+
output["text_keys"].append(text_key)
|
167 |
+
to_tokenize = [to_tokenize]
|
168 |
+
else:
|
169 |
+
batch1, batch2 = [], []
|
170 |
+
for text_tuple in texts:
|
171 |
+
batch1.append(text_tuple[0])
|
172 |
+
batch2.append(text_tuple[1])
|
173 |
+
to_tokenize = [batch1, batch2]
|
174 |
+
|
175 |
+
# strip
|
176 |
+
to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]
|
177 |
+
|
178 |
+
# Lowercase
|
179 |
+
if self.do_lower_case:
|
180 |
+
to_tokenize = [[s.lower() for s in col] for col in to_tokenize]
|
181 |
+
|
182 |
+
output.update(
|
183 |
+
self.tokenizer(
|
184 |
+
*to_tokenize,
|
185 |
+
padding=padding,
|
186 |
+
truncation="longest_first",
|
187 |
+
return_tensors="pt",
|
188 |
+
max_length=self.max_seq_length,
|
189 |
+
)
|
190 |
+
)
|
191 |
+
return output
|
192 |
+
|
193 |
+
def get_config_dict(self) -> Dict[str, Any]:
|
194 |
+
return {key: self.__dict__[key] for key in self.config_keys}
|
195 |
+
|
196 |
+
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
197 |
+
self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
198 |
+
self.tokenizer.save_pretrained(output_path)
|
199 |
+
|
200 |
+
with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
|
201 |
+
json.dump(self.get_config_dict(), fOut, indent=2)
|
202 |
+
|
203 |
+
|
204 |
+
@classmethod
|
205 |
+
def load(cls, input_path: str) -> "Transformer":
|
206 |
+
# Old classes used other config names than 'sentence_bert_config.json'
|
207 |
+
for config_name in [
|
208 |
+
"sentence_bert_config.json",
|
209 |
+
"sentence_roberta_config.json",
|
210 |
+
"sentence_distilbert_config.json",
|
211 |
+
"sentence_camembert_config.json",
|
212 |
+
"sentence_albert_config.json",
|
213 |
+
"sentence_xlm-roberta_config.json",
|
214 |
+
"sentence_xlnet_config.json",
|
215 |
+
]:
|
216 |
+
sbert_config_path = os.path.join(input_path, config_name)
|
217 |
+
if os.path.exists(sbert_config_path):
|
218 |
+
break
|
219 |
+
|
220 |
+
with open(sbert_config_path) as fIn:
|
221 |
+
config = json.load(fIn)
|
222 |
+
# Don't allow configs to set trust_remote_code
|
223 |
+
if "model_args" in config and "trust_remote_code" in config["model_args"]:
|
224 |
+
config["model_args"].pop("trust_remote_code")
|
225 |
+
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
|
226 |
+
config["tokenizer_args"].pop("trust_remote_code")
|
227 |
+
if "config_args" in config and "trust_remote_code" in config["config_args"]:
|
228 |
+
config["config_args"].pop("trust_remote_code")
|
229 |
+
return cls(model_name_or_path=input_path, **config)
|
modules.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "transformer",
|
5 |
+
"path": "",
|
6 |
+
"type": "custom_st.Transformer",
|
7 |
+
"kwargs": ["task"]
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"idx": 1,
|
11 |
+
"name": "pooler",
|
12 |
+
"path": "1_Pooling",
|
13 |
+
"type": "sentence_transformers.models.Pooling"
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"idx": 2,
|
17 |
+
"name": "normalizer",
|
18 |
+
"path": "2_Normalize",
|
19 |
+
"type": "sentence_transformers.models.Normalize"
|
20 |
+
}
|
21 |
+
]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f59925fcb90c92b894cb93e51bb9b4a6105c5c249fe54ce1c704420ac39b81af
|
3 |
+
size 17082756
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8194,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|